## **Supporting information**

## A rapid colorimetric paper-based sensor strip for point-of-care monitoring of the blood plasma coagulation

## Elmira Rafatmah,<sup>a</sup> Bahram Hemmateenejad<sup>\*a</sup>

<sup>a</sup> Chemistry Department, Shiraz University, Shiraz, Iran.

<sup>b</sup>\*Corresponding author E-mail address: hemmatb@shirazu.ac.ir

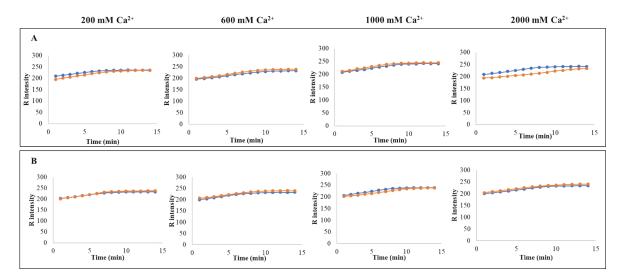



Figure S1. Comparison between the intensity of factor R when using plasma samples of level 1 and 2 on the sensor prepared in different conditions of calcium ion concentration (200-2000 mM) in the absence of thromboplastin (row A) and the presence of thromboplastin (row B)

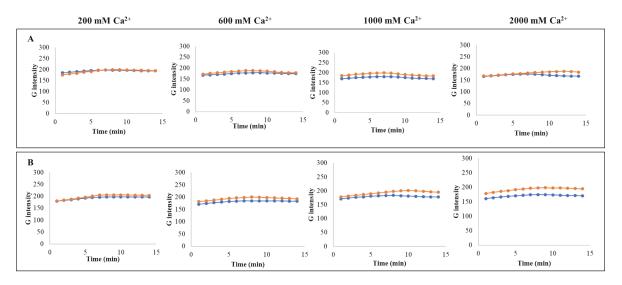



Figure S2. Comparison between the intensity of factor G when using plasma samples of level 1 and 2 on the sensor prepared in different conditions of calcium ion concentration (200-2000 mM) in the absence of thromboplastin (row A) and the presence of thromboplastin (row B).

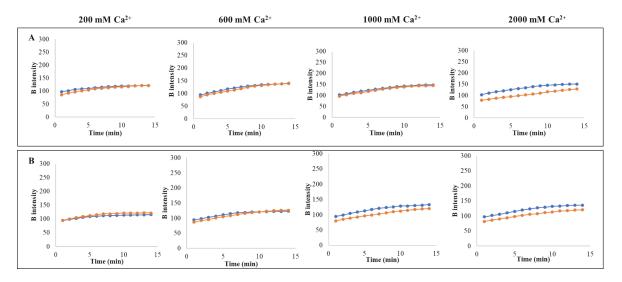



Figure S3. Comparison between the intensity of factor B when using level 1 and 2 plasma samples on the sensor prepared in different conditions of calcium ion concentration (200-2000 mM) in the absence of thromboplastin (row A) and the presence of thromboplastin (row B).

| Table S1. Calibration curve data points |                                            |
|-----------------------------------------|--------------------------------------------|
| INR value plasma sample                 | Average B intensity of three<br>replicates |
| 1.083333                                | 132.9967                                   |
| 1.09                                    | 131.9933                                   |
| 1.097561                                | 134.334                                    |
| 1.154472                                | 134.284                                    |
| 1.197431                                | 133.5223                                   |
| 1.047619                                | 142.8983                                   |
| 1.146341                                | 141.5483                                   |
| 1.710776                                | 137.1107                                   |
| 1.710776                                | 137.9667                                   |
| 2.035602                                | 137.2743                                   |
| 2.533333                                | 129.3497                                   |
| 2.61                                    | 122.3733                                   |
| 2.699187                                | 128.4103                                   |
| 2.943089                                | 132.89                                     |
| 2.958333                                | 123.668                                    |
| 3.708333                                | 122.5753                                   |
| 5.2                                     | 115.6637                                   |