Supplementary Information

For

Halide-free deep eutectic solvents constructed from natural compounds for converting carbon dioxide to cyclic carbonate

Wen-Wang Yu, Xiang-Guang Meng,* Wen Li, Jie Zhou, Xian-Jian Ma and Dan-Dan Chu Key Laboratory of Green Chemistry and Technology Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P.R. China.

*Corresponding Author.

Email address: mengxgchem@163.com

Table of Contents

Experimental section	Page S3-S4
Fig. S1. TG curve of Bet/Gly DESs.	Page S6
Fig. S2. FT-IR spectra of Lca, Ga and Lca/Ga.	Page S6
Fig. S3. FT-IR spectra of Lca, Gly and Lca/Gly.	Page S7
Fig. S4. FT-IR spectra of Bet, Ga and Bet/Ga.	Page S7
Fig. S5. FT-IR spectra of Bet, CA and Bet/CA.	Page S8
Fig. S6. FT-IR spectra of Lca, CA and Lca/CA.	Page S8
Fig. S7 Effects of (a) reaction temperature, (b) CO ₂ pressure, (c) time and (d) catalyst lo	bading on the yield
and selectivity of SC.	Page S9
Fig. S8. Cyclic performance of the Bet/Gly catalyst.	Page S9
Fig. S9. FT-IR spectra of fresh and recycled Bet/Gly DESs.	Page S10
Fig. S10 The charge distribution of 2c was calculated by natural bond orbital (NB	O) analysis at the
M06-2X/Def2-TZVPP level with the Gaussian 09 program package.	Page S10
Fig. S11 The charge distribution of 2d was calculated by natural bond orbital (NB	O) analysis at the
M06-2X/Def2-TZVPP level with the Gaussian 09 program package.	Page S11
Scheme S1 The cycloaddition of CO ₂ with various epoxides at 80 °C and 0.5 MPa.	Page S11
Table S1. The comparison of various halide-free catalytic systems for the cycloaddition of	f CO ₂ and epoxide.
	Page S12
Table S2. The apparent first-order rate constants k_{obs} for the cycloaddition at 1 I	MPa and different
temperature.	Page S12
Scheme S2. The possible catalysis mechanism for the cycloaddition of CO ₂ with epo	xides catalyzed by
Bet/Gly.	Page S13
Cartesian Coordinates of the Optimized Geometries	Page S13-S23
Fig. S12. ¹ H NMR spectrum of 2a (400 MHz, CDCl ₃ , 298 K).	Page S24
Fig. S13. ¹³ C NMR spectrum of 2a (126 MHz, CDCl ₃ , 298 K).	Page S24
Fig. S14. ¹ H NMR spectrum of 2b (400 MHz, CDCl ₃ , 298 K).	Page S25
Fig. S15. ¹³ C NMR spectrum of 2b (126 MHz, CDCl ₃ , 298 K).	Page S25
Fig. S16. ¹ H NMR spectrum of 2c (400 MHz, CDCl ₃ , 298 K).	Page S26
Fig. S17. ¹³ C NMR spectrum of 2c (126 MHz, CDCl ₃ , 298 K).	Page S26
Fig. S18. ¹ H NMR spectrum of 2d (400 MHz, CDCl ₃ , 298 K).	Page S27
Fig. S19. ¹³ C NMR spectrum of 2d (126 MHz, CDCl ₃ , 298 K).	Page S27
Fig. S20. ¹ H NMR spectrum of 2e (400 MHz, CDCl ₃ , 298 K).	Page S28
Fig. S21. ¹³ C NMR spectrum of 2e (126 MHz, CDCl ₃ , 298 K).	Page S28
Fig. S22. ¹ H NMR spectrum of 2f (400 MHz, CDCl ₃ , 298 K).	Page S29
Fig. S23. ¹³ C NMR spectrum of 2f (126 MHz, CDCl ₃ , 298 K).	Page S29
Fig. S24. ¹ H NMR spectrum of 2g (400 MHz, CDCl ₃ , 298 K).	Page S30
Fig. S25. ¹³ C NMR spectrum of 2g (126 MHz, CDCl ₃ , 298 K).	Page S30
Fig. S26. ¹ H NMR spectrum of 2h (400 MHz, CDCl ₃ , 298 K).	Page S31

Fig. S27. ¹³ C NMR spectrum of 2h (126 MHz, CDCl ₃ , 298 K).	Page S31
Fig. S28. ¹ H NMR spectrum of 2i (400 MHz, CDCl ₃ , 298 K).	Page S32
Fig. S29. ¹³ C NMR spectrum of 2i (126 MHz, CDCl ₃ , 298 K).	Page S32
Fig. S30. ¹ H NMR spectrum of 2j (400 MHz, CDCl ₃ , 298 K).	Page S33
Fig. S31. ¹³ C NMR spectrum of 2j (126 MHz, CDCl ₃ , 298 K).	Page S33
Fig. S32. ¹ H NMR spectrum of 2k (400 MHz, CDCl ₃ , 298 K).	Page S34
Fig. S33. ¹³ C NMR spectrum of 2k (126 MHz, CDCl ₃ , 298 K).	Page S34
Fig. S34. ¹ H NMR spectrum of 2l (400 MHz, CDCl ₃ , 298 K).	Page S35
Fig. S35. ¹³ C NMR spectrum of 2l (126 MHz, CDCl ₃ , 298 K).	Page S35
Fig. S36. ¹ H NMR spectrum of 2m (400 MHz, CDCl ₃ , 298 K).	Page S36
Fig. S37. ¹³ C NMR spectrum of 2m (126 MHz, CDCl ₃ , 298 K).	Page S36
Fig. S38. ¹ H NMR spectrum of 2n (400 MHz, CDCl ₃ , 298 K).	Page S37
Fig. S39. ¹³ C NMR spectrum of 2n (126 MHz, CDCl ₃ , 298 K).	Page S37
Fig. S40. ¹ H NMR spectrum of 20 (400 MHz, CDCl ₃ , 298 K).	Page S38
Fig. S41. ¹³ C NMR spectrum of 20 (126 MHz, CDCl ₃ , 298 K).	Page S38
Fig. S42. ¹ H NMR spectrum of 2p (400 MHz, CDCl ₃ , 298 K).	Page S39
Fig. S43. ¹³ C NMR spectrum of 2p (126 MHz, CDCl ₃ , 298 K).	Page S39
Fig. S44. ¹ H NMR spectrum of 2q (400 MHz, CDCl ₃ , 298 K).	Page S40
Fig. S45. ¹³ C NMR spectrum of 2q (126 MHz, CDCl ₃ , 298 K).	Page S40
Fig. S46. ¹ H NMR spectrum of 2r (400 MHz, CDCl ₃ , 298 K).	Page S41
Fig. S47. ¹³ C NMR spectrum of 2r (126 MHz, CDCl ₃ , 298 K).	Page S41
Fig. S48. ¹ H NMR spectrum of 2s (400 MHz, CDCl ₃ , 298 K).	Page S42
Fig. S49. ¹³ C NMR spectrum of 2s (126 MHz, CDCl ₃ , 298 K).	Page S42

Experimental section

Materials and Chemicals

Betaine (Bet), glycerol (Gly), L-carnitine (Lca), citric acid (CA), glycolic acid (Ga), styrene oxide (SO), propylene oxide (PO), epichlorohydrin, epibromohydrin, 1,2-epoxybutane, (2,3-epoxypropyl)-benzene, isobutylene oxide, 2-(chloromethyl)-2-methyloxirane, tert-butyl glycidyl ether, butyl glycidyl ether, glycidyl phenyl ether, allyl glycidyl ether, furfuryl glycidyl ether, glycidyl methacrylate and cyclohexene oxide were purchased from Aladdin Reagent and used without further purification. CO₂ (99.999%) is supplied by Sichuan Chengdu Qiaoyuan Gas Company.

Instrumentations

¹H NMR spectra were recorded at ambient temperature using a Bruker Avance III 400 spectrometer (¹H NMR 400 MHz, ¹³C NMR 126 MHz). Fourier transform infrared spectroscopy (FT-IR) spectra were recorded on a Bruker Alpha spectrometer. Thermogravimetric analyses (TGA) were carried out with a PerkinElmer Pyris 1 TGA under N₂ atmosphere with the 20 °C/min heating rate ranging from 30 °C to 600 °C.

Synthesis of DESs

All DESs in this article were prepared according to the methods described in the literature.¹ Betaine (Bet) and glycerol (Gly) are added in a molar ratio of one to two to a round bottom flask, stirred magnetically at 80 °C for one hour until a uniform transparent liquid was formed, then cooled to room temperature and dried under vacuum at 60 °C for 24 hours to obtain Bet/Gly natural deep eutectic solvent. Other DESs including Bet/Ga, Bet/CA, Lca/Ga, Lca/Gly and Lca/CA were prepared using the same steps as above.

Cycloaddition reaction of CO₂ catalyzed by DESs

The cycloaddition reaction between CO₂ and styrene oxide (SO) was taken as the model reaction. Typically, 37.5 mmol SO and 0.6 mol% DESs catalyst were put into stainless steel high-pressure autoclave equipped with stirring. The reactor was purged three times with CO₂, filled with 1.0 MPa CO₂ and sealed. The reaction solution was heated to 120 °C and stirred at 310 r·min⁻¹ for 6 h. After the reaction was completed, the high-pressure autoclave was cooled to room temperature and the remaining CO₂ was slowly discharged from the reactor. 20 μ L of the reaction solution was taken out and dissolved in CDCl₃. The yield and selectivity of styrene carbonate (SC) was assessed by ¹H NMR spectroscopy of the crude mixture. For other epoxides, the cycloaddition reaction proceeds in a similar manner. The reaction products were separated by column chromatography. Spectra of ¹H NMR and ¹³C NMR of cyclic carbonates were shown in the Figures S12-S49 in the supplementary information.

Calculation details

To study the mechanism of the cycloaddition reaction between CO₂ and epoxide catalyzed by Bet/Gly DESs, the density functional theory (DFT) calculations at the M06-2X/Def2-TZVPP level employing propylene oxide (PO) as the substrate was carried out with the Gaussian 09 program package. For transition state geometries, intrinsic reaction coordinate (IRC) calculations were carried out to confirm whether it is connected to reactants and products. Cartesian Coordinates of the Optimized Geometries can be found in the supplementary material. The natural bond orbital (NBO) analysis was calculated at the M06-2X/Def2-TZVPP level by using Gaussian 09 program package.

Fig. S1. TG curve of Bet/Gly DESs.

Fig. S2. FT-IR spectra of Lca, Ga and Lca/Ga.

Fig. S3. FT-IR spectra of Lca, Gly and Lca/Gly.

Fig. S4. FT-IR spectra of Bet, Ga and Bet/Ga.

Fig. S5. FT-IR spectra of Bet, CA and Bet/CA.

Fig. S6. FT-IR spectra of Lca, CA and Lca/CA.

Fig. S7 Effects of (a) reaction temperature, (b) CO₂ pressure, (c) time and (d) catalyst loading on the yield and selectivity of SC. Reaction conditions: 37.5 mmol SO, 120 °C, 1 Mpa CO₂,6 h, 0.6 mol% Bet/Gly.

Fig. **S8** Cyclic performance of the Bet/Gly catalyst.

Fig. S10 The NBO charge distribution of 2c calculated at the M06-2X/Def2-TZVPP level with Gaussian 09.

Sum	mary o	f Na	9 13 11 tural Populat:	6 1 4 10 5 12 ion Analysis	2 3 (2d)	8	
					Natural Pop	ulation	
	Atom	No	Natural Charge	Core	Valence	Rydberg	Total
	С	1	0. 02023	1.99908	3.95666	0. 02403	5.97977
	0	2	-0.49369	1.99992	6.48542	0.00836	8.49369
	С	3	-0.14180	1.99909	4.12142	0.02129	6.14180
	С	4	-0.41070	1.99948	4.39553	0.01570	6.41070
	С	5	-0.60590	1.99951	4.60064	0.00575	6.60590
	Н	6	0.19766	0.00000	0.80019	0.00215	0.80234
	Н	7	0.19646	0.00000	0.80182	0.00171	0.80354
	Н	8	0.19525	0.00000	0.80292	0.00183	0.80475
	Н	9	0.21409	0.00000	0.78394	0.00197	0.78591
	Н	10	0.21084	0.00000	0.78721	0.00195	0.78916
	Н	11	0.21401	0.00000	0.78453	0.00146	0.78599
	Н	12	0.20133	0.00000	0.79680	0.00188	0.79867
	Н	13	0. 20222	0.00000	0.79605	0.00172	0.79778
	* Tota	1 *	-0. 00000	9.99709	29.91313	0.08978	40.00000

Fig. S11 The NBO charge distribution of 2d calculated at the M06-2X/Def2-TZVPP level with Gaussian 09.

Scheme S1 The cycloaddition of CO_2 with various epoxides at 80 °C and 0.5 MPa. Isolated yield of purified cyclic carbonate by column chromatography. Reaction conditions: 37.5 mmol epoxide, 80 °C, 0.5 MPa CO_2 , 6 h, 4 mol% Bet/Gly. ^{*a*}4 h. ^{*b*}12 h, 6 mol% Bet/Gly.

Entr y	Catalyst	Epoxid e	Temp [°C]	Catalys t loading [mol%]	Pressur e [MPa]	Tim e [h]	Carbonat e yield [%]	TOF a	Ref
1	Sq-PhOH-p/t-BuP ₂	cı	120	2.5	0.1	8	80.1	4.0	2
2	[P4444] [IsoNic]	cı	120	2	2	12	96.9	4.0	3
3	N,N'-Phenylenebis(5-tert-butylsalicylideneimine)	cı	120	1	1	3.5	76	21.7	4
4	[TEEDA]	cı	120	0.1	1	10	97	97.0	5
5	[N ₁₈₈₈][HYD]	cı	120	10	2	6	88	1.5	6
6	Carbodicarbene	cı	100	5	2	12	92	1.5	7
7	[<i>n</i> Bu ₄ N] ₂ [MoO ₄]	cı	120	2.5	3	9	99	4.4	8
8	PPy · Sac	cı	60	10	0.1	24	90	0.4	9
9	(DBUH) ₃ NbO ₅	cı	130	3	3	5	90	6.1	10
10	1-a-60/b-SBA-15	cı	120	0.2	1.5	18	89	24.7	11
11	Bet/Gly	cı	120	0.3	1	0.5	99.1	645	This work

Table S1. The comparison of various halide-free catalytic systems for the cycloaddition of CO₂ and epoxides.

^{*a*}Turnover frequency (TOF) = moles of product/ (moles of catalyst \times time).

Table S2. The apparent first-order rate constants k_{obs} for the cycloaddition at 1 MPa and different temperature.

T (°C)	90	100	110	120	130
$10^5 \cdot k_{\rm obs} ({\rm s}^{-1})$	0.32	2.04	8.08	20.82	52.65

Scheme S2 The possible catalysis mechanism for the cycloaddition of CO₂ with epoxides catalyzed by Bet/Gly.

Cartesian Coordinates of the Optimized Geometries

R

Ν	0.64994	-2.34997	0.11434
С	0.3616	-0.87579	0.06591
С	0.4928	-2.86088	-1.27696
С	2.03822	-2.61699	0.58969
С	-0.34685	-3.01599	1.00503
С	0.30558	-0.14117	1.42157
0	0.84132	-0.63227	2.40955
0	-0.31572	0.95754	1.32361
Н	-0.61762	-0.79319	-0.41307
Н	1.13852	-0.4174	-0.56302
Н	0.67627	-3.94247	-1.27873
Н	-0.5253	-2.62596	-1.61624
Н	1.22947	-2.34886	-1.90834
Н	2.12633	-2.20161	1.59843
Н	2.72881	-2.11666	-0.10022

Н	2.19988	-3.70245	0.5829
Н	-1.3475	-2.67931	0.70393
Н	-0.23387	-4.10212	0.901
Н	-0.14725	-2.68983	2.03068
С	-3.01375	1.34128	-0.25699
С	-3.57747	-0.96623	-1.15631
0	-1.72433	1.34299	-0.82133
0	-2.65871	-0.69934	1.01932
0	-2.34351	-1.1161	-1.81921
Н	-1.94056	-0.22919	-1.84802
Н	-2.16479	-0.02851	1.51741
Н	-1.09532	1.18377	-0.05333
Н	-3.0314	1.9607	0.65935
Н	-3.71397	1.79974	-0.97402
Н	-3.9103	-1.96787	-0.84314
Н	-4.34904	-0.55901	-1.83713
0	3.18892	-0.20491	-1.30499
С	3.91723	0.6789	-0.462
С	3.42275	1.11213	-1.77537
C	3.25083	1.11117	0.81317
Н	4.98033	0.41709	-0.39131
Н	3.19022	0.28834	1.53989
Н	2.23129	1.47349	0.62074
Н	3.82081	1.93043	1.27394
Н	2.53903	1.75883	-1.80533
Н	4.10868	1.1855	-2.62488
С	-3.49847	-0.07062	0.07643
Н	-4.52745	0.02058	0.47855
С	-0.18563	3.41022	0.13309
0	0.74073	3.09125	-0.48645
0	-1.0932	3.7858	0.74027

Ν	-2.08399	1.82582	-0.07369
С	-2.49404	0.49488	0.48151
С	-2.14049	2.80584	1.04853
С	-0.67058	1.78928	-0.59207
С	-3.00741	2.26099	-1.1614
С	-2.36237	-0.66122	-0.498
0	-2.50918	-1.80823	0.15898
0	-2.25568	-0.54122	-1.68776
Н	-3.53411	0.58071	0.83074
Н	-1.82911	0.27294	1.32174

Н	-1.85799	3.79204	0.66288
Н	-3.16186	2.83424	1.44665
Н	-1.4343	2.48016	1.8201
Н	-0.41812	2.81212	-0.89827
Н	-0.60016	1.09774	-1.43935
Н	-0.00746	1.44408	0.21105
Н	-4.02669	2.3069	-0.75798
Н	-2.69177	3.25518	-1.49886
Н	-2.94286	1.53424	-1.97583
С	3.96444	1.04189	-0.82999
С	2.17929	-0.3218	-1.99588
0	4.20703	1.88027	0.26557
0	2.06197	0.33167	0.34917
0	0.81116	-0.50122	-2.2298
Н	0.39571	-0.79148	-1.37591
Н	1.27966	-0.31928	0.29737
Н	3.66729	1.50534	0.97598
Н	4.31757	1.55122	-1.73992
Н	4.51742	0.08484	-0.73931
Н	2.64828	-0.01159	-2.9449
Н	2.66914	-1.26653	-1.68162
0	-0.04817	-1.04917	0.22632
C	-0.22525	-2.40226	0.43832
C	-1.55535	-2.81519	-0.2138
C	0.92201	-3.24325	-0.1158
Н	-0.32228	-2.62583	1.5253
Н	0.75955	-4.32192	0.03431
Н	1.85511	-2.95829	0.391
Н	1.03781	-3.04613	-1.19363
Н	-1.94475	-3.7726	0.15371
Н	-1.46973	-2.83797	-1.31112
C	2.47754	0.73016	-0.93557
Н	1.95461	1.66648	-1.23101
С	0.68917	-0.1268	2.65382
0	0.00177	0.81039	2.58251
0	1.36427	-1.0428	2.82933

TS1

Ν	-3.84884	-0.09014	0.27215
С	-3.46865	-1.15799	-0.72578
С	-5.17251	-0.44778	0.84762
С	-2.82335	-0.0303	1.36525
С	-3.94119	1.25709	-0.37913

С	-1.97998	-1.02386	-1.12366
0	-1.2604	-1.96499	-0.68949
0	-1.66023	-0.02163	-1.7539
Н	-4.12012	-1.03243	-1.60032
Н	-3.64374	-2.12659	-0.24364
Н	-5.49033	0.34853	1.53077
Н	-5.89673	-0.55276	0.03122
Н	-5.07881	-1.3956	1.39014
Н	-3.24052	0.55967	2.18996
Н	-1.92786	0.46994	0.96988
Н	-2.59671	-1.05325	1.68839
Н	-4.68322	1.19747	-1.18384
Н	-4.26316	1.97231	0.38739
Н	-2.95365	1.53012	-0.76643
C	2.66313	3.36634	0.22034
C	0.1627	2.98446	0.12642
0	3.90832	2.73554	0.28719
0	1.70512	1.46424	-0.84693
0	-0.83911	2.01101	-0.06086
Н	-0.53243	1.43001	-0.7821
Н	1.98272	0.5528	-0.47784
Н	3.8613	1.9965	-0.33582
Н	2.5807	4.04799	1.08251
Н	2.56182	3.97449	-0.70175
Н	-0.07689	3.54893	1.04045
Н	0.16787	3.69545	-0.72122
0	2.1134	-0.78777	0.19541
C	0.84845	-1.00783	0.7268
C	0.57126	-1.50824	-0.61781
C	0.7972	-1.99057	1.87581
Н	0.30423	-0.07228	0.9698
Н	-0.24187	-2.25199	2.12895
Н	1.28202	-1.55352	2.76062
Н	1.33824	-2.90657	1.60145
Н	0.92894	-2.51198	-0.84349
Н	0.50005	-0.77494	-1.4179
C	1.53924	2.33843	0.23466
Н	1.60765	1.77451	1.18636
C	3.95263	-2.44205	-0.17903
0	4.73713	-1.60419	-0.30803
0	3.25561	-3.36496	-0.0756

Ν	-2.9069	-0.57083	-0.1253
С	-1.81658	-1.59304	-0.22368
С	-3.78661	-0.9972	1.00026
С	-2.37465	0.80702	0.20113
С	-3.68233	-0.51554	-1.39464
С	-0.66822	-1.22756	-1.15264
0	0.25569	-2.15565	-1.02844
0	-0.62628	-0.26285	-1.86929
Н	-2.26556	-2.53728	-0.56545
Н	-1.38835	-1.77512	0.77766
Н	-4.63933	-0.31128	1.05694
Н	-4.13125	-2.02244	0.81958
Н	-3.19581	-0.95333	1.92335
Н	-3.22157	1.43102	0.50616
Н	-1.90346	1.21715	-0.69273
Н	-1.63257	0.70015	1.00469
Н	-4.14806	-1.49305	-1.57138
Н	-4.45284	0.25823	-1.2971
Н	-2.99035	-0.26192	-2.20492
С	-0.19179	3.44278	-0.35507
С	2.03376	2.38612	-1.00406
0	-1.2129	3.37628	0.61129
0	1.1488	2.25839	1.2105
0	2.81095	1.22613	-0.86321
Н	2.67678	0.91337	0.04699
Н	0.81826	1.39776	1.58602
Н	-0.73708	3.17455	1.43341
Н	-0.65512	3.38516	-1.35313
Н	0.3517	4.40535	-0.29097
Н	1.76071	2.49177	-2.06694
Н	2.60002	3.28894	-0.70371
0	1.79673	-0.80314	0.87431
С	2.3322	-1.86645	0.10681
С	1.64323	-1.84673	-1.25357
С	3.83198	-1.67559	-0.03098
Н	2.09543	-2.81442	0.61202
Н	4.27963	-2.51955	-0.57476
Н	4.2843	-1.62758	0.96804
Н	4.05805	-0.74372	-0.56823
Н	2.04239	-2.61858	-1.92422
Н	1.73802	-0.84807	-1.70395
С	0.78577	2.29121	-0.14603
Н	0.28345	1.34533	-0.41151
С	0.64068	-1.04798	1.63404

0.0343	4 0.01245	1.91746
0.3221	8 -2.20523	1.87011

TS2

0 0

Ν	-2.77298	-0.17525	-0.14384
С	-1.89646	-1.34872	-0.45205
С	-3.58684	-0.54336	1.05089
С	-1.96024	1.04933	0.20124
С	-3.66338	0.12798	-1.29714
С	-0.82441	-1.10552	-1.50015
0	-0.13771	-2.22948	-1.65468
0	-0.68645	-0.09104	-2.12679
Н	-2.53681	-2.18939	-0.75559
Н	-1.35153	-1.60033	0.46524
Н	-4.29452	0.26861	1.25346
Н	-4.1275	-1.47422	0.84101
Н	-2.89899	-0.67843	1.89376
Н	-2.59862	1.73166	0.77274
Н	-1.6362	1.5243	-0.72459
Н	-1.08337	0.73865	0.78411
Н	-4.31664	-0.73434	-1.47911
Н	-4.26383	1.01092	-1.04745
Н	-3.03286	0.33051	-2.16934
С	0.55326	3.65032	0.10363
С	2.4293	2.2507	-0.92485
0	-0.58436	3.53364	0.92492
0	1.13351	1.55869	0.98434
0	2.73364	0.95228	-1.36852
Н	2.30339	0.33584	-0.75635
Н	1.17075	0.57188	0.78748
Н	-0.31688	2.87081	1.58122
Н	0.26852	4.19296	-0.80973
Н	1.34978	4.22965	0.60991
Н	2.41863	2.9196	-1.80153
Н	3.19116	2.62514	-0.21504
0	0.94421	-0.90935	0.38635
С	1.65669	-1.97972	-0.1266
С	1.2982	-2.10964	-1.61108
С	3.1716	-1.9061	0.07796
Н	1.31643	-2.93044	0.34667
Н	3.66169	-2.82647	-0.27525
Н	3.37505	-1.79604	1.151

Н	3.62027	-1.05384	-0.45249
Н	1.69829	-3.01743	-2.07971
Н	1.60662	-1.21685	-2.17769
С	1.07868	2.26234	-0.23312
Н	0.37931	1.76502	-0.93281
С	0.43892	-1.28861	2.47984
0	-0.65067	-0.84687	2.47003
0	1.41491	-1.8085	2.83255

Ν	3.00006	-0.91118	-0.25955
С	2.72257	0.5619	-0.18255
С	3.56557	-1.29412	1.07153
С	1.75571	-1.74444	-0.46519
С	3.96238	-1.18915	-1.35716
С	1.66647	1.06111	-1.15539
0	1.24579	2.24318	-0.74262
0	1.29243	0.47689	-2.13481
Н	3.6674	1.09599	-0.36241
Н	2.39116	0.82122	0.83441
Н	3.89194	-2.33921	1.02263
Н	4.41352	-0.63745	1.30146
Н	2.75835	-1.16606	1.8085
Н	1.99816	-2.77218	-0.17369
Н	1.4555	-1.68802	-1.512
Н	0.97517	-1.35945	0.19737
Н	4.91383	-0.68863	-1.13932
Н	4.1123	-2.27303	-1.42475
Н	3.52894	-0.80857	-2.28976
С	-2.03539	-2.73813	0.06702
С	-3.82194	-1.34161	-1.07158
0	-0.76328	-2.73332	0.65324
0	-2.78567	-0.63211	0.93116
0	-4.36004	-0.04847	-1.12502
Н	-4.28814	0.27367	-0.21397
Н	-2.04217	-0.01774	1.06439
Н	-0.6914	-1.98742	1.27955
Н	-1.97938	-3.34398	-0.85332
Н	-2.78641	-3.2081	0.7313
Н	-3.62945	-1.67989	-2.10063
Н	-4.53577	-2.05439	-0.61185
0	-0.67948	1.0473	0.74802
С	-0.87717	2.38636	0.33577

С	-0.11979	2.60486	-0.97286
С	-2.36552	2.62259	0.14558
Н	-0.45041	3.04985	1.10187
Н	-2.55637	3.64096	-0.22263
Н	-2.88614	2.5006	1.10507
Н	-2.78545	1.90087	-0.57192
Н	-0.1362	3.66049	-1.27179
Н	-0.52959	1.98206	-1.78124
С	-2.529	-1.34055	-0.2625
Н	-1.74556	-0.81289	-0.84122
С	0.31583	0.74112	1.73478
0	0.38945	-0.48546	1.922
0	0.97298	1.67073	2.17504

TS3

Ν	-3.71682	0.17882	0.18578
С	-3.21221	-1.16949	-0.25722
С	-5.10643	-0.00985	0.68722
С	-2.86043	0.71755	1.29426
С	-3.73974	1.17369	-0.9383
С	-1.71195	-1.19891	-0.61619
0	-1.18884	-2.33065	-0.3976
0	-1.18446	-0.18918	-1.05474
Н	-3.80561	-1.47333	-1.13129
Н	-3.39833	-1.87596	0.56065
Н	-5.50877	0.96383	0.9889
Н	-5.71918	-0.4374	-0.11504
Н	-5.08678	-0.69092	1.54587
Н	-3.386	1.56952	1.74146
Н	-1.90888	1.06357	0.87029
Н	-2.72052	-0.07555	2.03932
Н	-4.30444	0.73829	-1.7713
Н	-4.23837	2.07734	-0.56861
Н	-2.71069	1.40243	-1.22663
С	2.87542	2.86644	0.33226
С	0.35589	3.24169	-0.06567
0	3.81173	1.93965	0.78845
0	1.44088	1.33003	-0.82562
0	-0.82092	2.50516	-0.32698
Н	-0.50173	1.71691	-0.80963
Н	1.72253	0.48088	-0.4498

Н	3.85328	1.16142	0.20268
Н	2.86764	3.70437	1.05024
Н	3.1342	3.28039	-0.66301
Н	0.17522	3.91239	0.78755
Н	0.62907	3.86216	-0.93978
0	2.11702	-0.89455	0.54761
С	0.99154	-1.72519	0.71311
С	0.6434	-2.3531	-0.63236
С	1.22536	-2.77897	1.78071
Н	0.18388	-1.04437	1.01492
Н	0.30916	-3.36529	1.93996
Н	1.51965	-2.3004	2.72361
Н	2.03067	-3.45035	1.45273
Н	0.61628	-3.43008	-0.76054
Н	0.60809	-1.71953	-1.51509
С	1.48398	2.26284	0.22951
Н	1.27194	1.75319	1.19057
С	3.03911	-1.41105	-0.40056
0	2.60891	-2.47103	-0.92664
0	4.02591	-0.73559	-0.58186

Ν	-4.04125	0.2749	-0.02345
С	-3.53233	-1.13756	0.16847
С	-5.52724	0.2248	-0.09424
С	-3.64648	1.15714	1.12029
С	-3.5167	0.84797	-1.30291
С	-1.98507	-1.34279	0.16788
0	-1.67047	-2.52758	0.09612
0	-1.27639	-0.32086	0.2542
Н	-3.96217	-1.7367	-0.63176
Н	-3.92963	-1.48809	1.12209
Н	-5.91079	1.2372	-0.2043
Н	-5.82153	-0.37793	-0.95114
Н	-5.90739	-0.22153	0.82235
Н	-4.08748	2.13898	0.95455
Н	-2.56423	1.21976	1.1483
Н	-4.03946	0.71859	2.0365
Н	-3.78216	0.16867	-2.11086
Н	-3.98444	1.81951	-1.45461
Н	-2.4395	0.95268	-1.21532

C	2.93466	2.934	0.00286
С	0.4296	3.00356	-0.41057
0	3.95217	2.28316	0.72512
0	1.50424	1.0117	0.20309
0	-0.79721	2.37979	-0.0914
Н	-0.62473	1.42338	-0.01091
Н	1.88526	0.56279	0.96391
Н	4.11286	1.41213	0.33552
Н	3.00611	4.00357	0.22967
Н	3.06508	2.80299	-1.08009
Н	0.32862	4.07169	-0.20245
Н	0.65925	2.88271	-1.47837
0	2.62739	-1.44986	0.74591
C	1.42279	-2.19847	0.46107
C	1.217	-1.91276	-1.02705
C	1.63086	-3.65796	0.79097
Н	0.61875	-1.75645	1.04315
Н	0.70174	-4.19127	0.59334
Н	1.89898	-3.78343	1.83909
Н	2.42522	-4.08327	0.1735
Н	0.95254	-2.79838	-1.59705
Н	0.4945	-1.1131	-1.18365
C	1.5634	2.41647	0.40967
Н	1.39144	2.63049	1.47175
C	3.21143	-1.05608	-0.39915
0	2.5116	-1.46322	-1.45806
0	4.22247	-0.42429	-0.44659

Р

Ν	-2.64218	-1.02366	-0.26273
С	-1.42821	-0.52844	0.47527
С	-3.29063	0.11145	-0.99195
С	-2.16699	-2.0223	-1.26236
С	-3.61509	-1.65409	0.67145
С	-1.65523	0.64989	1.46069
0	-2.79058	0.9161	1.83533
0	-0.56385	1.20336	1.77656
Н	-0.71008	-0.23589	-0.29844
Н	-1.00443	-1.38609	1.0173
Н	-3.62661	0.8388	-0.24658
Н	-2.53526	0.5385	-1.66429
Н	-4.13574	-0.29238	-1.56315

Н	-1.66632	-2.84022	-0.73065
Н	-1.44114	-1.53067	-1.92116
Н	-3.03111	-2.39742	-1.82451
Н	-4.47778	-2.00378	0.09094
Н	-3.12138	-2.50322	1.15962
Н	-3.90132	-0.89808	1.40964
С	-0.05212	2.05361	-1.60512
С	1.51668	3.24661	-0.05298
0	-0.43201	0.8552	-2.2467
0	1.27853	0.83555	0.02898
0	0.42436	3.66337	0.71329
Н	0.11428	2.94076	1.28756
Н	0.59037	0.9676	0.75029
Н	0.33098	0.26815	-2.36221
Н	0.03696	2.87687	-2.33694
Н	-0.85306	2.33397	-0.90096
Н	2.42461	3.08499	0.56034
Н	1.74118	4.05963	-0.76206
0	1.33888	-2.05802	0.1847
С	2.38285	-1.94617	1.16123
С	3.41453	-1.06623	0.43415
С	1.84093	-1.36619	2.44733
Н	2.77872	-2.96117	1.32357
Н	1.32572	-0.4141	2.25583
Н	2.66482	-1.19212	3.15432
Н	1.13389	-2.06314	2.9176
Н	3.35832	-0.02385	0.77217
Н	4.43757	-1.45349	0.50317
С	1.2593	1.95271	-0.82848
Н	2.08787	1.80386	-1.54613
С	1.73136	-1.53925	-0.98392
0	2.99348	-1.12126	-0.92275
0	1.04493	-1.50699	-1.96415

Fig. S13. ¹³C NMR spectrum of 2a (126 MHz, CDCl₃, 298 K).

Fig. S15. ¹³C NMR spectrum of **2b** (126 MHz, CDCl₃, 298 K).

Fig. S17. ¹³C NMR spectrum of **2c** (126 MHz, CDCl₃, 298 K).

ppm

ррт

2h

Fig. S29. ¹³C NMR spectrum of 2i (126 MHz, CDCl₃, 298 K).

Fig. S31. ¹³C NMR spectrum of 2j (126 MHz, CDCl₃, 298 K).

Fig. S35. ¹³C NMR spectrum of 2l (126 MHz, CDCl₃, 298 K).

Fig. S37. ¹³C NMR spectrum of 2m (126 MHz, CDCl₃, 298 K).

Fig. S39. ¹³C NMR spectrum of **2n** (126 MHz, CDCl₃, 298 K).

Fig. S43. ¹³C NMR spectrum of **2p** (126 MHz, CDCl₃, 298 K).

Fig. S45. ¹³C NMR spectrum of **2q** (126 MHz, CDCl₃, 298 K).

S41

Fig. S49. ¹³C NMR spectrum of **2s** (126 MHz, CDCl₃, 298 K).

References of supplementary material

- 1. X. Yang, Z. Liu, P. Chen, F. Liu and T. Zhao, Journal of Co2 Utilization, 2022, 58, 101936.
- B. Liu, H. Yu, Z. Li, J. He, Y. Hu, X. Zou, L. Lu, S. Cao, C. Ma and K. Guo, *Journal of Environmental Chemical Engineering*, 2023, 11, 110886.
- 3. W. Liu, Q. Su, Z. Xu, M. Fu, H. Zhang and W. Cheng, Molecular Catalysis, 2024, 553, 113751.
- 4. X. Wu, C. Chen, Z. Guo, M. North and A. C. Whitwood, Acs Catalysis, 2019, 9, 1895-1906.
- 5. W. Cho, M. S. Shin, S. Hwang, H. Kim, M. Kim, J. G. Kim and Y. Kim, *Journal of Industrial and Engineering Chemistry*, 2016, 44, 210-215.
- 6. N. Bragato, A. Perosa, M. Selva and G. Fiorani, Chemcatchem, 2023, 15, e202201373.
- 7. A.-H. Liu, Y.-L. Dang, H. Zhou, J.-J. Zhang and X.-B. Lu, *Chemcatchem*, 2018, **10**, 2686-2692.
- 8. N. Bragato, A. Perosa, M. Selva, G. Fiorani and R. Calmanti, Green Chemistry, 2023, 25, 4849-4860.
- 9. H. Tong, Y. Qu, Z. Li, J. He, X. Zou, Y. Zhou, T. Duan, B. Liu, J. Sun and K. Guo, *Chemical Engineering Journal*, 2022, 444, 135478.
- 10. A. Chen, C. Chen, Y. Xiu, X. Liu, J. Chen, L. Guo, R. Zhang and Z. Hou, Green Chemistry, 2015, 17, 1842-1852.
- 11. C. Li, W. Xiong, T. Zhao, F. Liu, H. Cai, P. Chen and X. Hu, Applied Catalysis B-Environmental, 2023, 324, 122217.