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1. Experimental Section
1.1 Materials

Lead (II) bromide (PbBr,, 298%), toluene (Anhydrous, 99.8 %), isopropyl alcohol (IPA, 99.9%),
dimethyl formamide (DMF, anhydrous 99.8%), octylamine (299 %) and Sulphuric acid were
obtained from Sigma-Aldrich, methylammonium bromide (MABr, >99.99%) was obtained
from Great Cell Solar Materials. All chemicals were used as received without any further

purification.

1.2 Growth and Characterization of MAPbBr; SC: 1.2 M MAPbBr; solution was prepared by
dissolving the equimolar amounts of PbBr, and MABrin 5 mL anhydrous DMF and stirring the
solution at room temperature until a clear solution was obtained. The resulting clear solution
was then filtered using a 0.2 um PTFE filter. Subsequently, the solution was heated to 80°C
and maintained at this temperature until large single crystals of MAPbBr3; were formed. The

resulting crystals were then collected, dried, and stored for further experiments.

1.3 Passivation process and characterization: A 4 mM sulfate passivation solution is prepared
by dissolving an equimolar amount of octylamine and sulfuric acid in an IPA:toluene (1:5)
mixture. The solution is stirred for 30 minutes and left undisturbed for 24 hours to stabilise.
Afterwards, the solution is filtered using a PTFE 0.2 um filter and then used for passivation.
For the passivation process, the MAPbBrs SCs are fully immersed in the solution for 10, 20,
30, and 40 seconds, respectively. The SCs retrieved from the solution are washed with

toluene, dried, and stored.

1.4 Fabrication and Characterizations of SC-based PDs: 100 nm thick platinum (Pt) electrodes
were deposited on the (100) facet of SCs with a self-designed mask of 150 um channel by
using magnetron sputtering (Leica EM MEDO020). All current-voltage and PD response
measurements were conducted using a Bio-Logic SP-150e potentiostat and a Semiconductor
Analysis and Testing Solutions (SATs) probe station at a scan rate of 100 mV s. The power of
the blue LED (A= 448 nm, Luxeon Star LED) was optimised using Thorlabs GmbH., PM 100D

and controlled by Bio-Logic SP-150e potentiostat.
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Passivated MAPbBr;

Fig. S2 AFM images of MAPbBr; SC surface (a) before and (b) after passivation.
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Fig. S3 The pXRD pattern of the pristine and passivated MAPbBrs.
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Fig. S4 'H NMR of the MAPbBr3, passivated MAPbBr3; and octylamine.
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Fig. S5 FT-IR spectra of pristine MAPbBr; and passivated MAPbBr; SCs. The formation of PbSO4
on the surface was confirmed by Fourier transform infrared (FT-IR) transmission
measurement, which is consistent with our previous work.! The FTIR of the passivated SC
confirms the presence of the character peaks of SO4? (5S=0 stretching) at 1040 cm™ and 1398

cm?t. !
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Fig. S6 Intensity-dependent transient photoresponse of the pristine, and 10, 20, 30, 40
seconds passivated MAPbBr3; SC-based PDs under blue LED (A = 448 nm) pulsed light at a fixed
bias of 2 V.
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Fig. S7 EQE of the control and passivated SC-based PDs under blue light (448 nm) and 2 V bias.
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Fig. S8 Dark |-V characteristics in the form of SCLC of the pristine and passivated MAPbBr3 SC.
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Fig. S9 The PL of the pristine and passivated SC for the excitation of 405 nm wavelength.
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Fig. $10 (a) Pristine and (b) passivated MAPbBr; SCs immersed in water for 3 seconds.
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Fig. S11 Analysis of FWHM for the XRD peaks of fresh and aged (a) Pristine and (b) passivated
MAPbBr3 SCs. The evolution of PL spectra of (a) Pristine and (b) passivated MAPbBr3; SCs over

time.
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Fig. S12 Dark current of the (a) control and (b) 20 s dipped MAPbBr; SC-based PDs over

aging time.

Supplementary Note 1

The responsivity (R) and external quantum efficiency (EQE) of the control and passivated SC-
based PDs were calculated using Eqn. (S1) and (S2),2

I'iight— ldark

Responsivity (R) = —L———= oo (Egn. S1)
p y P xXA

Where liight is photocurrent, lqark is dark current, P is the illumination power, and A is the active

area.

External quantum ef ficiency (EQE) = e - (Eqn. S2)

Axe

where his the plank’s constant, Ais the illumination wavelength, and e is the elemental charge

of the electron.

The responsivity Specific detectivity (D*) and on-off ratio of PDs are calculated as,?
o .. “~N_p|l__A
Specific detectivity (D*) = R /z><ex - (Eqgn. S3)

on — of f ratio = ;”ﬂ ———————————— (Eqn. S4)

dark
The trap density (ntrap) of these SCs was calculated using the space charge-limited current
(SCLC) method as,?

_ 2&80&'VTFL

ntraps - er2 00T (Eqn- 55)

where gp and & are the dielectric constants of the vacuum permeability and the dielectric

constant, and L is the thickness of the crystal.
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The dark current (J4) increasing rate is calculated using Egn. (S6)*

Rate = (M) X 100% --------- (Eqn. S6)

I

Where, the J; and Jp are the dark current densities of the days a and b.

Table S1. The comparison of PD parameters for MAPbBrs; SC-based photoconductor with

symmetric electrode reported in the literature and our work.

Distance
PD \;\:‘agvtt:‘l Light Bias | between R (E/C;E/ D Ref
i Y | A/W 3
structure (nm) Intensity (V) | electrod | (A/W) Gains (Jones)
es
p/ ?183)5 0.046
4 10 pW 84 |1 5
MAPbBrs/Au | 49° Ou 9.84 1 100um 5 0ag 0113
(110) '
125um | 0.6 124 | 4x10%
100 um | 0.7 151 2.5 x 101!
1W m?> 75 pm 1.02 221 | 2.5x10%
50 um 1.31 298 2.2 x 101
Au/ - 5 25 um 1.54 332 2.2 x 101 6
MAPbBrs/Au 125pum | 2.3 498 | 1.4x10%2
100 um | 2.8 607 | 1x10%2
0.02 W m*2 75 pm 3.3 705 | 8 x 101
50um | 4.2 900 | 7.2x10%
25 um 5.3 1130 | 7.4x 10"
Au/Cr/
MAPbBrsy/ | 525 | COL2MWo o, 16 3900 |6x108 | 7
cm
Cr/Au
3.67 pW cm2 62.9 16540 * | 6.5x 1012
(Au/ I\/IAP;o/Ier 520 3
concave)/Ad 12.02 uW sa.5 1.4 8
cm? ' 10*
334 mW em: 543  [1300 |6.5x 107
AUMAPBBr: | o) | 354mWem™ | g 098 [234 |6.5x10%
/Au
Au/ '\;':SbB” 630 0.1 mwW 5 L7107 020 9

S9



103 mW cm™ 55.7 13453 | 8 x 10%3
Au/Cr/ , ~ ~ ~2.56.5x
MAPbBrs/ | 515 | >>mMWem 5 =0.1 =40 | jou 10
Cr /A ~
/A 0.1 mW cm?2 ~3 15;‘ ~ 5 x 1012
Au/ I\//I:uPbBrg 0.41 115 10015;, X
44 1 mwW -2 2 1 11
Pt/ MAPbBI3 8 | 0.ImWem >0 um L0 cs3 | 5:09%
/Pt . 1012
Pt/ Thi
passivated- 1.99 552 1.7 x 103 G
MAPbBr; /Pt | 448 | 0.1 mW cm? 2 150 um wo
Pt/ N},:I:bsrg 1.99 552 49 x 102 | rk
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