Continuous activation of phenoxide and CF₃I for multiple

trifluoromethylations

Yusei Nakashima, Shinjiro Kusano, Tsukasa Inishi, Yasuyuki Nitta, Takashi Nishikata*

Graduate School of Science and Engineering, Yamaguchi University 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan

Contents

1. General Information	
2. Optimization and Comparison of Reaction Conditions	S4
3. Mechanistic Studies	S6
4. General Procedure	S9
5. References	S19
6. Spectral Charts for Products	S44

1. General Information

All reactions were carried out under nitrogen (99.95%) atmosphere. For TLC analyses precoated Kieselgel 60 F254 plates (Merck, 0.25 mm thick) were used; for column chromatography Silica Flash® P60 (SiliCycle, 40-63 μ m) was used. Visualization was accomplished by UV light (254 nm), ¹H, ¹³C, and ¹⁹F NMR spectra were obtained using a JEOL 500 MHz NMR spectrometer. Chemical shifts for ¹H NMR were described in parts per million (chloroform as an internal standard δ = 7.26) in CDCl₃, unless otherwise noted. Chemical shifts for ¹³C NMR were expressed in parts per million in CDCl₃ as an internal standard (δ = 77.16), unless otherwise noted. High resolution mass analyses (HRMS) were obtained using an ACQUITY UPLC/TOF-MS for ESI. Infrared spectra were recorded on Agilent Technologies Cary 630 FTIR. Anhydrous solvents were purchased from Kanto Chemical Co., Ltd. Other chemicals were purchased from TCI, Aldrich, and Wako and directly used without further purification. UV-visible absorption spectra were recorded on a JASCO V-750 spectrometer. Fluorescence spectra were recorded on a JASCO FP-8250 fluorescence spectrometer. CF₃I was obtained from Tosoh Finechem corporation.

The light source and the material of the irradiation vessel

Hepatochem EvoluChemTM PhotoRedOx Device, equipped with EvoluChemTM LED 18W light. A cardboard cover was placed over the reactor during reactions. Capable of carrying out up to 8 reactions at one time (4 mL vials).

LED light manufacture: EvoluChemTM

Model: EvoluChem LED 18W, P201-18-2 450-455 nm

or EvoluChem LED 30W, HCK1012-01-008 450 nm

Figure S1. Spectral distribution and intensity

Material of the irradiation vessel: borosilicate reaction vial

Not use any filters

Figure S2. Photoredox reaction set-up.

2. Optimization and Comparison of Reaction Conditions

Table S1. Optimization of solvent

Table S2. Optimization of base

Entry	Solvent	NMR Yield of 3
1	DMF	67%
2	DMSO	56%
3	AcOEt	39%
4	Acetone	0%
5	MeCN	34%
6	1,4-dioxane	33%
7	THF	16%

Table S3. Optimization of wave length

3. Mechanistic Studies

Radical inhibitor test

An oven-dried 5.0 mL screw-cap vial equipped with a magnetic stir bar was charged with phenol **1a** (75.1 mg, 0.5 mmol, 1.0 equiv.), Cs_2CO_3 (488.7 mg, 1.5 mmol, 3.0 equiv.) and 1,4-dinitrobenzene (84.1 mg, 0.5 mmol, 1.0 equiv.) as single electron transfer inhibitor or TEMPO (78.1 mg, 0.5 mmol, 1.0 equiv.) or BHT (110.2 mg, 0.5 mmol, 1.0 equiv.) as radical inhibitor. After flashing nitrogen gas (purity 99.95%), CF_3I **2** (1.0 mmol, 2.0 equiv.) was added as DMF solution and dried DMF (1.0 mL) were added into the vial by syringe under nitrogen atmosphere. The reaction mixture was vigorously stirred under irradiation of 18W 450 nm LED at room temperature for 24 h. After this time, the reaction mixture was carefully quenched with 3M HCl aq. at 0°C and extracted with Et₂O. The combined organic layers were filtered through MgSO₄, and then concentrated by rotary evaporation. Yield was determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard.

Figure S3. Radical inhibitor test

UV-Vis Experiments

UV-Vis spectra of the individual component were recorded, including substrate CF_3I , 4-tBuPhenol, Cs_2CO_3 . All of the samples were prepared as a 10.0 μ M solution in glovebox and used freshly for the measurement.

Figure S4. UV-Vis spectra of the related component recorded in DMF

Luminescence quenching experiment

All $1a + Cs_2CO_3$ solutions were excited at 410 nm and the emission intensity at 481 nm was observed. In a typical experiment, the DMF solution of $1a + Cs_2CO_3$ was added the appropriate amount of quencher, $CF_3I(2)$ in a 1.0 cm quartz cuvette. After preparing the solution, the emission spectra of the samples were collected.

Figure S5. Luminescenece spectral changes of $1a + Cs_2CO_3$ (1.0×10^{-3} M, $\lambda_{ex} = 410$ nm) upon the addition of CF₃I (2) as quencher in degassed DMF.

Figure S6. Stern-Volmer plot.

4. General procedure

General procedure for the synthesis of 3

An oven-dried 5.0 mL screw-cap vial equipped with magnetic stir bar was charged with corresponding phenol 1 (0.5 mmol, 1.0 equiv.) and Cs_2CO_3 (488.7 mg, 1.5 mmol, 3.0 equiv.). After flashing nitrogen gas (purity 99.95%), CF_3I 2 (1.0 mmol, 2.0 equiv.) was added as DMF solution and dried DMF (1.0 mL) were added into the vial by syringe under nitrogen atmosphere. The reaction mixture was vigorously stirred under irradiation of 18W 450 nm LED at room temperature for 24 h. After this time, the reaction mixture was carefully quenched with 3M HCl aq. at 0°C and extracted with Et₂O. The combined organic layers were filtered through MgSO₄, and then concentrated by rotary evaporation. Yield was determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. After the mixture was concentrated by evaporation, the residue was purified by flash chromatography, eluting hexane/EtOAc to afford the product **3**.

4-(tert-butyl)phenol $(3a)^1$

Following the general procedure above, using phenol **1a** (75.1 mg, 0.5 mmol, 1.0 equiv.), CF₃I (1.0 mmol, 2.0 equiv.), Cs₂CO₃ (488.7 mg, 1.5 mmol, 3.0 equiv.) and DMF (1.0 mL) under irradiation of 18W 450 nm LED at room temperature for 24 h, yielded the product **3a** (88.7 mg, 62%); ¹H NMR (CDCl₃) δ : 1.33 (s, 9H), 5.90 (brs, 1H), 7.70 (s, 2H). ¹³C NMR (CDCl₃) δ : 31.2, 34.6, 118.3 (q, *J* = 30.3 Hz), 123.9 (q, *J* = 273.2 Hz), 127.7 (q, *J* = 4.6 Hz), 144.0, 149.6. ¹⁹F NMR (CDCl₃) δ : -60.7.

4-benzyl-2,6-bis(trifluoromethyl)phenol (3b)

Following the general procedure above, using phenol **1b** (92.1 mg, 0.5 mmol, 1.0 equiv.), CF₃I (1.0 mmol, 2.0 equiv.), Cs₂CO₃ (488.7 mg, 1.5 mmol, 3.0 equiv.) and DMF (1.0 mL) under irradiation of 18W 450 nm LED at room temperature for 24 h, yielded the product **3b** (67.2 mg, 42%); ¹H NMR (CDCl₃) δ : 3.98 (s, 2H), 5.92 (brs, 1H), 7.16 (d, *J* = 7.8 Hz, 2H), 7.24-7.27 (m, 1H), 7.33 (t, *J* = 8.0

Hz, 2H), 7.53 (s, 2H). ¹³C NMR (CDCl₃) δ : 40.8, 118.9 (q, J = 30.7 Hz), 123.5 (q, J = 272.9 Hz), 126.9, 128.8, 129.0, 131.0 (d, J = 4.5 Hz), 134.0, 139.5, 150.3. ¹⁹F NMR (CDCl₃) δ : -60.9; HRMS (TOF-MS) calcd. for C₁₅H₉F₆O (M-H⁺): 319.0558; found 319.0557

4-(2-phenylpropan-2-yl)-2,6-bis(trifluoromethyl)phenol (3c)

Following the general procedure above, using phenol **1c** (106.1 mg, 0.5 mmol, 1.0 equiv.), CF₃I (1.0 mmol, 2.0 equiv.), Cs₂CO₃ (488.7 mg, 1.5 mmol, 3.0 equiv.) and DMF (1.0 mL) under irradiation of 18W 450 nm LED at room temperature for 24 h, yielded the product **3c** (85.3 mg, 49%); IR (neat) v 3618, 2973, 1613, 1490, 1363, 1271, 1111 cm⁻¹; ¹H NMR (CDCl₃) δ : 1.69 (s, 6H), 5.92 (brs, 1H), 7.17 (d, *J* = 7.5 Hz, 2H), 7.22 (t, *J* = 6.8 Hz, 1H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.55 (s, 2H). ¹³C NMR (CDCl₃) δ : 30.8, 42.8, 118.3 (q, *J* = 30.4 Hz), 123.6 (q, J = 273.1 Hz), 126.5, 126.7, 128.6, 129.1 (d, *J* = 4.4 Hz), 143.7, 148.9, 149.8. ¹⁹F NMR (CDCl₃) δ : -60.7; HRMS (TOF-MS) calcd. for C₁₇H₁₃F₆O (M-H⁺): 347.0871; found 347.0873

3,5-bis(trifluoromethyl)-[1,1'-biphenyl]-4-ol (3d)

Following the general procedure above, using phenol **1d** (153.1 mg, 0.5 mmol, 1.0 equiv.), CF₃I (2.0 mmol, 4.0 equiv.), Cs₂CO₃ (488.7 mg, 1.5 mmol, 3.0 equiv.) and DMF (1.0 mL) under irradiation of 18W 450 nm LED at room temperature for 24 h, yielded the product **3d** (81.1 mg, 53%); IR (neat) v 3540, 1610, 1478, 1260, 1118 cm⁻¹; ¹H NMR (CDCl₃) δ : 6.07 (brs, 1H), 7.41 (t, *J* = 7.8 Hz, 1H), 7.48 (t, *J* = 7.4 Hz, 2H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.92 (s, 2H). ¹³C NMR (CDCl₃) δ : 119.2 (q, *J* = 30.9 Hz), 123.5 (q, *J* = 272.8 Hz), 126.9(m), 127.0, 128.4(m), 129.3(m), 134.3, 138.1, 151.0; ¹⁹F NMR (CDCl₃) δ : -60.9.; HRMS (TOF-MS) calcd. for C₁₄H₇F₆O (M-H⁺): 305.0401; found 305.0404

4-(2-hydroxyethyl)-2,6-bis(trifluoromethyl)phenol (3e)

Following the general procedure above, using phenol **1e** (69.1 mg, 0.5 mmol, 1.0 equiv.), CF₃I (1.0 mmol, 2.0 equiv.), Cs₂CO₃ (488.7 mg, 1.5 mmol, 3.0 equiv.) and DMF (1.0 mL) under irradiation of 18W 450 nm LED at room temperature for 24 h, yielded the product **3e** (43.9 mg, 32%); IR (neat) v 3454, 2960, 2904, 1606, 1492, 1280, 1113 cm⁻¹; ¹H NMR (CDCl₃) δ :1.41 (t, *J* = 5.2 Hz, 1H), 2.88 (t, *J* = 6.3 Hz, 2H), 3.89 (q, *J* = 5.7 Hz, 2H), 5.96 (brs, 1H), 7.60 (s, 2H). ¹³C NMR (DMSO-d₆) δ : 37.2, 61.4, 120.2 (q, *J* = 29.7 Hz), 123.5 (q, *J* = 273.7 Hz), 131.2 (d, *J* = 3.9 Hz), 132.5, 151.1. ¹⁹F NMR (CDCl₃) δ : -60.9.; HRMS (TOF-MS) calcd. for C₁₀H₇F₆O₂ (M-H⁺): 273.0350; found 273.0353

4-ethoxy-2,6-bis(trifluoromethyl)phenol (3f)

Following the general procedure above, using phenol **1f** (69.1 mg, 0.5 mmol, 1.0 equiv.), CF₃I (1.0 mmol, 2.0 equiv.), Cs₂CO₃ (488.7 mg, 1.5 mmol, 3.0 equiv.) and DMF (1.0 mL) under irradiation of 18W 450 nm LED at room temperature for 24 h, yielded the product **3f** (46.6 mg, 34%); IR (neat) v 3625, 2987, 1612, 1477, 1355, 1260, 1111 cm⁻¹; ¹H NMR (CDCl₃) δ : 1.42 (t, *J* = 7.0 Hz, 3H), 4.03 (q, *J* = 7.0 Hz, 2H), 5.60 (brs, 1H), 7.23 (s, 2H). ¹³C NMR (CDCl₃) δ : 14.7, 64.8, 116.7 (d, *J* = 4.9 Hz), 119.7 (q, *J* = 31.0 Hz), 123.2 (q, *J* = 273.0 Hz), 145.2, 152.2; ¹⁹F NMR (CDCl₃) δ : -61.2.; HRMS (TOF-MS) calcd. for C₁₀H₇F₆O₂ (M-H⁺): 273.0350; found 273.0350

4-phenoxy-2,6-bis(trifluoromethyl)phenol (3g)

3g

Following the general procedure above, using phenol 1g (93.1 mg, 0.5 mmol, 1.0 equiv.), CF₃I (2.0 mmol, 4.0 equiv.), Cs₂CO₃ (488.7 mg, 1.5 mmol, 3.0 equiv.) and DMF (1.0 mL) under irradiation of

18W 450 nm LED at room temperature for 24 h, yielded the product **3g** (88.6 mg, 55%); IR (neat) v 3620, 3071, 1592, 1479, 1361, 1115 cm⁻¹; ¹H NMR (CDCl₃) δ: 5.83 (brs, 1H), 6.98 (d, J = 8.0 Hz, 2H), 7.18 (t, J = 7.4 Hz, 1H), 7.37-7.40 (m, 4H). ¹³C NMR (CDCl₃) δ: 118.8, 120.0 (q, J = 31.2 Hz), 121.1 (q, J = 4.8 Hz), 123.0 (q, J = 272.2 Hz), 124.4, 130.3, 147.3, 150.2, 156.5. ¹⁹F NMR (CDCl₃) δ: -61.2.; HRMS (TOF-MS) calcd. for C₁₄H₇F₆O₂ (M-H⁺): 321.0350; found 321.0351

4-(methylthio)-2,6-bis(trifluoromethyl)phenol (3h)

Following the general procedure above, using phenol **1h** (70.1 mg, 0.5 mmol, 1.0 equiv.), CF₃I (1.0 mmol, 2.0 equiv.), Cs₂CO₃ (488.7 mg, 1.5 mmol, 3.0 equiv.) and DMF (1.0 mL) under irradiation of 18W 450 nm LED at room temperature for 24 h, yielded the product **3h** (55.2 mg, 40%); IR (neat) v 3524, 1596, 1475, 1347, 1264, 1105 cm⁻¹; ¹H NMR (CDCl₃) δ : 2.51 (s, 3H), 5.95 (brs, 1H), 7.62 (s, 2H). ¹³C NMR (CDCl₃) δ : 17.2, 119.6 (q, *J* = 30.9 Hz), 123.1 (q, *J* = 273.1 Hz), 129.9 (d, *J* = 4.3 Hz), 131.0, 149.7. ¹⁹F NMR (CDCl₃) δ : -61.1; HRMS (TOF-MS) calcd. for C₉H₅F₆OS (M-H⁺): 274.9965; found 274.9967

1-(4-hydroxy-3,5-bis(trifluoromethyl)phenyl)heptan-1-one (3i)

Following the general procedure above, using phenol **1i** (103.1 mg, 0.5 mmol, 1.0 equiv.), CF₃I (1.0 mmol, 2.0 equiv.), Cs₂CO₃ (488.7 mg, 1.5 mmol, 3.0 equiv.) and DMF (1.0 mL) under irradiation of 18W 450 nm LED at room temperature for 24 h, yielded the product **3i** (80.4 mg, 47%); IR (neat) v 3242, 2932, 2963, 1682, 1594, 1493, 1238, 1109 cm⁻¹; ¹H NMR (CDCl₃) δ : 0.90 (t, *J* = 7.0 Hz, 3H), 1.31-1.40 (m, 6H), 1.74 (quint, *J* = 7.5 Hz, 2H), 2.94 (t, *J* = 7.3 Hz, 2H), 8.34 (s, 2H). ¹³C NMR (CDCl₃) δ : 14.1, 22.6, 24.1, 29.0, 31.7, 38.4, 119.1 (q, *J* = 31.6 Hz), 123.0 (q, *J* = 273.5 Hz), 129.7, 131.0 (d, *J* = 4.9 Hz), 155.4, 197.2. ¹⁹F NMR (CDCl₃) δ : -61.1.; HRMS (TOF-MS) calcd. for C₁₅H₁₅F₆O₂ (M-H⁺): 341.0976; found 341.0978

(4-hydroxy-3,5-bis(trifluoromethyl)phenyl)(phenyl)methanone (3j)

Following the general procedure above, using phenol **1j** (167.1 mg, 0.5 mmol, 1.0 equiv.), CF₃I (2.0 mmol, 4.0 equiv.), Cs₂CO₃ (488.7 mg, 1.5 mmol, 3.0 equiv.) and DMF (1.0 mL) under irradiation of 18W 450 nm LED at room temperature for 24 h, yielded the product **3j** (61.8 mg, 37%); IR (neat) v 3164, 1488, 1254, 1116, 930 cm⁻¹; ¹H NMR (CDCl₃) δ : 6.74 (brs, 1H), 7.54 (t, *J* = 7.7 Hz, 2H), 7.66 (t, *J* = 7.7 Hz, 1H), 7.75 (d, *J* = 7.1 Hz, 2H), 8.24 (s, 2H). ¹³C NMR (CDCl₃) δ : 119.0 (q, *J* = 31.7 Hz), 123.0 (q, *J* = 273.2 Hz), 128.9, 129.9, 130.1, 133.0 (q, *J* = 4.8 Hz), 133.3, 136.5, 155.1, 193.3. ¹⁹F NMR (CDCl₃) δ : -61.1.; HRMS (TOF-MS) calcd. for C₁₅H₇F₆O₂ (M-H⁺): 333.0350; found 333.0353

Methyl 4-hydroxy-3,5-bis(trifluoromethyl)benzoate (3k)

Following the general procedure above, using phenol **1k** (76.1 mg, 0.5 mmol, 1.0 equiv.), CF₃I (1.0 mmol, 2.0 equiv.), Cs₂CO₃ (488.7 mg, 1.5 mmol, 3.0 equiv.) and DMF (1.0 mL) under irradiation of 18W 450 nm LED at room temperature for 24 h, yielded the product **3k** (69.2 mg, 48%); IR (neat) v 3349, 2965, 1708, 1603, 1440, 1264, 1100 cm⁻¹; ¹H NMR (CDCl₃) δ : 3.96 (s, 3H), 6.48 (brs, 1H), 8.43 (s, 2H). ¹³C NMR (CDCl₃) δ : 52.9, 119.0 (q, *J* = 32.0 Hz), 122.9 (d, *J* = 819.2 Hz), 122.9 (t, *J* = 137.5 Hz), 132.6, 155.5, 164.7. ¹⁹F NMR (CDCl₃) δ : -61.1; HRMS (TOF-MS) calcd. for C₁₀H₅F₆O₃ (M-H⁺): 287.0143; found 287.0143

tert-butyl (4-hydroxy-3,5-bis(trifluoromethyl)phenyl)carbamate (31)

Following the general procedure above, using phenol 11 (104.6 mg, 0.5 mmol, 1.0 equiv.), CF₃I (1.0

mmol, 2.0 equiv.), 4CzIPN (19.7 mg, 0.025 mmol, 0.05 equiv.), Cs₂CO₃ (488.7 mg, 1.5 mmol, 3.0 equiv.) and DMF (1.0 mL) under irradiation of 18W 450 nm LED at room temperature for 5 h, yielded the product **3l** (69.0 mg, 40%); IR (neat) v 3611, 3302, 3115, 2981, 1692, 1565, 1493, 1141, 1108 cm⁻¹; ¹H NMR (CDCl₃) δ : 1.52 (s, 9H), 5.79 (brs, 1H), 6.50 (brs, 1H), 7.76 (s, 2H). ¹³C NMR (CDCl₃) δ : 28.3, 81.7, 119.4 (q, *J* = 31.1 Hz), 121.1, 123.2 (q, *J* = 272.9 Hz), 131.7, 147.1, 152.7. ¹⁹F NMR (CDCl₃) δ : -61.1.; HRMS (TOF-MS) calcd. for C₁₃H₁₂F₆NO₃ (M-H⁺): 344.0721; found 344.0724

4-(methylsulfonyl)-2,6-bis(trifluoromethyl)phenol (3m)

Following the general procedure above, using phenol **1m** (86.1 mg, 0.5 mmol, 1.0 equiv.), CF₃I (2.0 mmol, 4.0 equiv.), Cs₂CO₃ (488.7 mg, 1.5 mmol, 3.0 equiv.) and DMF (1.0 mL) under irradiation of 18W 450 nm LED at room temperature for 24 h, yielded the product **3m** (95.5 mg, 62%); IR (neat) v 3417, 3107, 2934, 1604, 1481, 1252, 1102 cm⁻¹; ¹H NMR (CDCl₃) δ : 3.12 (s, 3H), 8.33 (s, 2H). ¹³C NMR (DMSO-d₆) δ : 43.6, 120.2 (q, *J* = 30.6 Hz), 122.8 (q, *J* = 273.1 Hz), 130.7, 130.8, 158.4; ¹⁹F NMR (CDCl₃) δ : -61.3.; HRMS (TOF-MS) calcd. for C₉H₅F₆O₃S (M-H⁺): 306.9864; found 306.9865

methyl 2-((tert-butoxycarbonyl)amino)-3-(4-hydroxy-3,5-bis(trifluoromethyl)phenyl)propanoate (3n)

Following the general procedure above, using phenol **1n** (147.7 mg, 0.5 mmol, 1.0 equiv.), CF₃I (1.0 mmol, 2.0 equiv.), Cs₂CO₃ (488.7 mg, 1.5 mmol, 3.0 equiv.) and DMF (1.0 mL) under irradiation of 18W 450 nm LED at room temperature for 24 h, yielded the product **3n** (64.7 mg, 30%); IR (neat) v 3350, 2982, 1686, 1491, 1252, 1114 cm⁻¹; ¹H NMR (CDCl₃) δ : 1.41 (s, 9H), 3.03 (dd, *J* = 5.9 and 14.3 Hz, 1H), 3.21 (dd, *J* = 5.6 and 14.0 Hz, 1H), 3.74 (s, 3H), 4.57 (q, *J* = 6.7 Hz, 1H), 5.12 (d, *J* = 7.6 Hz, 1H), 6.52 (brs, 1H), 7.46 (s, 2H). ¹³C NMR (CDCl₃) δ : 28.3, 37.2, 52.6, 54.3, 80.6, 119.0 (q, *J* = 30.8 Hz), 123.3 (q, *J* = 273.3 Hz), 128.8, 131.7, 151.1, 155.1, 171.8. ¹⁹F NMR (CDCl₃) δ : -60.9.; HRMS (TOF-MS) calcd. for C₁₇H₁₈F₆NO₅ (M-H⁺): 430.1089; found 430.1091

3,5-bis(trifluoromethyl)-[1,1'-biphenyl]-2-ol (30)

Following the general procedure above, using phenol **10** (85 mg, 0.5 mmol, 1.0 equiv.), CF₃I (1.0 mmol, 2.0 equiv.), Cs₂CO₃ (488.7 mg, 1.5 mmol, 3.0 equiv.) and DMF (1.0 mL) under irradiation of 18W 450 nm LED at room temperature for 24 h, yielded the product **30** (101 mg, 66%); IR (neat) v 3530, 1375, 1269, 1118, 1059, 905, 777, 702, 668 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.06 (s, 1H), 7.47-7.45 (m, 2H), 7.52 (t, *J* = 7.39 Hz, 1H), 7.58 (t, *J* = 7.31 Hz, 2H), 7.69 (s, 1H), 7.84 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 117.9 (q, *J* = 32.1 Hz), 123.0 (q, *J* = 33.8 Hz), 123.7 (q, *J* = 271.6 Hz), 123.2 (q, *J* = 272.9 Hz), 124.3-124.1(m), 129.2, 129.7, 130.2, 130.7, 130.9 (q, *J* = 3.3 Hz), 133.8, 153.5; ¹⁹F NMR (470 MHz, CDCl₃) δ -61.7 (s), -62.5 (s); HRMS (TOF-MS) calcd. for C₁₄H₇F₆O (M-H⁺): 305.0401; found 305.0402

General procedure for the synthesis of 5

An oven-dried 5.0 mL screw-cap vial equipped with magnetic stir bar was charged with corresponding phenol 4 (0.5 mmol, 1.0 equiv.) and Cs_2CO_3 (977.4 mg, 3.0 mmol, 6.0 equiv.). After flashing nitrogen gas (purity 99.95%), CF₃I 2 (7.0 mmol, 14.0 equiv.) was added as DMF solution and dried DMF were added into the vial by syringe under nitrogen atmosphere. The reaction mixture was vigorously stirred under irradiation of 18W 450 nm LED at room temperature for 24 h.

After this time, the reaction mixture was carefully quenched with 3M HCl aq. at 0°C and extracted with Et₂O. The combined organic layers were filtered through MgSO₄, and then concentrated by rotary evaporation. Yield was determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. After the mixture was concentrated by evaporation, the residue was purified by flash chromatography, eluting hexane/EtOAc to afford the product **5**.

3,3',5,5'-tetrakis(trifluoromethyl)-[1,1'-biphenyl]-4,4'-diol (5a)

Following the general procedure above, using bisphenol **4a** (93.1 mg, 0.5 mmol, 1.0 equiv.), CF₃I (7.0 mmol, 14.0 equiv.), and Cs₂CO₃ (977.4 mg, 3.0 mmol, 6.0 equiv.) under irradiation of 30W 450 nm LED at room temperature for 24 h, yielded the product **5a** (68.7 mg, 30%); IR (neat) v 3601, 3557, 1624, 1478, 1343, 1255, 1130, 1085 cm⁻¹; ¹H NMR (CDCl₃) δ : 6.20 (brs, 2H), 7.85 (s, 4H). ¹³C NMR (DMSO-d₆) δ : 120.7 (q, *J* = 30.0 Hz), 123.3 (q, *J* = 273.0 Hz), 129.6 (d, *J* = 14.8 Hz), 129.9, 152.8. ¹⁹F NMR (CDCl₃) δ : -61.0.; HRMS (TOF-MS) calcd. for C₁₆H₅F₁₂O₂ (M-H⁺): 457.0098; found 457.0100

4,4'-(propane-2,2-diyl)bis(2,6-bis(trifluoromethyl)phenol) (5b)

5b

Following the general procedure above, using bisphenol **4b** (114.1 mg, 0.5 mmol, 1.0 equiv.), CF_{3I} (7.0 mmol, 14.0 equiv.), and Cs_2CO_3 (977.4 mg, 3.0 mmol, 6.0 equiv.) under irradiation of 18W 450

nm LED at room temperature for 24 h, yielded the product **5b** (135.1 mg, 54%); IR (neat) v 3607, 2989, 1614, 1487, 1362, 1264, 1167, 1087 cm⁻¹; ¹H NMR (CDCl₃) δ : 1.70 (s, 6H), 6.04 (brs, 1H), 7.51 (s, 4H). ¹³C NMR (DMSO-d₆) δ : 30.2, 42.4, 120.6 (q, *J* = 29.3 Hz), 123.7 (q, *J* = 272.8 Hz), 129.3, 141.7, 151.8; ¹⁹F NMR (CDCl₃) δ : -60.8.; HRMS (TOF-MS) calcd. for C₁₉H₁₁F₁₂O₂ (M-H⁺): 499.0567; found 499.0570

4,4'-(diphenylmethylene)bis(2,6-bis(trifluoromethyl)phenol) (5c)

5c

Following the general procedure above, using bisphenol **4c** (176.2 mg, 0.5 mmol, 1.0 equiv.), CF₃I (10.0 mmol, 20.0 equiv.), and Cs₂CO₃ (1466.1 mg, 4.5 mmol, 9.0 equiv.) under irradiation of 30W 450 nm LED at room temperature for 24 h, yielded the product **5c** (156.1 mg, 50%); IR (neat) v 3609, 3561, 2362, 1616, 1488, 1263, 1104 cm⁻¹; ¹H NMR (CDCl₃) δ : 6.11 (brs, 2H), 7.07 (d, *J* = 7.9 Hz, 4H), 7.28-7.38 (m, 6H), 7.53 (s, 4H). ¹³C NMR (DMSO-d₆) δ : 63.0, 119.8 (q, *J* = 29.7 Hz), 123.1 (q, *J* = 271.7 Hz), 127.1, 128.6, 130.1, 132.1, 137.3, 144.5, 151.7. ¹⁹F NMR (CDCl₃) δ : -60.9.; HRMS (TOF-MS) calcd. for C₂₉H₁₅F₁₂O₂ (M-H⁺): 623.0880; found 623.0882

4,4'-(cyclohexane-1,1-diyl)bis(2,6-bis(trifluoromethyl)phenol) (5d)

5d

Following the general procedure above, using bisphenol **4d** (134.2 mg, 0.5 mmol, 1.0 equiv.), CF₃I (7.0 mmol, 14.0 equiv.), and Cs₂CO₃ (977.4 mg, 3.0 mmol, 6.0 equiv.) under irradiation of 30W 450 nm LED at room temperature for 24 h, yielded the product **5d** (132.4 mg, 49%); IR (neat) v 3319, 2935, 2864, 1616, 1492, 1289, 1249, 1165, 1113 cm⁻¹; ¹H NMR (CDCl₃) δ : 1.54 (brs, 6H), 2.25 (brs, 4H), 6.00 (brs, 1H), 7.55 (s, 4H). ¹³C NMR (DMSO-d₆) δ : 22.2, 25.2, 35.7, 45.0, 120.4 (q, *J* = 29.8 Hz), 123.3 (q, *J* = 273.4 Hz), 129.2, 139.2, 151.2. ¹⁹F NMR (CDCl₃) δ : -60.8.; HRMS (TOF-MS) calcd. for C₂₂H₁₅F₁₂O₂ (M-H⁺): 539.0880; found 539.0883

4,4'-(perfluoropropane-2,2-diyl)bis(2,6-bis(trifluoromethyl)phenol) (5e)

Following the general procedure above, using bisphenol **4e** (168.1 mg, 0.5 mmol, 1.0 equiv.), CF₃I (7.0 mmol, 14.0 equiv.), and Cs₂CO₃ (977.4 mg, 3.0 mmol, 6.0 equiv.) under irradiation of 18W 450 nm LED at room temperature for 24 h, yielded the product **5e** (170.3 mg, 56%); IR (neat) v 3620, 1497, 1278, 1259, 1100, 904 cm⁻¹; ¹H NMR (CDCl₃) δ : 6.44 (brs, 2H), 7.69 (s, 4H). ¹³C NMR (DMSO-d₆) δ : 62.8 (quint, *J* = 26.5 Hz), 120.6 (q, *J* = 30.5 Hz), 121.7, 122.7 (q, *J* = 272.7 Hz), 123.3 (q, *J* = 287.5 Hz), 131.7, 155.0. ¹⁹F NMR (CDCl₃) δ : -61.2, -64.1.; HRMS (TOF-MS) calcd. for C₁₉H₅F₁₈O₂ (M-H⁺): 607.0002; found 607.0003

4,4'-oxybis(2,6-bis(trifluoromethyl)phenol) (5f)

Following the general procedure above, using bisphenol **4f** (101.1 mg, 0.5 mmol, 1.0 equiv.), CF₃I (10.0 mmol, 20.0 equiv.), and Cs₂CO₃ (1466.1 mg, 4.5 mmol, 9.0 equiv.) under irradiation of 30W 450 nm LED at room temperature for 24 h, yielded the product **5f** (71.1 mg, 30%); IR (neat) v 3604, 3098, 1616, 1478, 1353, 1258, 1101 cm⁻¹; ¹H NMR (CDCl₃) δ : 5.95 (brs, 2H), 7.37 (s, 4H). ¹³C NMR (DMSO-d₆) δ : 122.1 (q, *J* = 29.7 Hz), 122.8 (q, *J* = 273.1 Hz), 148.9, 149.4. ¹⁹F NMR (CDCl₃) δ : - 61.3.; HRMS (TOF-MS) calcd. for C₁₆H₅F₁₂O₃ (M-H⁺): 473.0047; found 473.0049

4,4'-thiobis(2,6-bis(trifluoromethyl)phenol) (5g)

Following the general procedure above, using bisphenol 4g (109.1 mg, 0.5 mmol, 1.0 equiv.), CF₃I (7.0 mmol, 14.0 equiv.), and Cs₂CO₃ (977.4 mg, 3.0 mmol, 6.0 equiv.) under irradiation of 30W 450

nm LED at room temperature for 24 h, yielded the product **5g** (68.6 mg, 28%); IR (neat) v 3552, 3098, 1605, 1474, 1344, 1294, 1253, 1094 cm⁻¹; ¹H NMR (CDCl₃) δ : 6.18 (brs, 2H), 7.72 (s, 4H). ¹³C NMR (DMSO-d₆) δ : 121.8 (q, *J* = 30.4 Hz), 123.2 (q, *J* = 273.6 Hz), 125.9, 134.6, 153.7; ¹⁹F NMR (CDCl₃) δ : -61.2.; HRMS (TOF-MS) calcd. for C₁₆H₃F₁₂O₂S (M-H⁺): 488.9819; found 488.9821

4,4'-(1,4-phenylenebis(propane-2,2-diyl))bis(2,6-bis(trifluoromethyl)phenol) (5h)

Following the general procedure above, using bisphenol **4h** (173.2 mg, 0.5 mmol, 1.0 equiv.), CF₃I (7.0 mmol, 14.0 equiv.), and Cs₂CO₃ (977.4 mg, 3.0 mmol, 6.0 equiv.) under irradiation of 30W 450 nm LED at room temperature for 24 h, yielded the product **5h** (157.7 mg, 51%); IR (neat) v 3625, 2974, 1710, 1615, 1490, 1364, 1260, 1098 cm⁻¹; ¹H NMR (CDCl₃) δ : 1.68 (s, 12H), 5.92 (brs, 2H), 7.11 (s, 4H), 7.52 (s, 4H). ¹³C NMR (DMSO-d₆) δ : 29.9, 41.8, 120.0 (q, *J* = 29.4 Hz), 123 (q, *J* = 272.8 Hz), 126.5, 128.5, 142.8, 146.6, 150.9. ¹⁹F NMR (CDCl₃) δ : -61.6.; HRMS (TOF-MS) calcd. for C₂₈H₂₁F₁₂O₂ (M-H⁺): 617.1350; found 617.1349

3,3-bis(4-hydroxy-3,5-bis(trifluoromethyl)phenyl)isobenzofuran-1(3H)-one (5i)

Following the general procedure above, using bisphenol **4i** (159.2 mg, 0.5 mmol, 1.0 equiv.), CF₃I (7.0 mmol, 14.0 equiv.), and Cs₂CO₃ (977.4 mg, 3.0 mmol, 6.0 equiv.) under irradiation of 18W 450 nm LED at room temperature for 24 h, yielded the product **5i** (156.4 mg, 53%); IR (neat) v 3585, 3236, 1750, 1488, 1366, 1261, 1108 cm⁻¹; ¹H NMR (DMSO-d₆) δ : 7.69 (t, *J* = 7.3 Hz, 1H), 7.73 (s, 4H), 7.89-7.93 (m, 2H), 8.14 (d, *J* = 7.9 Hz, 1H). ¹³C NMR (DMSO-d₆) δ : 88.8, 120.6 (q, *J* = 30.4 Hz), 123.0 (q, *J* = 274.3 Hz), 124.5, 124.6 126.3, 129.5 (d, *J* = 4.6 Hz), 130.7, 131.5, 135.7, 149.9, 154.1, 168.1. ¹⁹F NMR (CDCl₃) δ : -61.1.; HRMS (TOF-MS) calcd. for C₂₄H₉F₁₂O₄ (M-H⁺): 589.0309; found 589.0309

References

(1) Umemoto, T.; Ando, A. Bull. Chem. Soc. Jpn, 1986, 59, 447–452.

-48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81 -11 (ppm)

-60.88

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

-1

CF₃ OH CF₃

-54.5 -55.0 -55.5 -56.0 -56.5 -57.0 -57.5 -58.0 -58.5 -59.0 -59.5 -60.0 -60.5 -61.0 -61.5 -62.0 -62.5 -63.0 -63.5 -64.0 -64.5 -65.0 -65.5 -66.0 -66.5 -67.0 -67.5 -68.C f1 (ppm)

¹⁹F NMR (471 MHz, d-DMSO)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

Me S CF3 OH

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

T

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 fl (ppm)

Т

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -20t fl (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

S47

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

S49

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

-60.86

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -20(fl (ppm)

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -20t fl (ppm)

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -20t fl (ppm)

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -20t fl (ppm)

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -20t fl (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 fl (ppm)

$^{13}\mathrm{C}$ NMR (125 MHz, d-DMSO)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)