Supporting Information

Two Novel Lanthanide Metal-Organic Frameworks Based on Tetraphenylethylene for Ultra-High Proton Conduction

Qi Wu^a, Qianxi Li^a, Wenkang Zou^a, Zheyu Zhang^a, Yan Zhou^{a*} and Qihua Zhao^{ab*}

^aSchool of Chemical Science and Technology, Yunnan University, Kunming 650500,

P. R. China.

^bKey Laboratory of Medicinal Chemistry for Natural Resource Education Ministry,

Yunnan University, Kunming 650091, P. R. China.

Corresponding Authors. E-mail: <u>yanzhou@ynu.edu.cn</u>, <u>qhzhao@ynu.edu.cn</u>.

Table of contents

Materials and Apparatus	S3
Synthesis of Ln-MOFs	S3
Stability Experiment	S5
Proton Conductivity Measurement	S5
Analysis of Impedance Simulation Diagram	S6
References	S28

EXPERIMENTAL SECTION

Materials and Apparatus

All chemical reagents were commercially available without further purification, including europium chloride hexahydrate (EuCl₃·6H₂O), dysprosium nitrate hexahydrate (Dy(NO₃)₃·6H₂O), N, N-dimethylformamide (DMF) and trifluoroacetic acid (TFA). The ligand H₄TCBPE-F can be synthesized according to the literature.¹ With using Bruker AXS CCD D8 VENTURE, Single crystal X-ray diffraction was performed with Cu Ka radiation. Powder X-ray diffraction (PXRD) was performed using the Rigaku TTRIII-18KW diffractometer (Rigaku, Japan) with Cu Ka radiation and an angular range of 3-50° (2 θ). Fourier transform infrared spectroscopy (FT-IR) is measured with a Fourier transform infrared spectrophotometer (Nicoletis 10), and the crystal sample is ground with KBr and pressed into thin sheets for testing in the test range of 4000-400 cm⁻¹. In Ar atmosphere, Thermogravimetric analysis (TGA) is performed on a Mettler Tolli synchronous differential thermal analyzer (30-800°C, heating rate 10°C/min). The water vapor adsorption experiments were carried out with the Quantachrome Autosorb IQ (USA) device at different relative humidity levels at 25°C. Before measuring water absorption, the two samples were activated for 12 h under vacuum at 120°C.

Synthesis of Ln-MOFs

In a 15 mL rigid pressure-resistant glass tube, H₄TCBPE-F (5.0 mg, 0.006 mmol) and EuCl₃·6H₂O (10.0 mg, 0.066 mmol) were weighed and added sequentially, followed by the addition of 2.0 mL of DMF and 0.15 mL of TFA. The mixture was heated to 60°C for 72 h and then allowed to cool naturally to room temperature. Yellow-green needle-like crystals were obtained and washed with DMF several times. Yield: 60% (calculated based on H₄TCBPE-F). Infrared spectral test data (FT-IR, KBr, cm⁻¹): 3423 (m), 2924 (w), 2854 (w), 1621 (s), 1589 (s), 1383 (m), 1188 (w), 1109 (m), 906 (w), 865 (w), 833 (w), 787 (m), 698(w), 622(w), 516(w).

The preparation method of Dy-MOF is similar to the Eu-MOF, except that

 $Dy(NO_3)_3 \cdot 6H_2O$ is used instead of $EuCl_3 \cdot 6H_2O$. The relevant measurement data are as follows:

Dy-MOF: Yield: 60% (calculated based on H₄TCBPE-F). Infrared spectral test data (FT-IR, KBr, cm⁻¹): 3421 (m), 2924 (w), 2854 (w), 1618 (s), 1587 (s), 1384 (m), 1188 (w), 1108 (m), 904 (w), 866 (w), 831 (w), 790 (m), 698 (w), 622 (w), 556 (w). The X-ray crystallographic coordinates for structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number CCDC 2381005 and CCDC for 2385883 compound **Eu-MOF** and **Dy-MOF**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. All relevant data supporting the findings of this study are available from the corresponding authors on request.

Scheme 1. Schematic of Syntheses and Optical Images of Eu-MOF and Dy-MOF.

Stability Experiment

Crystal samples of **Eu-MOF** and **Dy-MOF** were immersed in water, and the watersoaked MOF was subsequently dried at 50°C to obtain PXRD. Next, the MOF samples were immersed in acidic (pH=1, 3, 5) or alkaline (pH=9, 11, 13) solutions, and then soaked MOF was dried at 50°C and the PXRD pattern was obtained to detect the stability of **Eu-MOF** and **Dy-MOF**.

Proton Conductivity Measurement

For all proton conductivity measurements, electrochemical impedance spectra were recorded by Shanghai Chenhua CHI660E electrochemical workstation software. The temperature range was from 30 to 90°C, the frequency range was from 1 Hz to 1 MHz and the relative humidity is 68%, 75%, 85%, 93%, 98%. Then, about 30 mg of **Eu-MOF** and **Dy-MOF** powder were weighed and placed in a mold with a diameter of 5 mm, and the fixed samples (average diameter of 5.05 mm, thickness of 1.10 mm) obtained by pressing at 5 MPa for 5 min and were sandwiched between two Cu electrodes. Then the circular sheet was connected to the electrochemical workstation through the quasi-four-probe system. In order to obtain more accurate electrochemical data, the samples were stabilized at different humidity levels for a period of time before starting the test. These circular flakes were then telescoped in a constant humidity thermostat under the conditions described above for testing.

Proton conductivity (σ , S·cm⁻¹) was calculated using the equation²

$$\sigma = \frac{L}{RS} \tag{1}$$

where L (cm), R (Ω), S (cm²) are the thickness, measured impedance and surface area of the particle.

The activation energy E_a (eV) is calculated from the Arrhenius equation.^{3,4}

$$\sigma T = \sigma_0 exp\left(\frac{-E_a}{kT}\right) \tag{2}$$

Where σ is the conductivity (S·cm⁻¹), T (K) is the absolute temperature and k is the Boltzmann constant, $8.6 \times 10^{-5} \text{ eV} \cdot \text{K}^{-1}$.

Analysis of Impedance Simulation Diagram

Equivalent circuits for the Nyquist plots of Eu-MOF and Dy-MOF at 30°C and 90°C

and 98% relative humidity were fitted by the Nova2 program (Figure S22-S23).

Fig. S1. The minimum asymmetric unit ellipsoid diagram of the Eu-MOF.

Fig. S2. The minimum asymmetric unit ellipsoid diagram of the Dy-MOF.

Fig. S3. The coordination environment of the ligand in Eu-MOF and Dy-MOF, for clear visibility, the hydrogen atom has been omitted.

Fig. S4. Coordination environment of the middle metal atom of Eu-MOF.

Fig. S5. Coordination environment of the middle metal atom of Dy-MOF.

Fig. S6. (a) 1D chain-like structure connected by H_4TCBPE -F of Ln-MOF; (b) The two-dimensional face of the Ln-MOF; (c) 3D stacking diagram of the Ln-MOF.

Fig. S7. FT-IR spectra of Eu-MOF and Dy-MOF.

By FT-IR test, we obtained that at around 3500 cm⁻¹, the large and broad peak be caused by the stretching vibration of -OH in water molecules. The vibrational absorption peaks in $[Me_2NH_2]^+$ at v(N-H) 2852 cm⁻¹, v(C-N) 1388 cm⁻¹ and v(C-H) at 2925 cm⁻¹ were found. v(C=O) at 1687 cm⁻¹ disappeared in **Ln-MOF**, which suggests that there is a coordination interaction between -COOH in H₄TCBPE-F and the metal have coordination interactions. And the vibrational absorption peaks at v(C=C) 1618 and 1621 cm⁻¹ in the ligand H₄TCBPE-F were observed in **Eu-MOF** and **Dy-MOF**.

Fig. S8. (a) PXRD of **Eu-MOF** after immersion in water and electrochemical testing at 98% RH and 90°C; (b) PXRD of **Eu-MOF** in different pH aqueous solution.

Fig. S9. (a) PXRD of **Dy-MOF** after immersion in water and electrochemical testing at 98% RH and 90°C; **(b)** PXRD of **Dy-MOF** in different pH aqueous solution.

Fig. S10. Thermogravimetric analysis (TGA) and micro-quotient thermogravimetric curves (DTG) of **Eu-MOF** in Ar atmosphere.

Fig. S11. Thermogravimetric analysis (TGA) and micro-quotient thermogravimetric curves (DTG) of **Dy-MOF** in Ar atmosphere.

Fig. S12. (a) Water contact angle of Eu-MOF; (b) N_2 adsorption-desorption isotherms of Eu-MOF; (c) Water contact angle of Dy-MOF; (d) N_2 adsorption-desorption isotherms of Dy-MOF.

Fig. S13. (a) Nyquist plot of proton conductivity of **Dy-MOF** at 30-90°C and 98% RH; (b) **Dy-MOF** of temperature dependence plots; (c) Nyquist plot of the proton conductivity of **Dy-MOF** at 90°C and different humidity; (d) Plot of the humidity dependence of the **Dy-MOF**.

Fig. S14. (a) Nyquist plot of proton conductivity of **Eu-MOF** at 30-90°C (93% RH); (b) Arrhenius of **Eu-MOF** at 93% RH.

Fig. S15. (a) Nyquist plot of proton conductivity of **Eu-MOF** at 30-90°C (85% RH); (b) Arrhenius of **Eu-MOF** at 85% RH.

Fig. S16. (a) Nyquist plot of proton conductivity of **Eu-MOF** at 30-90°C (75% RH); (b) Arrhenius of **Eu-MOF** at 75% RH.

Fig. S17. (a) Nyquist plot of proton conductivity of Eu-MOF at 30-90°C (68% RH);(b) Arrhenius of Eu-MOF at 68% RH.

Fig. S18. (a) Nyquist plot of proton conductivity of Dy-MOF at 30-90°C (93% RH);(b) Arrhenius of Dy-MOF at 93% RH.

Fig. S19. (a) Nyquist plot of proton conductivity of Dy-MOF at 30-90°C (85% RH);(b) Arrhenius of Dy-MOF at 85% RH.

Fig. S20. (a) Nyquist plot of proton conductivity of Dy-MOF at 30-90°C (75% RH);
(b) Arrhenius of Dy-MOF at 75% RH.

Fig. S21. (a) Nyquist plot of proton conductivity of Dy-MOF at 30-90°C (68% RH);(b) Arrhenius of Dy-MOF at 68% RH.

Fig. S22. The simulated Nyquist plot of **Eu-MOF** at 90°C and 98% RH, the insert picture is the equivalent circuits.

Fig. S23. The simulated Nyquist plot of Dy-MOF at 90°C and 98% RH, the insertpictureistheequivalentcircuits.

Compound	Eu-MOF	Dy-MOF
Formula	$C_{63}H_{52}EuF_4N_3O_{12}$	$C_{63}H_{52}DyF_4N_3O_{12}$
Formula weight	1086.54	1281.57
Temperature (K)	293(2)	150.15
Crystal system	monoclinic	monoclinic
Space group	$P2_{1}/c$	$P2_{l}/c$
a (Å)	24.9479(14)	24.9144(15)
b (Å)	9.1728(5)	9.0765(6)
c (Å)	39.8370(17)	39.7778(19)
Volume (Å ³)	7903.1(7)	7782.5(8)
Ζ	4	4
density (g cm ⁻³)	0.913	1.094
F (000)	2112	2596
R _{int}	0.0819	0.0436
$R_1, wR_2 [I \ge 2\sigma (I)]^a$	0.0485/0.1212	0.0663/0.1624
R_1 , wR_2 [all data] ^b	0.0654/ 0.1285	0.0779/ 0.1697
GOF	1.034	1.104

Table S1. Crystal data and structure refinement for Eu-MOF and Dy-MOF.

 ${}^{a}R_{l} = \sum |Fo-Fc| / \sum |Fo|$. ${}^{b}wR_{2} = \sum [w(Fo^{2} - Fc^{2})^{2}] / w(Fo^{2})^{2}]^{1/2}$

I	Eu-MOF	Dy-I	MOF
Eu-O1	2.373 (3)	Dy-O1	2.496 (5)
Eu-O2 ¹	2.488 (3)	Dy-O2 ¹	2.432 (5)
Eu-O3 ²	2.389 (3)	Dy-O3 ²	2.449 (6)
Eu-O4	2.456 (3)	Dy-O4 ¹	2.407 (5)
Eu-O5 ³	2.518 (3)	Dy-O5 ²	2.441 (4)
Eu-O6	2.490 (3)	Dy-O6 ²	2.466 (5)
Eu-O7 ¹	2.510 (3)	Dy-O9 ³	2.321 (4)
Eu-O9 ³	2.489 (3)	Dy-O10	2.327 (5)
Eu-C7 ¹	2.850 (4)	Dy-O11	2.342 (5)
Eu-C24 ³	2.869 (4)	Dy-C7	2.837 (6)
Eu-C25	2.821 (4)	Dy-C27 ¹	2.782 (7)
Eu-O0AA	2.392 (3)	Dy-C40 ²	2.813 (6)

Table S2. Selected bond distances (Å) for Eu-MOF and Dy-MOF.

Symmetry transformations used to generate equivalent atoms for **Eu-MOF**: ¹1-X, -2-Y, -Z; ²1-X, 1/2+Y, 1/2-Z; ³-X, -1-Y, -Z, and **Dy-MOF**: ¹2-X, -Y, -Z; ²-1+X, 1+Y, +Z; ³1-X, 1/2+Y, 3/2-Z.

Eu-MOF		Dy-MOF		
O1-Eu-O2 ¹	78.00 (10)	O1-Dy-C7	25.54 (18)	
O1-Eu-O3 ²	82.38 (10)	O1-Dy-C27 ¹	113.64 (19)	
O1-Eu-O4	148.53 (10)	O1-Dy-C40 ²	156.48 (19)	
O1-Eu-O5 ³	79.52 (10)	O2-Dy-O1	51.16 (17)	
O1-Eu-O6	151.56 (11)	O2-Dy-O3 ¹	69.8 (2)	
01-Eu-07 ¹	83.03 (11)	O2-Dy-O5 ²	139.37 (17)	
O1-Eu-O9 ³	127.70 (11)	O2-Dy-O6 ²	145.0 (2)	
O1-Eu-C7 ¹	78.39 (10)	O2-Dy-C7	25.69 (18)	
O1-Eu-C24 ³	104.46 (11)	O2-Dy-C27 ¹	63.80 (19)	
01-Eu-C25	168.64 (11)	O2-Dy-C40 ²	152.36 (19)	
O1-Eu-O0AA	77.64 (11)	O3 ¹ -Dy-O1	109.0 (2)	
O2 ¹ -Eu-O5 ³	149.73 (11)	O3 ¹ -Dy-O6 ²	75.6 (2)	
O2 ¹ -Eu-O6	103.49 (12)	O3 ¹ -Dy-C7	88.6 (2)	
O2 ¹ -Eu-O7 ¹	51.72 (10)	O3 ¹ -Dy-C27 ¹	26.4 (2)	
O2 ¹ -Eu-O9 ³	137.56 (13)	O3 ¹ -Dy-C40 ²	89.0 (2)	
O2 ¹ -Eu-C7 ¹	25.75 (11)	O4 ¹ -Dy-O1	120.31 (18)	
O2 ¹ -Eu-C24 ³	154.71 (11)	O4 ¹ -Dy-O2	70.54 (18)	

Table S3. Selected angles (°) for Eu-MOF and Dy-MOF

O2 ¹ -Eu-C25	91.89 (12)	O4 ¹ -Dy-O3 ¹	52.15 (19)
O3 ² -Eu-O2 ¹	121.79 (10)	O4 ¹ -Dy-O5 ²	73.41 (17)
O3 ² -Eu-O4	124.74 (10)	O4 ¹ -Dy-O6 ²	92.1 (2)
O3 ² -Eu-O5 ³	74.48 (11)	O4 ¹ -Dy-C7	95.8 (2)
O3 ² -Eu-O6	72.69 (10)	O41-Dy-C271	26.3 (2)
O3 ² -Eu-O7 ¹	71.93 (11)	O41-Dy-C402	82.52 (19)
O3 ² -Eu-O9 ³	97.02 (15)	O5 ² -Dy-O1	148.31 (19)
O3 ² -Eu-C7 ¹	96.76 (12)	O5 ² -Dy-O3 ¹	101.7 (2)
O3 ² -Eu-C24 ³	83.28 (11)	O5 ² -Dy-O6 ²	52.82 (18)
O3 ² -Eu-C25	98.91 (12)	O5 ² -Dy-C7	154.6 (2)
O3 ² -Eu-O0AA	149.52 (10)	O5 ² -Dy-C27 ¹	90.7 (2)
O4-Eu-O2 ¹	73.91 (10)	O5 ² -Dy-C40 ²	26.3 (2)
O4-Eu-O5 ³	120.12 (10)	O6 ² -Dy-O1	143.0 (2)
O4-Eu-O6	52.16 (11)	O6 ² -Dy-C7	152.3 (2)
O4-Eu-O7 ¹	90.46 (12)	O6 ² -Dy-C27 ¹	87.0 (2)
O4-Eu-O9 ³	69.69 (11)	O6 ² -Dy-C40 ²	26.5 (2)
O4-Eu-C7 ¹	82.36 (11)	O9 ³ -Dy-O1	78.65 (16)
O4-Eu-C24 ³	95.24 (11)	O9 ³ -Dy-O2	128.37 (17)
O4-Eu-C25	26.40 (11)	O9 ³ -Dy-O3 ¹	151.29 (18)

O5 ³ -Eu-C7 ¹	157.14 (11)	O9 ³ -Dy-O4 ¹	147.92 (17)
O5 ³ -Eu-C24 ³	25.52 (10)	O9 ³ -Dy-O5 ²	78.14 (16)
O5 ³ -Eu-C25	111.75 (11)	O9 ³ -Dy-O6 ²	82.16 (18)
O6-Eu-O5 ³	105.95 (12)	O9 ³ -Dy-O10	82.76 (17)
O6-Eu-O7 ¹	76.49 (12)	O9 ³ -Dy-O11	78.24 (18)
O6-Eu-C7 ¹	90.95 (13)	O9 ³ -Dy-C7	103.84 (18)
O6-Eu-C24 ³	86.31 (13)	O9 ³ -Dy-C27 ¹	167.69 (18)
O6-Eu-C25	26.33 (12)	O9 ³ -Dy-C40 ²	78.40 (18)
O7 ¹ -Eu-O5 ³	143.79 (12)	O10-Dy-O1	74.68 (17)
O7 ¹ -Eu-C7 ¹	26.01 (11)	O10-Dy-O2	93.43 (18)
O7 ¹ -Eu-C24 ³	153.04 (12)	O10-Dy-O31	73.26 (18)
O7 ¹ -Eu-C25	86.64 (12)	O10-Dy-O41	125.41 (18)
O9 ³ -Eu-O5 ³	50.89 (11)	O10-Dy-O5 ²	122.99 (17)
O9 ³ -Eu-O6	70.17 (14)	O10-Dy-O6 ²	71.73 (18)
O9 ³ -Eu-O7 ¹	146.61 (14)	O10-Dy-O11	149.07 (17)
O9 ³ -Eu-C7 ¹	151.93 (11)	O10-Dy-C7	82.15 (19)
O9 ³ -Eu-C24 ³	25.57 (11)	O10-Dy-C271	99.4 (2)
O9 ³ -Eu-C25	63.49 (12)	O10-Dy-C40 ²	97.3 (2)
C7 ¹ -Eu-C24 ³	177.11 (11)	O11-Dy-O1	77.78 (18)

C25-Eu-C7 ¹	90.25 (12)	O11-Dy-O2	79.87 (19)
C25-Eu-C24 ³	86.89 (12)	O11-Dy-O31	130.06 (18)
O0AA-Eu-O2 ¹	76.21 (10)	O11-Dy-O4 ¹	81.0 (2)
O0AA-Eu-O4	82.11 (11)	O11-Dy-O5 ²	76.60 (17)
O0AA-Eu-O5 ³	79.39 (11)	O11-Dy-O6 ²	128.49 (17)
O0AA-Eu-O6	130.63 (11)	O11-Dy-C7	79.0 (2)
O0AA-Eu-O7 ¹	127.19 (10)	O11-Dy-C27 ¹	104.4 (2)
O0AA-Eu-O9 ³	77.88 (15)	O11-Dy-C40 ²	102.4 (2)
O0AA-Eu-C7 ¹	101.44 (12)	C27 ¹ -Dy-C7	88.5 (2)
O0AA-Eu-C24 ³	79.75 (11)	C27 ¹ -Dy-C40 ²	89.3 (2)
O0AA-Eu-C25	105.20 (12)	C40 ² -Dy-C7	177.6 (2)

Symmetry transformations used to generate equivalent atoms for **Eu-MOF**: ¹1-X, 2-Y, -Z; ²1-X, -1/2+Y, 1/2-Z; ³-X, -1-Y, -Z, and **Dy-MOF**: ¹2-X, -Y, 2-Z; ²-1+X, 1+Y, +Z; ³1-X, 1/2+Y, 3/2-Z; ⁴1+X, -1+Y, +Z; ⁵1-X, -1/2+Y, 3/2-Z.

Eu-MOF					
T (°C) /RH (%)	68%	75%	85%	93%	98%
30°C	4.14×10 ⁻⁷	4.16×10 ⁻⁷	2.65×10 ⁻⁷	1.68×10 ⁻⁶	2.68×10 ⁻⁵
40°C	7.34×10 ⁻⁷	1.41×10 ⁻⁶	1.61×10 ⁻⁶	5.42×10 ⁻⁶	1.45×10 ⁻⁴
50°C	2.63×10 ⁻⁶	3.51×10 ⁻⁶	3.95×10 ⁻⁶	1.31×10 ⁻⁵	4.73×10 ⁻⁴
60°C	3.41×10 ⁻⁶	6.58×10 ⁻⁶	1.33×10 ⁻⁵	4.58×10 ⁻⁵	1.76×10 ⁻³
70°C	6.76×10 ⁻⁶	1.29×10 ⁻⁵	2.98×10-5	1.13×10 ⁻⁴	1.30×10 ⁻²
80°C	1.42×10 ⁻⁵	2.79×10 ⁻⁵	1.00×10 ⁻⁴	3.14×10 ⁻⁴	4.23×10 ⁻²
90°C	9.00×10 ⁻⁵	1.59×10 ⁻⁵	2.04×10 ⁻³	3.49×10 ⁻²	5.35×10 ⁻²

Table S4. Proton conductivity of Ln-MOF at different RHs and temperatures.

Dy-MOF					
T (°C) /RH (%)	68%	75%	85%	93%	98%
30°C	3.99×10 ⁻⁹	5.24×10 ⁻⁹	1.41×10 ⁻⁷	1.12×10 ⁻⁷	1.20×10 ⁻⁵
40°C	1.03×10 ⁻⁸	1.87×10 ⁻⁸	7.53×10 ⁻⁷	2.59×10 ⁻⁷	4.36×10 ⁻⁵
50°C	2.83×10 ⁻⁸	6.65×10 ⁻⁸	2.69×10 ⁻⁶	1.02×10 ⁻⁶	1.73×10 ⁻⁴
60°C	5.68×10 ⁻⁸	1.61×10 ⁻⁷	4.63×10 ⁻⁶	2.52×10 ⁻⁶	3.93×10 ⁻⁴
70°C	1.87×10 ⁻⁷	4.01×10 ⁻⁷	5.97×10 ⁻⁶	0.38×10 ⁻⁶	8.47×10 ⁻⁴
80°C	2.55×10 ⁻⁶	1.74×10 ⁻⁶	9.79×10 ⁻⁶	0.99×10 ⁻⁵	2.12×10 ⁻³
90°C	8.61×10 ⁻⁶	8.77×10 ⁻⁶	7.03×10 ⁻⁵	0.78×10 ⁻⁴	1.22×10 ⁻²

Compounds	σ value (S cm ⁻¹)	Tested conditions	Ref.
Eu-MOF	5.35×10 ⁻²	90°C, 98% RH	this work
Dy-MOF	1.22×10 ⁻²	90°C, 98% RH	this work
MIP-202(Zr)	1.10×10 ⁻²	90°C, 95% RH	5
$[Zr_6O_4(OH)_4(DTD)_6]$ ·5DMF·H ₂ O	0.67×10^{-2}	100°C, 98% RH	6
UPC-H9	9.52×10 ⁻³	30°C, 80%RH	7
$(Me_2NH_2)_2(H_2O)[EuL_2]\cdot 8H_2O$	8.83×10 ⁻³	95°C, 60% RH	8
(Me ₂ NH ₂)[Eu(pmip)]	3.76×10 ⁻³	100°C, 98% RH	9
UiO-66(Zr)-(CO ₂ H) ₂	2.30×10 ⁻³	90°C, 95% RH	10
$ \{ [[(CH_3)_2NH_2]_3Eu_2(DTTP-2OH)_2(HCOO)(H_2O)] \cdot 4H_2O \}_n $	1.91×10 ⁻³	60°C, 98% RH	11
$(Hdmbpy)[Dy(H_2dobdc)_2(H_2O)]\cdot 3H_2O$	1.20×10^{-3}	70°C, 100% RH	12
VNU-15	7.70×10 ⁻⁴	95°C, 40% RH	13
JUK-14	3.60×10 ⁻⁴	60°C, 90% RH	14
Tb(H ₂ L)(H ₂ bts)(H ₂ O)]·H ₂ O	2.30×10 ⁻⁴	95°C, 95% RH	15
$Eu_2(CO_3)(ox)_2)(H_2O)_2 \cdot 4H_2O$	9.30×10 ⁻³	25°C, 40%RH	16
$[Dy(L)(Ox)(H_2O)]_n \cdot 1.5H_2O$	9.06×10 ⁻⁵	80°C, 95% RH	17

Table S5. Comparison of σ values between Ln-MOF and other MOF.

Reference

[1] F. M. Wang, W. Liu, S. J. Teat, F. Xu, H. Wang, X. L. Wang, L. T. An and J. Li, *Chem. Commun.*, 2016, **52**, 10249-10252.

[2] H. Chen, S.-Y. Han, R.-H. Liu, T.-F. Chen, K.-L. Bi, J.-B. Liang, Y.-H. Deng and C.-Q. Wan, *J. Power Sources*, 2018, **376**, 168-176.

[3] M.-S. Yao, X.-J. Lv, Z.-H. Fu, W.-H. Li, W.-H. Deng, G.-D. Wu and G. Xu, *Angew. Chem. Int. Ed.*, 2017, **56**, 16510-16514.

[4] S. Chand, S. C. Pal, A. Pal, Y. X. Ye, Q. J. Lin, Z. J. Zhang, S. C. Xiang and M. C. Das, *Chem. Eur. J.*, 2019, 25, 1691-1695.

[5] S. J. Wang, M. Wahiduzzaman, L. Davis, A. Tissot, W. Shepard, J. Marrot, C. Martineau-Corcos, D. Hamdane, G. Maurin, S. Dewautour-Vinot and C. Serre, *Nat. Commun.*, 2018, 9, 4937.

[6] Y.-L. Hong, Z. H. Xu, J. Du, Z.-Q. Shi, Y.-H. Zuo, H.-L. Hu and G. Li, *Inorg. Chem.*, 2024, **63**, 10786-10797.

[7] Y. J. Wang, M. H. Zhang, Q. Q. Yang, J. B. Yin, D. Liu, Y. X. Shang, Z. X. Kang,
R. M. Wang, D. F. Sun and J. Z. Jiang, *Chem. Commun.*, 2020, 56, 15529-15532.

[8] S. L. Zhang, Y. X. Xie, M. R. Yang and D. R. Zhu, *Inorg. Chem. Front.*, 2022, 9, 1134.

[9] Y.-S. Wei, X.-P. Hu, Z. Han, X.-Y. Dong, S.-Q. Zang and T. C.W. Mark, *J. Am. Chem. Soc.*, 2017, **139**, 3505-3512.

[10] D. B. Daiane, D.-V. Sabine, J. Herve, O. Jacques, N. Farid, S. Rocio, D. Thomas,
S. Christian, P. Francesco and M. Guillaume, *Angew. Chem. Int. Ed.*, 2016, 55, 3919-3924.

[11] J.-J. Hu, K. L. Xie, T.-Z. Xiong, M.-M. Wang, H.-R. Wen, Y. Peng and S.-J. Liu, *Inorg. Chem.*, 2023, 62, 12001-12008.

[12] F.-G. Chen, W. Xu, J. Chen, H.-P. Xiao, H.-Y. Wang, Z. Y. Chen and J.-Y. Ge, *Inorg. Chem.*, 2022, **61**, 5388-5396.

[13] T. N. Tu, N. Q. Phan, T. T. Vu, H. L. Nguyen, K. E. Cordova and H. Furukawa, J. Mater. Chem. A, 2016, 4, 3638.

- [14] M. Szufla, A. Choroś, W. Nitek and D. Matoga, Chem. Eur. J., 2022, 28, 37.
- [15] Y.-N. Zhou, L.-L. Liu, Q.-W. Liu, X.-X. Liu, M.-Z. Feng, L. Wang, Z.-G. Sun, Y.-
- Y. Zhu, X. Zhang and C.-Q. Jiao, Inorg. Chem., 2021, 60, 17303-17314.
- [16] Q. Tang, Y. W. Liu, S X. Liu, D. F. He, J. Miao, X. Q. Wang, G. C. Yang, Z. Shi and Z. P. Zheng. *J. Am. Chem. Soc.*, 2014, **136**, 12444-12449.
- [17] H. Wu, F. Yang, X.-L. Lv, B. Wang, Y.-Z. Zhang, M.-J. Zhao and J.-R. Li, J. Mater. Chem. A, 2017, 5, 14525-14529.