Electronic Supporting Information

The synthesis and structural aspects of the perbromo-functionalised thiaboranes *closo*- SB_nBr_n (n = 5, 9, 11): the solid-state structure of the octahedral *closo*- SB_5Br_5 , governed by strong dihalogen contacts

Willi Keller,*^[a] Joachim Ballmann,^[b] Jindřich Fanfrlík,^[c] and Drahomír Hnyk^{*[d]}

[a] Institut für Chemie, Universität Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany

[b] Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

[c] Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic

[d] Institute of Inorganic Chemistry of the Czech Academy of Sciences, CZ-250 68 Husinec-Řež, Czech Republic

Experimental Section

Instrumentation

NMR spectra were recorded either on a Bruker AVANCE III HD 600 (¹¹B 192.552 MHz). All ¹¹B chemical shifts are referenced to external BF₃·OEt₂. The NMR spectra were processed using SpinWorks 4 (v 4.2.3.0 Kirk Marat, University of Manitoba, Canada) software. Highand low-resolution mass spectra were obtained on a Thermoscientific Exactive GC with electron ionization at 70 eV.

General Procedures and Materials

All manipulations were conducted using standard high vacuum or inert atmosphere techniques as described by *Shriver*.¹ Solvents were reagent grade, dried and purified according to standard procedures. BBr₃ was stirred over mercury, degassed, and condensed into a trap of -78 °C prior to use. Diboron tetrabromide B₂Br₄ was prepared by co-condensing BBr₃ and vaporized Cu onto cooled walls (-196 °C) of a metal-vapor reactor similar to that described by Timms.² After reaction, B₂Br₄ was separated from excess BBr₃ by repeated fractionation until the condensate exhibited a vapor pressure of less than 1 Torr at 0 °C. Further information including figures depicting the copper-vaporisation and working technique with the standard-vacuum line can be found in the Supporting Information of a recent article.³

Synthesis of S₂Br₂: S₂Br₂ is not available commercially, but can be readily prepared by adapting the standard method⁴ to vacuum conditions, according to equation $\frac{1}{4}$ S₈ + Br₂ \rightarrow S₂Br₂.

0.3 g (1.17 mmol) elemental S₈ 0.75 g (1.17 mmol) and 0.75 g (4.69 mmol) of elemental Br₂ were filled into an a 100 mL Pyrex-glass flask equipped with a right-angle PTFE high-vacuum valve (J. Young Scientific Glassware, Acton, London) and an O-ring seal for greaseless connection to the vacuum-line. After evacuating (10⁻³ mbar), the reaction mixture was heated over-night (ca. 20 h) at T = 120 °C resulting in a complete consumption of the elemental sulphur and the formation of a red-brown liquid. Traces of unreacted Br₂ were pumped-off from the flask at -40 °C and fractionation at room temperature gave in almost quantitative yield 1.0 g of pure S₂Br₂ as a red-brown liquid (lit.⁴ bp. 46–48 °C/10⁻¹ Torr, mp. -46 °C).

Synthesis of *closo*-**SB**₅**Br**₅ (1), *closo*-1-**SB**₉**Br**₉ (2), and *closo*-**SB**₁₁**Br**₁₁ (3): In a typical pyrolysis, 0.4 g S₂Br₂ (1.78 mmol) was condensed *in vacuo* (10⁻³ mbar) into a 2 x 500-mL double-flask system equipped with a seal-constriction and a break-seal joint (see Figure S18). Thereafter, 6.51 g B₂Br₄ (19.08 mmol) was condensed separately into the other of both flasks. The sealed double-flask was brought into an preheated oven of 350 °C and allowed to slowly cool to room temperature over a period of 20 h resulting in rusty-brown solid together with colorless (thiaboranes) and red B₉Br₉ crystals. After opening of the break-seal under vacuum, ca. 15 ml BBr₃ was condensed into one of the flasks in order to thoroughly extract the solid

products from the flasks repeatedly 10 times into a separate flask. The part which was insoluble in BBr₃ was separated by a frit and the residue repeatedly was extracted 5 times with 15 ml BBr₃ until the color of the extract disappeared. After evaporation of the extractant BBr₃ at temperatures below 20 °C, the residue was separated under dynamic vacuum (10⁻³ mbar) by fractional sublimation. SB₅Br₅ (1) sublimed as off-white solid at $T_{subl.}$ 40 °C (ca. 35 mg). Further purification was achieved by repeated vacuum-sublimation/crystallisation processes.

Data for *closo*-SB₅Br₅ (1): EI-MS *m/z* (rel. int.): 486 (100, M⁺); 406 (1, [M-Br]⁺); 363 (35, [M-SBBr = B₄Br₄]⁺); 282 (13, [B₄Br₃]⁺); 235 (32, [M-BBr₃]⁺); 193 (15, [B₃Br₂]⁺); 171 (10, [BBr₂]⁺); exact mass calcd for ${}^{32}S^{11}B_{5}{}^{79}Br_{5}$ 485.6076; found 485.6075; fragments: calcd for ${}^{11}B_{4}{}^{79}Br_{4}$ 363.7069; found 363.7057; calcd for ${}^{11}B_{4}{}^{79}Br_{3}$ 281.7933; found 282.7931; calcd for ${}^{32}S^{11}B_{4}{}^{79}Br_{3}$ 234.8471; found 234.8469; ${}^{11}B$ NMR (ppm, C₆D₆) 19.4 (B6), -2.3 quartet (B2-5) with cross-peak in ${}^{11}B^{11}B$ COSY NMR.

Data for *closo*-1-SB₉Br₉ (**2**): MS *m/z* (rel. int.): 848 (100, M⁺); 816 (11, [M-S]⁺); 768 (15, [M-Br]⁺); 598 (28, [M-BBr₃]⁺); exact mass calcd for ³²S¹¹B₉⁷⁹Br₉ 848.3178; found 848.3182; ¹¹B NMR (ppm, C₆D₆) 49.6 (B(10)), 7.5 (B(2-5)), -3.7 (B(6-9)) with crosspeaks in ¹¹B¹¹B COSY NMR between B(6-9), B(10) and B(2-5).

Data for *closo*-SB₁₁Br₁₁ (**3**): MS *m/z* (rel. int.): 1030 (100, M⁺); 950 (33, [M-Br]⁺); 859 (3, [M-BBr₂]⁺); 779 (6, [M-BBr₃]⁺); 656 (5, [M-SB₂Br₄]⁺); 576 (5, [M-SB₂Br₅]⁺); exact mass calcd for ³²S¹¹B₁₁⁷⁹Br₁₁ 1030.1719; found 1030.1717; ¹¹B NMR (ppm, C₆D₆) 14.2 (B(12)), -1.4 (B(2-6)), -3.7 (B(7-11)) with crosspeaks in ¹¹B¹¹B COSY NMR between B(7-11), B(12) and B(2-6).

Computational Details

1, **2**, and **3** were optimized at the B3LYP/6-311+G** level using the Gaussian09.⁵ The subsequent NMR computations were performed using these geometries with the Amsterdam

Density Functional (ADF) code⁶ employing the PBE0 functional. The two-component relativistic zeroth-order regular approximation (ZORA) method⁷ including scalar and spinorbit (SO)⁸ corrections was employed for these computations; the all-electron triple-zeta basis set plus one polarization function (denoted TZ2P; from the ADF library) was used for all atoms. Magnetic shieldings were converted into relative ¹¹B chemical shifts using ¹¹B NMR of B₂H₆⁹ as the primary references. Electrostatic potentials were computed on 0.001 a.u. at the HF/cc-pVDZ level Molekel4.3¹⁰ programs. It has recently been shown that this basis set size is sufficient for these purposes.¹¹ The IAO/IBO method¹² was used to connect quantitative SCF wave functions to a qualitative chemical picture, the nature of the orbitals naturally emerges. The IBOview program was used.¹² The corresponding input files for the latter were generated at the B3LYP/def2-TZVP//B3LYP/6-311+G** level using the Turbomole6.6¹³ program package.

X-Ray Crystal Structure Determination

Crystal data and details of the structure determination are compiled in Table S1. Full shells of intensity data were collected at 120(1) K with an Agilent Technologies Supernova-E CCD diffractometer (Mo- K_{α} radiation, microfocus X-ray tube, multilayer mirror optics). Detector frames (typically ω -, occasionally φ -scans, scan width 0.5°) were integrated by profile fitting.^{14,15} Data were corrected for air and detector absorption, Lorentz and polarization effects¹⁶ and scaled essentially by application of appropriate spherical harmonic functions.^{16,17} Absorption by the crystal was treated numerically (Gaussian grid).¹⁸ An illumination correction was performed as part of the numerical absorption correction.¹⁶

Using OLEX2,¹⁹ the structure was solved with SHELXT²⁰ (intrinsic phasing) and refined with SHELXL²¹ by full-matrix least squares methods based on F^2 against all unique reflections. All atoms were given anisotropic displacement parameters.

Note: The monoclinic angle β in crystals of B₅Br₅S is very close to 90° (see Table S1), which is commonly regarded as an indicator for higher symmetry. Indexing and integration in various orthorhombic space groups, however, lead to very large standard uncertainties for the cell axes and to unreasonably high R_{int} values of > 0.66. In $P2_1/c$, an R_{int} value of approximately 0.05 was determined. No higher symmetries were found using *ADDSYM* as implemented in PLATON.²²

CCDC 2403282 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre's and FIZ Karlsruhe's joint Access Service via <u>https://www.ccdc.cam.ac.uk</u>.

Å)

Table S1. Crystal data and details of the structure determination for B5Br5S.

Empirical formula	B5Br5S
Formula weight	485.66
Crystal system	monoclinic
Space group (number)	<i>P</i> 2 ₁ / <i>c</i> (14)
a [Å]	18.6919(2)
<i>b</i> [Å]	12.52450(10)
<i>c</i> [Å]	13.22370(10)
β[°]	90.0170(10)
Volume [Å ³]	3095.76(5)
Ζ	12
$ ho_{ m calc} [m g cm^{-3}]$	3.126
$\mu [\mathrm{mm}^{-1}]$	19.600
<i>F</i> (000)	2592
Radiation	Mo- K_{α} ($\lambda = 0.71073$

2θ range [°]	5.0 to 68.3 (0.63 Å)
Index ranges (h, k, l)	-29 to $+28, \pm 19, \pm 20$
Reflections collected	102152
Independent reflections	12413 ($R_{int} = 0.0469$)
Completeness to $\theta = 25.242^{\circ}$	99.9 %
Data / Restraints / Parameters	12413 / 0 / 299
Transmission factors (min / max)	0.704 / 1.000
Goodness-of-fit on F^2	1.024
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0233, wR_2 = 0.0464$
Final R indexes [all data]	$R_1 = 0.0362, wR_2 = 0.0499$
Largest peak/hole [eÅ ⁻³]	0.67 / -0.67
Extinction coefficient	0.000206(10)
CCDC number	2403282

In the caption of Figure 3 (see the main text), it is mentioned that three independent molecules are present in the asymmetric unit. Hence, overall 12 molecules are present in the cell. The three independent molecules and the cell axes are shown in Figure S1.

Figure S1. ORTEP plot of the three independent molecules in the asymmetric unit (thermal displacement ellipsoids drawn at the 50% probability level).

Figure S2. Visualized examples of IBOs for a) *closo*-1-SB9Br9 (**2**) and b) *closo*-SB11Br11 (**3**). The colour coding is as follows: blue – classical 2c-2e bonding, pink – 3c-2e bonding, yellow – 4c-2e bonding.

Figure S3. The computed electrostatic-potential (ESP) molecular surface of *closo*-1-SB₉Br₉ (**2**, left) and *closo*-SB₁₁Br₁₁ (**3**, right). The ESP colour range is in kcal.mol⁻¹.

Figure S4. 192.55 MHz ¹¹B NMR spectrum of *closo*-SB₅Br₅ (1).

Figure S5. 192.55 MHz ¹¹B¹¹B COSY NMR spectrum of *closo*-SB₅Br₅ (1).

Figure S6. Resolution of ${}^{1}J({}^{11}B{}^{11}B)$ by applying Gaussian line broadening on the signal for B(2–5) at –2.3 ppm in the 192.55 MHz ${}^{11}B$ NMR spectrum of *closo*-SB₅Br₅ (1) resolving the coupling to B(6).

Figure S7. 192.55 MHz ¹¹B NMR spectrum of a C₆D₆ extract of the non-volatile (HV) residue of the pyrolysate (after the volatiles were pumped off 10 minutes at 300 °C) containing *closo*-SB₅Br₅ (1), *closo*-1-SB₉Br₉ (2), and *closo*-SB₁₁Br₁₁ (3). The formulas and relative amounts of the contents were analysed by EI-MS.

Figure S8. 192.55 MHz ¹¹B¹¹B COSY NMR spectrum of the sample shown in Fig. S7.

Figure S9. 192.55 MHz ${}^{11}B^{11}B$ COSY NMR spectrum of a C₆D₆ extract of the pyrolysate from a co-pyrolysis at 430 °C.

Figure S10. 192.55 MHz $^{11}B^{11}B$ COSY NMR spectrum of the sample from Fig. S9 with cross-peaks of 1, 2, 3 and signals of components which could not be assigned.

Figure S11. EI-MS (70 eV) of closo-SB5Br5 (1).

Figure S12. EI-MS (70 eV) of *closo*-1-SB₉Br₉ (2).

Figure S13. EI-MS (70 eV) of *closo*-SB₁₁Br₁₁ (3).

Figure S14. High resolution EI-MS of *closo*-SB₅Br₅ (1).

Figure S15. High resolution EI-MS of [B₄Br₄]⁺ in the fragmentation of *closo*-SB₅Br₅ (1).

Figure S16. High resolution EI-MS of closo-1-SB9Br9 (2).

Figure S17. High resolution EI-MS of *closo*-SB₁₁Br₁₁ (3).

Figure S18. Sealed pyrolysis double-flask after reaction, before work-up.

References

- 1 D. F. Shriver, M. A. Drezdon in *The Manipulation of Air-Sensitive Compounds*, 2nd ed., John Wiley & Sons, New York, **1986**.
- 2 P. L. Timms, Adv. Inorg. Chem. Radiochem., 1972, 14, 121.
- 3 W. Keller, J. Ballmann, M. B. Sárosi, J. Fanfrlík, D. Hnyk, *Angew. Chem. Int. Ed.* **2023**, *62*, e202219018.
- 4 F. Fehér, J. Kraemer, G. Rempe, Z. Anorg. Allg. Chem. 1955, 279, 18-27.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision D.01, Gaussian, Inc., Wallingford CT, 2009.

- a) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem., 2001, 22, 93; b) E. J. Baerends, J. Autschbach, A. Bérces, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, L. Fan, T. H. Fischer, C. Fonseca Guerra, S. J. A. van Gisbergen, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, F. E. Harris, P. van den Hoek, H. Jacobsen, G. van Kessel, F. Kootstra, E. van Lenthe, D. A. McCormack, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. G. Snijders, M. Sola, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, O. Visser, E. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, T. Ziegler, ADF2004.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands, 2004.
- (a) E. van Lenthe, E.J. Baerends and J.G. Snijders, J. Chem. Phys., 1994, 101, 9783; (b)
 E. van Lenthe, R. van Leeuwen, E.J. Baerends and J. G. Snijders, Int. J. Quantum Chem., 1996, 57, 281; (c) E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys., 1993, 99, 4597.
- 8 E. van Lenthe, J. G. Snijders and E. J. Baerends, J. Chem. Phys., 1996, 105, 6505.
- 9 T. P. Onak, H. L. Landesman, R. E. Williams and I. Shapiro, *J. Phys. Chem.*, 1959, **63**, 1533.
- 10 MOLEKEL 4.3, P. Flükiger, H. P. Lüthi, S. Portmann, J. Weber, Swiss Center for scientific Computing, Manno, Switzerland, 2000, https://ugovaretto.github.io/molekel/ Accessed date 26.5.2020.
- 11 K. E. Riley, P. Tran, P. Lane, J. S. Murray and P. Politzer, *J. Comput. Sci.* 2016, **17**, 273.
- 12 G. Knizia, J. Chem. Theory Comput., 2013, 9, 4834.
- 13 *TURBOMOLE*, Version 7.3, 2018, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2017, TURBOMOLE GmbH, 2007.
- 14 K. Kabsch, in *International Tables for Crystallography*, Eds. Rossmann, M. G.; Arnold, E., *Vol. F*, Ch. 11.3, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.
- 15 (a) CrysAlisPro, Agilent Technologies UK Ltd., Oxford, UK 2011-2014; (b) Rigaku Oxford Diffraction, Rigaku Polska Sp.z o.o., Wrocław, Poland 2015-2020.
- 16 SCALE3 ABSPACK, CrysAlisPro, Agilent Technologies UK Ltd., Oxford, UK 2011-2014.
- 17 R. H. Blessing, Acta Cryst. 1995, A51, 33.
- 18 W. R. Busing and H. A. Levy, Acta Cryst. 1957, 10, 180.
- 19 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, H., *J. Appl. Cryst.* 2009, **42**, 339.
- (a) G. M. Sheldrick, SHELXT, University of Göttingen and Bruker AXS GmbH, Karlsruhe, Germany, 2012-2018; (b) M. Ruf and B.C. Noll, Application Note SC-XRD 503, Bruker AXS GmbH, Karlsruhe, Germany 2014; (c) G. M. Sheldrick, Acta Cryst. 2015, A71, 3.

- (a) G. M. Sheldrick, SHELXL-20xx, University of Göttingen and Bruker AXS GmbH, Karlsruhe, Germany, 2012-2018; (b) G. M. Sheldrick, Acta Cryst. 2008, A64, 112; (c) G. M. Sheldrick, Acta Cryst. 2015, C71, 3.
- 22 A.L. Spek, J. Appl. Cryst. 2003, 36, 7.