SUPPORTING INFORMATION

Hydrogermylation of Alkynes via Metal-Ligand Cooperative Catalysis

Marceline Humbert, ^a Arnaud Clerc, ^a Karine Miqueu, ^b Julien Monot, ^a Blanca Martin-Vaca, ^{a,*} Didier Bourissou^{a,*}

^aLaboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 route de Narbonne, F-31062 Toulouse, France.

^cCNRS/Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Hélioparc, 2 Avenue du Président Angot, Pau Cedex 09 64053, France

Table of contents

I.	General Remarks	S2
II.	Activation of E-H bond (E= B, Sn & Ge) across the Pd-S bond	S4
III.	Preliminary catalytic results	
IV.	Synthesis of precursors	S7
V.	Catalytic Hydrogermylation	
VI.	Computational details	S16
VII.	References	\$34

I. General Remarks

All reactions were performed in oven-dried glassware and using standard Schlenk techniques under an argon atmosphere unless otherwise stated. Dry solvents were obtained from a PureSolv solvent purification system and degassed by the freeze-pump-thaw method (three cycles times). Deuterated solvents for NMR spectroscopic analyses were purchased from Eurisotop, dried over activated 3 Å molecular sieves powder and degassed by the freeze-pump-thaw method.

NMR experiments were performed in deuterated solvents. ¹H, ¹³C, ¹⁹F, ³¹P and ²⁹Si NMR spectra were recorded on Avance 300 MHz, Avance II 300 MHz, Avance 400 MHz, Avance III HD 400 MHz, Avance 500 MHz and Avance III HD 500 MHz Bruker spectrometers. All spectra were recorded at ambient temperature (298 K). Chemical shifts (δ) are reported in parts per million (ppm) relative to the residual protium in the solvents (¹H) or the solvent carbon (¹³C) as internal standards. Multiplicity of signals is indicated using the following abbreviations: s (singlet), br (broad), d (doublet), dd (doublet of doublet), ddd (doublet of doublet), dt (doublet of triplets), dhept (doublet of heptet), t (triplet), td (triplet of doublet), q (quadruplet), and m (multiplet). When necessary, NOESY, NOESY ZQF selective analyses were used to determine the regio- and stereochemistry of the obtained products.

Flash column chromatography was performed using Sigma-Aldrich Silica gel $60 - 200 \ \mu m$ or on an automated Interchim puriFlash system using pre-packed Interchim 30 $\ \mu m$ silica gel cartridges.

GC analyses were performed on a GC Perkin Elmer Clarus 500 with a flame ionization detector (FID) using a SGE BPX5 column (30 m x 0.32 mm x 0.25 mm) composed of 5% phenylmethylsiloxane in a 2 mL/min flow.

High-resolution mass spectra (HRMS) were recorded using either electrospray ionisation (ESI) or desorption chemical ionisation (DCI) using a Waters GCT Premier or Sciex QTRAP 4500 AB or Thermo Fisher Scientific DSQ II spectrometers.

<u>Chart S1.</u> Main precedents of catalytic alkyne hydrogermylation reactions. Ajouter les refs dans le Chart.

II. Activation of E-H bond (E= B, Sn & Ge) across the Pd-S bond

Test activation of Pinacolborane:

A J-young NMR tube was charged with I_2 (11 mg, 0.01 mmol, 1.0 equivalent), HBpin (6.4 μ L, 0.05 mmol, 5.0 equivalent) and 0.7 mL of CD₂Cl₂. The reaction was monitored by NMR. After 48 h, no reaction occurs and I_2 was detected as the only species by ³¹P NMR analysis.

Test activation of tributyltin hydride:

A J-young NMR tube was charged with I₂ (11 mg, 0.01 mmol, 1.0 equivalent), HSnBu₃ (2.8 μ L, 0.01 mmol, 1.0 equivalent) and 0.7 mL of CD₂Cl₂. An instantaneous gas evolution (H₂), even at low temperature (-78 °C). The reaction was monitored by NMR. The dehydrogenative coupling product Bu₃SnSnBu₃ was detected as a singlet at δ -83 ppm in ¹¹⁹Sn NMR spectroscopy.

Figure S1: ¹¹⁹Sn NMR spectroscopy of mixture of HSnBu₃ and I₂

Activation of Et₃Ge-H:

A J-young NMR tube was charged with I₂ (20 mg, 0.018 mmol, 1.0 equivalent), Et₃GeH (16.2 μ L, 0.093 mmol, 5.0 equivalent) and 1 mL of CD₂Cl₂. The reaction was monitored by NMR. After <5 min the product II was detected as the only species by ³¹P NMR analysis and characterized spectroscopically in presence of excess Et₃GeH.

¹H NMR (500 MHz, CD₂Cl₂) δ 8.50 (d, J = 8.5 Hz, 1H, H₉), 8.03 (d, J = 7.4 Hz, 1H, H₆), 8.00 (d, J = 8.2 Hz, 1H, H₂), 7.77 (d, J =

8.5 Hz, 1H, H₈), 7.75 – 7.68 (m, 1H, H₁), 3.99 (d, $J_{H-P} = 9.8$ Hz, 2H, H₁₀), 2.49 – 2.32 (m, 2H, H_{14,11}), 1.32 (dd, $J_{H-P} = 19.5$, $J_{H-H} = 7.0$ Hz, 6H, H_{12,13,15,16}), 1.26 – 1.17 (m, 12H, H_{12,13,15,16}; H₁₇₋₁₉), 1.11 – 1.09 (m, 9H, H₂₀₋₂₂), -12.62 (d, $J_{H-P} = 4.9$ Hz, 1H, H₂₃).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂) δ 162.4 (d, $J_{C-P} = 4.1$ Hz, C₇), 148.5 (d, $J_{C-F} = 240.0$ Hz, C_{BPhF}), 147.0 (d, $J_{C-P} = 2.2$ Hz, C₄), 141.1 (C₉), 138.4 (d, $J_{C-P} = 2.7$ Hz, C₆), 138.2 (d, $J_{C-F} = 245$ Hz, C_{BPhF}), 135.9 (d, $J_{C-F} = 246$ Hz, C_{BPhF}), 133.4 (d, $J_{C-P} = 1.4$ Hz, C₅), 129.5 (C₃), 129.4 (C₂), 129.1 (C₁), 121.7 (d, $J_{C-P} = 10.5$ Hz, C₈), 38.5 (d, $J_{C-P} = 23.0$ Hz, C₁₀), 25.2 (d, $J_{C-P} = 28.0$ Hz, C_{11,14}), 19.1 (d, $J_{C-P} = 4.2$ Hz, C_{16,12}), 18.2 (C_{15,13}), 10.7 (C_{17, 18, 19}), 8.69 (C_{20, 21, 22})

³¹P{¹H} NMR (121 MHz, CD₂Cl₂) δ 74.8 (s).

III. Preliminary catalytic results

Hydroboration of diphenylacetylene: (E)-2-(1,2-diphenylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane - CAS [1391743-16-0]

Ph Ph Ph Ph Bpin In an J-Young NMR tube, diphenylacetylene (35.6 mg, 0.20 mmol, 1.0 equiv), pinacolborane (49 μL, 0.34 mmol, 1.7 equiv) and 1,2,4,5-tetramethylbenzene (13.4 mg, 0.10 mmol, 0.5 equiv) were dissolved in CD₂Cl₂ (0.6 mL). After shaking, 5 mol% of catalyst I₂ was added (11 mg, 0.01 mmol, 2.5 mol%). The mixture was placed at 70 °C for 4 h. (*E*)-2-(1,2-Diphenylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (*Anti*-isomer, 72%) along with the *syn*-isomer (28%) was formed with quantitative yield as estimated by ¹H NMR analysis. The mixture was purified by column chromatography using 100% pentane, 75% yield was obtained (46 mg). Spectroscopic data in accordance with the literature.^[6] For minor isomer, a detailed ¹H NMR analysis could not be provided. However diagnostic signals are listed below.

¹H NMR (300 MHz, C_6D_6) δ 7.87 (s, 1H, H_{vinyl}), 7.44 – 7.32 (m, 4H, H_{arom}), 7.21 – 7.19 (m, 2H, H_{arom}), 7.03 – 7.01 (m, 2H, H_{arom}), 6.90 – 6.87 (m, 2H, H_{arom}), 1.08 (s, 12H, 4xCH₃). For *Syn*-isomer in CD₂Cl₂: CH_{vinyl} signals at 7.29 ppm (s)

Hydrostannylation of diphenylacetylene:

In an J-Young NMR tube, diphenylacetylene (35.6 mg, 0.20 mmol, 1.0 equiv), tributyltin hydride (65 μ L, 0.24 mmol, 1.2 equiv) and 1,2,4,5-tetramethylbenzene (13.4 mg, 0.10 mmol,

0.5 equiv) were dissolved in CD₂Cl₂ (0.6 mL). After shaking, 2.5 mol% of catalyst I₂ was added (11 mg, 0.01 mmol, 5 mol%). An instantaneous gas evolution (H₂), even at low temperature (– 78 °C). The reaction was monitored by NMR. The dehydrogenative coupling product Bu₃SnSnBu₃ was detected as a singlet at δ –83 ppm and only traces of hydrostannylation product was detected at δ 30 ppm in ¹¹⁹Sn NMR spectroscopy.

Figure S2: ¹¹⁹Sn NMR spectroscopy of hydrostannylation of diphenylacetylene

Hydrogermylation of diphenylacetylene: (E)-(1,2-diphenylvinyl)triethylgermane 2a - CAS [869795-36-8]

Ph Ph GeEt₃ In an J-Young NMR tube, diphenylacetylene (35.6 mg, 0.20 mmol, 1.0 equiv), triethylgermane (39 μ L, 0.24 mmol, 1.2 equiv) and 1,2,4,5tetramethylbenzene (13.4 mg, 0.10 mmol, 0.5 equiv) were dissolved in CD₂Cl₂ (0.6 mL). After shaking, 2.5 mol% of complex I₂ (11 mg, 0.01 mmol, 2.5 mol%) was added. The mixture was placed at 25 °C for 5 h. **2a** (*Anti*-isomer, 55%) along with the *syn*-isomer (45%) was formed with quantitative yield as estimated by ¹H NMR analysis. Isolated as mixture by column chromatography using 100% pentane, 96% yield was obtained (65.4 mg). Spectroscopic data in accordance with the literature.^[5] For minor product, a detailed ¹H NMR analysis could not be provided, diagnostic signals however are listed below.

¹H NMR (300 MHz, CDCl₃) δ 7.43 – 7.35 (m, 5H, H_{arom} & H_{vinyl}), 7.30 – 7.25 (m, 2H, H_{arom}), 7.22 – 7.14 (m, 2H, H_{arom}), 7.12 – 7.05 (m, 2H, H_{arom}), 0.99 (t, *J* = 7.9 Hz, 9H, GeCH₂CH₃), 0.74 (q, *J* = 7.9 Hz, 6H, GeCH₂).

For Syn-isomer in CD₂Cl₂: CH_{vinyl} signals at 6.75 ppm (s)

IV. Synthesis of precursors

(4-bromophenyl)triethylsilane - CAS [18036-95-8]:

(4-bromophenyl)triethylsilane has been synthesized on the basis of a previously reported procedure.^[7] Under nitrogen, 8.7 mL of 2.5 M *n*-BuLi (in hexane, 14.0 mmol, 1.1 equiv.) was slowly added to a 15 mL dry ether solution of 1,4-dibromobenzene (3.0 g, 12.7 mmol, 1.0 equiv.) at -50 °C,

and the mixture was then stirred at -50 °C for 1 h. Next, 2.15 mL of chlorotriethylsilane (12.7 mmol, 1.0 equiv.) was slowly added to the above mixture and stirring was continued overnight at room temperature. Water was then added to the reaction mixture, and the organic layer was collected. The aqueous phase is extracted with ethyl acetate (2x) and combined organic phases were dried over Na₂SO₄, the solvent was removed under reduced pressure. (4-bromophenyl)triethylsilane was obtained after purification by flash chromatography (pentane), 67% yield was obtained (2.3 g). Spectroscopic data are in accordance with the literature.^[7]

¹H NMR (300 MHz, CDCl₃) δ 7.50-7.46 (m, 2H, H_{arom}), 7.36-7.33 (m, 2H, H_{arom}), 0.95 (t, J=7.3 Hz, 9H, 3xSiCH₂-C<u>H₃</u>), 0.79 (q, J=7.8 Hz, 6H, 3xSiCH₂).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 136.4 (C_{arom}), 135.9 (CH_{arom}), 134.3 (C_{arom}), 130.9 (CH_{arom}), 7.6 (SiCH₂-<u>C</u>H₃), 3.5 (SiCH₂).

²⁹Si{¹H} DEPT 9H NMR (99 MHz, CDCl₃) δ 2.5 (s).

HRMS (DCI-CH₄) calculated for $[C_{12}H_{19}SiBr]$ M⁺: 270.0439, found 270.0442.

(4-ethynylphenyl)triethylsilane - CAS [16116-94-2]:

(4-ethynylphenyl)triethylsilane has been synthesized on the basis of a previously reported procedure.^[7] Under nitrogen, a mixture of dry (4-bromophenyl)triethylsilane (2.1 g, 7.92 mmol, 1.0 equiv.), Pd(PPh₃)₂Cl₂

(139 mg, 0.20 mmol, 2.5 mol%), CuI (60 mg, 0.32 mmol, 4 mol%), and 15 mL of dry piperidine was stirred at 0 °C for 10 min. Then trimethylsilylacetylene (1.64 mL, 11.9 mmol, 1.5 equiv.) was added to the mixture and stirred at 80 °C for 18 h. After cooling to room temperature, the solvent was removed under vacuum.

A methanol (20 mL) solution of K_2CO_3 (3.3 g, 23.8 mmol) was added to the mixture and stirring was continued at room temperature for 2 h. The methanol was then removed under vacuum, and the organic product was extracted with hexane and then filtered through a Celite pad, the solvent was removed under reduced pressure. (4-ethynylphenyl)triethylsilane was obtained after purification by flash chromatography (pentane), 60% yield was obtained (1.0 g). Spectroscopic data are in accordance with the literature.^[7]

¹H NMR (300 MHz, CDCl₃) δ 7.49-7.41 (m, 4H, H_{arom}), 3.08 (s, 1H, \equiv CH), 0.95 (t, *J* = 7.3 Hz, 9H, 3xSiCH₂-CH₃), 0.79 (q, *J* = 7.8 Hz, 6H, 3xSiCH₂).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 139.1 (C_{arom}), 134.2 (CH_{arom}), 131.3 (CH_{arom}), 122.4 (C_{arom}), 84.0 (-<u>C</u>=CH), 77.6 (-C=<u>C</u>H), 7.5 (SiCH₂-<u>C</u>H₃), 3.4 (SiCH₂).

²⁹Si{¹H} DEPT 9H NMR (99 MHz, CDCl₃) δ 2.4 (s).

SiMe₂Ph

HRMS (DCI-CH₄) calculated for [C₁₄H₂₁Si] M⁺: 217.1413, found 217.1402.

(4-bromophenyl)dimethyl(phenyl)silane - CAS [18407-37-9]:

(4-bromophenyl)dimethyl(phenyl)silane has been synthesized on the basis of a previously reported procedure.^[7] Under nitrogen, 8.3 mL of 2.5 M n-BuLi (in hexane, 13.3 mmol, 1.1 equiv.) was slowly added to a 15 mL dry ether solution of 1,4-dibromobenzene (2.85 g, 12.1 mmol,

1.0 equiv.) at -50 °C, and the mixture was then stirred at -50 °C for 1 h. Next, 2.03 mL of chlorodimethylphenylsilane (12.1 mmol, 1.0 equiv.) was slowly added to the above mixture and stirring was continued overnight at room temperature. Water was then added to the reaction mixture, and the organic layer was collected. The aqueous phase is extracted with ethyl acetate (2x) and combined organic phases were dried over Na₂SO₄, the solvent was removed under reduced pressure. (4-bromophenyl)dimethyl(phenyl)silane was obtained after purification by flash chromatography (pentane), 78% yield was obtained (2.75 g). Spectroscopic data are in accordance with the literature.^[8]

¹H NMR (300 MHz, CDCl₃) δ 7.52-7.48 (m, 4H, H_{arom}), 7.40-7.37 (m, 5H, H_{arom}), 0.56 (s, 6H, 2xSiCH₃).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 137.7 (C_{arom}), 137.3 (C_{arom}), 135.9 (CH_{arom}), 134.2 (CH_{arom}), 131.1 (CH_{arom}), 129.5 (CH_{arom}), 128.1 (CH_{arom}), 124.1 (C_{arom}), -2.2 (2xSiCH₃).

²⁹Si{¹H} DEPT 6H NMR (99 MHz, CDCl₃) δ -7.5 (s).

HRMS (DCI-CH₄) calculated for [C₁₄H₁₅SiBr] M⁺: 290.0126, found 290.0126.

(4-ethynylphenyl)dimethyl(phenyl)silane - CAS [2359689-24-8]:

 $(4-ethynylphenyl)dimethyl(phenyl)silane has been synthesized on the basis of a previously reported procedure.^[7] Under nitrogen, a mixture of dry (4-bromophenyl)dimethyl(phenyl)silane (2.0 g, 6.87 mmol, 1.0 equiv.), Pd(PPh_3)_2Cl_2 (119 mg, 0.17 mmol, 2.5 mol%), Cul (51.4 mg, 0.27 mmol, 4 mol%), and 15 mL of dry piperidine was stirred at 0 °C for 10 min. Then trimethylsilylacetylene (1.4 mL, 10.3 mmol, 1.5 equiv.) was added to the mixture and stirred at 80 °C for 18 h. After cooling to room temperature, the solvent was removed under vacuum. A methanol (20 mL) solution of K₂CO₃ (2.8 g, 20.6 mmol) was added to the mixture and stirring was continued at room temperature for 2 h. The methanol was then removed under vacuum, and the organic product was extracted with hexane and then filtered through a Celite pad, the solvent was removed under reduced pressure. (4-ethynylphenyl)dimethyl(phenyl)silane was obtained after purification by flash chromatography (pentane), 84% yield was obtained (1.36 g). Spectroscopic data are in accordance with the literature.^[9]$

¹H NMR (300 MHz, CDCl₃) δ 7.52-7.48 (m, 6H, H_{arom}), 7.34-7.38 (m, 3H, H_{arom}), 3.10 (s, 1H, \equiv CH), 0.56 (s, 6H, 2xSiCH₃).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 139.7 (C_{arom}), 137.8 (C_{arom}), 134.3 (CH_{arom}), 134.2 (CH_{arom}), 131.4 (CH_{arom}), 129.4 (CH_{arom}), 128.0 (CH_{arom}), 122.8 (C_{arom}), 83.9 (-<u>C</u>=CH), 77.8 (-C=<u>C</u>H), -2.4 (2xSiCH₃).

²⁹Si{¹H} DEPT 6H NMR (99 MHz, CDCl₃) δ -7.7 (s).

HRMS (DCI-CH₄) calculated for [C₁₆H₁₆Si] M⁺: 236.1021, found 236.1022.

V. Catalytic Hydrogermylation

General procedure A for hydrogermylation:

In an J-Young NMR tube, the alkyne (0.2 mmol), the germane (0.24 mmol, 1.2 equiv or 0.60 mmol, 3.0 equiv) and the internal standard (1,2,4,5-tetramethylbenzene) were dissolved in CD_2Cl_2 (0.6 mL). After shaking, 2.5 mol% of catalyst was added. The tube was placed at 25 °C for the indicated time (reaction monitored by ¹H NMR).

(E)-triethyl(hex-3-en-3-yl)germane 2b:

 $Et \xrightarrow{GeEt_3}$ Using the general procedure **A**, hex-3-yne (22 μL, 0.20 mmol, 1.0 equiv), triethylgermane (97 μL, 0.60 mmol, 3.0 equiv), 1,2,4,5-tetramethylbenzene (13.4 mg, 0.10 mmol, 0.5 equiv) and complex I₂ (11 mg, 0.01 mmol, 2.5 mol%) were dissolved in CD₂Cl₂ (0.6 mL). The mixture was placed at 25 °C for 5 h. **2b** (β-*syn*, 84%) along with the β-*anti* (16%) isomer was formed with 57% yield as estimated by ¹H NMR analysis. Isolated by column chromatography using 100% pentane, 53% combined yield of isomers was obtained (19 mg). Stereochemistry was determined according to data obtained for hydrosilylation of hex-1-yne.^[10] For minor product, a detailed ¹H NMR analysis could not be provided, diagnostic signals however are listed below.

¹**H NMR (300 MHz, CDCl₃)** δ 5.48 ppm (tt, J = 6.8, 1.0 Hz, 1H, C-<u>H</u>_{vinyl}), 2.20 – 2.06 ppm (m, 4H, 2xC<u>H</u>₂-C_{vinyl}), 1.02 (t, J = 7.9 Hz, 9H, Ge-CH₂-C<u>H</u>₃), 0.97 (t, J = 7.6 Hz, 3H, CH₂-C<u>H</u>₃), 0.92 (t, J = 7.6 Hz, 9H, CH₂-C<u>H</u>₃), 0.77 (q, J = 7.9 Hz, 6H, Ge-C<u>H</u>₂-CH₃). For β-*anti*: CH_{vinyl} signal at 5.90 ppm (tt, J = 7.3, 1.4 Hz, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 140.4 (<u>C</u>H_{vinyl}), 24.0 (<u>C</u>H₂-CH₃), 21.4 (<u>C</u>H₂-CH₃), 14.8 (CH₂-<u>C</u>H₃), 14.7 (CH₂-<u>C</u>H₃), 9.1 (Ge-CH₂-<u>C</u>H₃), 4.2 (Ge-<u>C</u>H₂-CH₃).

HRMS (DCI-CH₄) calculated for $[C_{10}H_{21}Ge]$ MH⁺-C₂H₆: 215.0855, found 215.0871.

(E)-triethyl(1-phenylprop-1-en-2-yl)germane 2c & (E)-triethyl(1-phenylprop-1-en-1yl)germane 2c':

Using the general procedure **A**, prop-1-yn-1-ylbenzene (23.2 mg, 0.20 mmol, 1.0 equiv), triethylgermane (39 μ L, 0.24 mmol, 1.2 equiv), 1,2,4,5-tetramethylbenzene (13.4 mg, 0.10 mmol, 0.5 equiv) and complex **I**₂ (11 mg, 0.01 mmol, 2.5 mol%) were dissolved in

 CD_2Cl_2 (0.6 mL). The mixture was placed at 25°C for 1 h. (E)-triethyl(1-phenylprop-1-en-2yl)germane **2c** (β -syn, 42%) and (E)-triethyl(1-phenylprop-1-en-1-yl)germane **2c'** (α -syn, 42%) were formed along with β -anti (14%) and α -anti (2%) isomer as estimated by ¹H NMR. Isolated by column chromatography using 100% pentane, 88% combined yield of isomers was obtained (48.9 mg). Spectroscopic data in accordance with the literature.^[5,11] Stereochemistry was confirmed by NOESY 2D. For minor products, a detailed ¹H NMR analysis could not be provided, diagnostic signals however are listed below.

¹H NMR (500 MHz, CDCl₃) δ

 β -syn: 7.31-7.29 (m, 3H, H_{arom}), 6.96-6.94 (m, 2H, H_{arom}), 6.59 (q, J = 1.9 Hz, 1H, H_{vinyl}), 2.02 (d, J = 1.9 Hz, 3H, CH₃), 1.08 (t, J = 7.8Hz, 9H, GeCH₂CH₃), 0.89 (q, J = 7.8 Hz, 6H, GeCH₂).

β-*anti:* CH_{vinyl} signal at 7.21 ppm (stacked with H_{arom}) and 2.01 ppm (d, J = 1.9 Hz, 3H, CH₃). α-*syn:* 7.36-7.33 (m, 3H, H_{arom}), 7.23-7.18 (m, 2H, H_{arom}), 5.90 (q, J = 6.5 Hz, 1H, H_{vinyl}), 1.61 (d, J = 6.5 Hz, 3H, CH₃), 0.99 (t, J = 7.8 Hz, 9H, GeCH₂CH₃), 0.77 (q, J = 7.8 Hz, 6H, GeCH₂).

α -anti: CH_{vinyl} signal at 6.20 ppm (q, J = 7.1 Hz, 1H, H_{vinyl}) and 1.88 ppm (d, J = 7.1 Hz, 3H, CH₃).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ

 β -syn: 143.6 (C_{vinyl}), 138.4 (C_{arom}), 136.5 (<u>C</u>H_{vinyl}), 18.5 (CH₃), 9.1 (Ge-CH₂-<u>C</u>H₃), 3.7 (Ge-<u>C</u>H₂-CH₃).

 α -syn: 143.4 (C_{vinyl}), 140.3 (C_{arom}), 134.1 (<u>C</u>H_{vinyl}), 15.9 (CH₃), 8.9 (Ge-CH₂-<u>C</u>H₃), 4.1 (Ge-<u>C</u>H₂-CH₃).

HRMS (DCI-CH₄) calculated for [C₁₅H₂₃Ge] [M-H]⁺: 273.1042, found 273.1038

(E)-(1-([1,1'-biphenyl]-4-yl)-3,3,3-trifluoroprop-1-en-2-yl)triethylgermane 2d:

Ph₂ $GeEt_3$ Using the general procedure **A**, 4-(3,3,3-trifluoroprop-1-yn-1-yl)-1,1'biphenyl (49,2mg, 0.20 mmol, 1.0 equiv), triethylgermane (39 µL, 0.24 mmol, 1.2 equiv), 1,2,4,5-tetramethylbenzene (13.4 mg, 0.10 mmol, 0.5 equiv) and complex I₂ (11mg, 0.01 mmol, 2.5 mol%) were dissolved in CD₂Cl₂ (0.6 mL). The mixture was placed at 70°C for 3 h. **2d** (β -syn, 39%) was formed along with the β -anti (38%) and α -syn (21%) isomer as estimated by ¹H NMR. The mixture was purified by preparative TLC using 100% pentane, 99% combined yield was obtained (80 mg). Stereochemistry was confirmed by NOESY 2D. For minor products, a detailed ¹H NMR analysis could not be provided, diagnostic signals however are listed below.

¹**H NMR (500 MHz, CDCl₃)** δ 7.64-7.58 (m, 6H, H_{arom}), 7.50-7.40 (m, 8H, H_{arom}), 7.03 (s, 1H, H_{vinyl}), 1.15 (t, J = 7.7Hz, 9H, GeCH₂CH₃), 1.04 (q, J = 7.7 Hz, 6H, GeCH₂). β-*anti:* CH_{vinyl} signal at 7.96 ppm (q, J = 2.6 Hz, 1H). α-*syn:* CH_{vinyl} signal at 5.95 ppm (q, J = 7.8 Hz, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 146.2 (q, J = 6.4 Hz, CH_{vinyl}), 141.3 (C_{arom}), 140.8 (C_{arom}), 139.1 (C_{arom}), 136.1 (C_{arom}), 129.4 (q, J = 2.8 Hz, CH_{arom}), 128.9 (CH_{arom}), 128.6 (CH_{arom}), 127.7 (CH_{arom}), 127.2 (CH_{arom}), 126.9 (CH_{arom}), 8.8 (GeCH₂CH₃), 5.9 (GeCH₂).

¹⁹F NMR (471 MHz, CDCl₃) δ -52.7 (broad s).

β-*anti:* -59.2 (d, *J* =2.6 Hz). α-*syn:* -56.8 (d, *J* =7.9 Hz).

HRMS (DCI-CH₄) calculated for $[C_{21}H_{24}F_3Ge]$ M⁺: 405.1229, found 405.1231.

(E)-triethyl(styryl)germane 2e - CAS [19319-12-1]:

GeEt₃ Using the general procedure **A**, phenylacetylene (22 µL, 0.20 mmol, 1.0 equiv), triethylgermane (39 µL, 0.24 mmol, 1.2 equiv), 1,2,4,5-tetramethylbenzene (13.4 mg, 0.10 mmol, 0.5 equiv) and complex I₂ (11 mg, 0.01 mmol, 2.5 mol%) were dissolved in CD₂Cl₂ (0.6 mL). The mixture was placed at 25 °C for 10 min. (E)-triethyl(styryl)germane (β -syn, 32%) was formed along with the β -anti isomer (68%) in a quantitative yield as estimated by ¹H NMR. After 6 h, 100% of (*E*)-triethyl(styryl)germane was obtained. Isolated by column chromatography using 100% pentane, **2e** was obtained (90% yield, 47.3 mg). Spectroscopic data in accordance with literature.^[5,12] For minor product, a detailed ¹H NMR analysis could not be provided, diagnostic signals however are listed below.

¹H NMR (300 MHz, CD₂Cl₂) δ 7.48 – 7.45 (m, 2H, H_{arom}), 7.37 – 7.25 (m, 3H, H_{arom}), 6.88 (d, J = 19.0 Hz, 1H, Ph-H_{vinyl}), 6.67 (d, J = 19.0 Hz, 1H, Ge-H_{vinyl}), 1.12 (t, J = 7.8 Hz, 9H, 3xCH₃), 0.92 (q, J = 7.8 Hz, 6H, 3xCH₂).

For β -anti in CD₂Cl₂: CH_{vinvl} signals at 7.50 ppm (d, J = 14.1 Hz, 1H) and 5.97 ppm (d, J = 14.1Hz, 1H).

(E)-(2-([1,1'-biphenyl]-4-yl)vinyl)triethylgermane 2f:

GeEt₃ Using the general procedure **A**, 4-ethynylbiphenyl (35.6 mg, 0.20 mmol, 1.0 equiv), triethylgermane (49 µL, 0.24 mmol, 1.5 equiv), 1,2,4,5-tetramethylbenzene (13.4 mg, 0.10 mmol, 0.5 equiv) and complex I₂ (11 mg, 0.01 mmol, 2.5 mol%) were dissolved in CD₂Cl₂

(0.6 mL). The mixture was placed at 25°C for 1 h. (E)-(2-([1,1'-biphenyl]-4yl)vinyl)triethylgermane (β -syn, 40%) along with the β -anti isomer (60%) was formed with 90% as estimated by ¹H NMR analysis. After 26 h, 100% of (E)-(2-([1,1'-biphenyl]-4yl)vinyl)triethylgermane (β -syn) is obtained. Isolated by column chromatography using 100% pentane, **2f** was obtained (89% yield, 60.5 mg). For minor product, a detailed ¹H NMR analysis could not be provided, diagnostic signals however are listed below.

¹H NMR (300 MHz, CDCl₃) δ 7.66 – 7.59 (m, 4H, H_{arom}), 7.56 – 7.44 (m, 4H, H_{arom}), 7.40 – 7.34 (m, 1H, H_{arom}), 6.92 (d, J = 19.0 Hz, 1H, Ph-Ph-H_{vinyl}), 6.71 (d, J = 19.0 Hz, 1H, Ge-H_{vinyl}), 1.42 (t, *J* = 7.8 Hz, 9H, 3xCH₃), 0.94 (q, *J* = 7.8 Hz, 6H, 3xCH₂). For β -anti in CD₂Cl₂ : CH_{vinvl} signal at 6.02 ppm (d, J = 14.1 Hz, 1H)

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 142.9 (CH_{vinyl}), 140.9 (C_{arom}), 140.5 (C_{arom}), 137.6 (C_{arom}), 128.9 (CHarom), 128.2 (CHvinyl), 127.4 (CHarom), 127.3 (CHarom), 127.1 (CHarom), 126.7 (CHarom), 9.1 (GeCH₂<u>C</u>H₃), 4.6 (GeCH₂).

HRMS (DCI-CH₄) calculated for [C₂₀H₂₆Ge] M⁺: 336.1277, found 336.1291.

(E)-(4-bromostyryl)triethylgermane 2g – CAS [2660285-24-3]:

∠GeEt₃ Using the general procedure **A**, 1-ethynyl-4-bromobenzene (36 mg, 0.20 mmol, 1.0 equiv), dimethylphenylsilane (37 µL, 0.24 mmol, 1.2 Br equiv), 1,2,4,5-tetramethylbenzene (13.4 mg, 0.10 mmol, 0.5 equiv) and complex I_2 (11 mg, 0.01 mmol, 2.5 mol%) were dissolved in CD_2Cl_2 (0.6 mL). The mixture was placed at 25°C for 24 h. **2g** (β -syn, 80%) was formed along with the product resulting from dehalogenation (20%) with quantitative yield as estimated by ¹H NMR. For β -syn isomer, spectroscopic data are in accordance with the literature.^[13] For minor product, a detailed ¹H NMR analysis could not be provided; diagnostic signals however are listed below.

¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 6.79 (d, J = 19.0 Hz, 1H), 6.64 (d, J = 19.0 Hz, 1H), 1.09 (t, J = 7.9 Hz, 9H), 0.92 (q, J = 7.9 Hz, 6H).

Dehalogenated product β -syn (same than **2e**): 6.87 (d, J = 19.0 Hz, 1H, H_{vinvl}) & 6.65 (d, J = 19.0 Hz, 1H, H_{vinyl}).

(E)-triethyl(4-(2-(triethylgermyl)vinyl)phenyl)silane 2h:

Et₃Si

(8)

formed with quantitative yield as estimated by ¹H NMR analysis. After 48 h, 100% of (*E*)-triethyl(4-(2-(triethylgermyl)vinyl)phenyl)silane (β -syn) is obtained. Isolated by column chromatography using 100% pentane, **2h** was obtained (65% yield, 458 mg). For minor product, a detailed ¹H NMR analysis could not be provided, diagnostic signals however are listed below.

¹H NMR (500 MHz, CDCl₃) δ 7.49-7.42 (m, 4H, H_{arom}), 6.85 (d, J = 19.0 Hz, 1H, H_{vinyl}), 6.68 (d, J = 19.0 Hz, 1H, H_{vinyl}), 1.10 (t, J = 7.8 Hz, 9H, 3xGeCH₂CH₃), 0.99 (t, J = 7.8 Hz, 9H, 3x SiCH₂CH₃), 0.90 (q, J = 7.8 Hz, 6H, 3xGeCH₂), 0.81 (q, J = 7.8 Hz, 6H, 3xSiCH₂). For β-*anti* in CD₂Cl₂ : CH_{vinyl} signal at 5.96 ppm (d, J = 14.1 Hz, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 143.6 (CH_{vinyl}), 134.6 (C_{arom}), 128.2 (CH_{vinyl}), 125.5 (C_{arom}), 9.1 (GeCH₂CH₃), 7.5 (SiCH₂-CH₃), 4.6 (GeCH₂), 3.5 (SiCH₂).

²⁹Si{¹H} DEPT 6H NMR (99 MHz, CDCl₃) δ 1.8 ppm(s).

HRMS (DCI-CH₄) calculated for [C₂₀H₃₆GeSi] M⁺: 374.1829, found 374.1843.

(E)-dimethyl(phenyl)(4-(2-(triethylgermyl)vinyl)phenyl)silane 2i:

the general procedure Α, (4-Using GeEt₃ ethynylphenyl)dimethyl(phenyl)silane (47.3 mg, 0.20 mmol, 1.0 PhMe₂Si equiv), triethylgermane (39 µL, 0.24 mmol, 1.2 equiv), 1,2,4,5tetramethylbenzene (13.4 mg, 0.10 mmol, 0.5 equiv) and complex I₂ (11 mg, 0.01 mmol, 2.5 mol%) were dissolved in CD₂Cl₂ (0.6 mL). The mixture was placed at 25°C for 1 h, ((E)dimethyl(phenyl)(4-(2-(triethylgermyl)vinyl)phenyl)silane (β -syn, 36%) along with the β -anti isomer (64%) was formed with quantitative yield as estimated by ¹H NMR analysis. After 48 h, 100% of (*E*)-dimethyl(phenyl)(4-(2-(triethylgermyl)vinyl)phenyl)silane (β -syn) is obtained. Isolated by column chromatography using 100% pentane, 2i was obtained (94% yield, 74 mg). For minor product, a detailed ¹H NMR analysis could not be provided, diagnostic signals however are listed below.

¹H NMR (300 MHz, CDCl₃) δ 7.55 – 7.48 (m, 4H, H_{arom}), 7.44 – 7.39 (m, 2H, H_{arom}), 7.39 – 7.34 (m, 3H, H_{arom}), 6.83 (d, *J* = 19.0 Hz, 1H, H_{vinyl}), 6.66 (d, *J* = 19.0 Hz, 1H, H_{vinyl}), 1.08 (t, *J* = 7.8 Hz, 9H, 3xCH₃), 0.88 (q, *J* = 7.8 Hz, 6H, 3xCH₂), 0.56 (s, 6H, 2xSiCH₃). For β-*anti* in CD₂Cl₂: CH_{vinyl} signal at 6.02 ppm (d, *J* = 14.2 Hz, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 143.4 (CH_{vinyl}), 139.2 (C_{arom}), 138.4 (C_{arom}), 137.7 (C_{arom}), 134.6 (CH_{arom}), 134.5 (CH_{arom}), 129.2 (CH_{arom}), 128.7 (CH_{arom}), 127.9 (CH_{arom}), 125.7 (CH_{vinyl}), 9.1 (GeCH₂CH₃), 5.5 (GeCH₂), -2.2 (SiCH₃).

²⁹Si{¹H} DEPT 6H NMR (99 MHz, CDCl₃) δ -8.1 ppm(s).

HRMS (DCI-CH₄) calculated for [C₂₂H₃₂GeSi] M⁺: 398.1485, found 398.1490.

(E)-triethyl(hex-1-en-1-yl)germane 2j – [CAS 876955-82-7]:

ⁿBu GeEt₃ Using the general procedure **A**, hex-1-yne (23 μL, 0.20 mmol, 1.0 equiv), triethylgermane (97 μL, 0.60 mmol, 3 equiv), 1,2,4,5-tetramethylbenzene (13.4 mg, 0.10 mmol, 0.5 equiv) and complex I₂ (11 mg, 0.01 mmol, 2.5 mol%) were dissolved in CD₂Cl₂ (0.6 mL). The mixture was placed at 25 °C for 3 h. **2j** (β-*syn*, 73%) was formed along with the β-*anti* isomer (22%) and the product resulting from chain walking (5%) with 85% yield as estimated by ¹H NMR. Isolated by column chromatography using 100% pentane, 74%

combined yield of isomers was obtained (36 mg). Stereochemistry was determined according to data obtained for hydrosilylation of hex-1-yne.^[10]For minor product, a detailed ¹H NMR analysis could not be provided, diagnostic signals however are listed below.

¹**H NMR (300 MHz, CDCl₃)** δ 5.92 (dt, *J* = 18.4, 6.2 Hz, 1H, *n*Bu-C<u>Hvinyl</u>), 5.66 (dt, *J* = 18.4, 1.4 Hz, 1H, -Ge-C<u>Hvinyl</u>), 2.12 (m, 2H, =CH-C<u>H2</u>-CH2), 1.44-1.29 (m, 4H, =CH-CH2-C<u>H2</u>-C<u>H2</u>), 1.01 (t, *J* = 7.7 Hz, 9H, Ge-CH2-C<u>H3</u>), 0.90 (t, *J* = 6.2 Hz, 3H, -CH2-CH2-C<u>H3</u>), 0.75 (q, *J* = 6.2 Hz, 6H, Ge-C<u>H2</u>-CH3).

For β -*anti*: CH_{vinyl} signal at 6.37 ppm (dt, *J* = 12.8, 7.2 Hz, 1H) and 5.53 ppm (dt, *J* = 12.8, 1.3 Hz, 1H).

Chain-walking : CH_{vinyl} signals at 5.48 – 5.21 (m, 2H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 147.9 (*n*BuCH_{vinyl}), 126.2 (GeCH_{vinyl}), 36.7 (=CH<u>C</u>H₂CH₂), 31.3 (=CHCH₂<u>C</u>H₂), 22.4 (=CHCH₂CH₂), 14.1 (CH₂CH₂<u>C</u>H₃), 9.1 (GeCH₂<u>C</u>H₃), 4.5 (GeCH₂).

HRMS (DCI-CH₄) calculated for $[C_{10}H_{21}Ge]$ MH⁺-C₂H₆: 215.0855, found 215.0867.

Triethyl(3-phenylprop-1-en-2-yl)germane 2c" - CAS [35552-91-1]:

Ph GeEt₃ Using the general procedure A, propa-1,2-dien-1-ylbenzene (20 mg, 0.17 mmol, 1.0 equiv), triethylgermane (33 μL, 0.21 mmol, 1.2 equiv), 1,2,4,5-tetramethylbenzene (13.4 mg, 0.10 mmol, 0.59 equiv) and complex I₂ (9mg, 0.0085 mmol, 2.5 mol%) were dissolved in CD₂Cl₂ (0.6 mL). The mixture was placed at 25°C for 28 h. 2c" (52%), (E)-triethyl(1-phenylprop-1-en-2-yl)germane (38%) and (Z)-triethyl(1-phenylprop-1-en-2-yl)germane (38%) and (Z)-triethyl(1-phenylprop-1-en-2-yl)germane (10%) were formed as estimated by ¹H NMR. Spectroscopic data in accordance with the literature.^[14] For minor product, a detailed ¹H NMR analysis could not be provided, diagnostic signals however are listed below.

¹H NMR (300 MHz, CD₂Cl₂) δ 7.25-7.17 (m, 5H, H_{arom}), 5.54 (dt, *J* = 2.8 & 1.6 Hz, 1H, H_{vinyl}), 5.29 (dt, *J* = 2.8 & 1.2 Hz, 1H, H_{vinyl}), 3.52 (s, 2H, CH₂), 0.98 (t, *J* = 7.9 Hz, 9H, GeCH₂CH₃), 0.73 (q, *J* = 7.9 Hz, 6H, GeCH₂).

(*E*)-triethyl(1-phenylprop-1-en-2-yl)germane **2c**: CH_3 signal at 2.02 (d, J = 1.9 Hz, 3H, CH_3). (*Z*)-triethyl(1-phenylprop-1-en-2-yl)germane **2c'**: CH_3 signal at 2.01 (d, J = 1.9 Hz, 3H, CH_3).

1. C-C coupling of vinylgermane

Butyl (2E,4E)-5-(4-(triethylsilyl)phenyl)penta-2,4-dienoate 3:

Butyl (2E,4E)-5-(4-(triethylsilyl)phenyl)penta-2,4-dienoate **3** has been synthesized on the basis of a previously reported procedure.^[15] Under air, ((E)-triethyl(4-(2-(triethylgermyl)vinyl)phenyl)silane **2h** (100 mg, 0.26 mmol,

1.0 equiv.) and butyl acrylate (502 mg, 0.79 mmol, 3 equiv.) were dissolved in cyclohexane (0.25M). $Pd^{(II)}(OAc)_2$ (10 mol%) and $PhI(TFA)_2$ (2.0 equiv.) were mixed in a separate vial and were then added to the reaction mixture. The reaction mixture was stirred for 2 h at room temperature. Then the mixture was filtered through a plug of silica rinsing with diethyl ether. The resulting solution was concentrated under reduced pressure. **3** was obtained after purification by flash chromatography (100% pentane), 47% yield was obtained (43 mg).

¹H NMR (500 MHz, CDCl₃) δ 7.50 – 7.47 (m, 2H, H_{arom}), 7.45-7.37 (m, 3H, H_{arom/vinyl}), 6.90 (m, 2H, 2xH_{vinyl}), 6.00 (d, *J* = 15.3 Hz, 1H, H_{vinyl}), 4.18 (t, *J* = 6.6 Hz, 2H, OCH₂), 1.70-1.65 (m, 2H,

 $OCH_2CH_2CH_2CH_3$, 1.46-1.41 (m, 2H, $OCH_2CH_2CH_2CH_3$), 0.95 (m, 12H, $OCH_2CH_2CH_2CH_3$ & $3xSiCH_2-CH_3$), 0.79 (q, J = 7.8 Hz, 6H, $3xSiCH_2$).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 167.3 (C=O), 144.7 (CH), 140.6 (CH), 139.3 (C_{arom}), 136.4 (C_{arom}), 134.8 (CH), 129.0 (CH), 128.2 (CH), 126.5 (CH), 126.5 (CH), 121.5 (CH), 64.4 (O<u>C</u>H₂CH₂CH₂CH₃), 30.9 (OCH₂<u>C</u>H₂CH₂CH₃), 19.4 (OCH₂CH₂CH₂CH₃), 14.5 (OCH₂CH₂CH₂CH₃), 7.5 (SiCH₂-<u>C</u>H₃), 3.4 (SiCH₂).

²⁹Si{¹H} DEPT 6H NMR (99 MHz, CDCl₃) δ 2.1 (s).

HRMS (DCI-CH₄) calculated for [C₂₁H₃₂O₂Si] M⁺: 344.2172, found 344.2158.

General procedure **B** for C-C coupling of germane:^[16]

Arylgermane (1.0 equiv.), aryliodide (1.5 equiv.), $AgBF_4$ (1.5 equiv.) and Pd_2dba_3 (2.5 mol%) were added to a reaction vial, dissolved in DMF (0.3 M) and stirred at 80 °C for 16 h. The reaction was quenched by addition of aqueous solution of NH_4Cl (sat.), the organic phase was separated, and the aqueous phase was extracted with DCM (3x). The combined organic phases were dried with MgSO₄, the solvent was removed under reduced pressure and the crude product mixture was purified by silica column chromatography.

(E)-triethyl(4-(4-fluorostyryl)phenyl)silane 4a:

According to the general procedure **B**, cross coupling was performed using ((E)-triethyl(4-(2-(triethylgermyl)vinyl)phenyl)silane **2h** (157 mg, 0.41 mmol, 1.0 equiv.) and 1-fluoro-4-iodotoluene (138 mg, 0.62 mmol, 1.5 equiv.). **4a** was obtained after purification by flash chromatography (100% pentane), 69% yield was obtained (90

mg).

¹H NMR (500 MHz, CDCl₃) δ 7.49 – 7.46 (m, 5H, H_{arom or vinyl}), 7.23-7.00 (m, 5H, H_{arom or vinyl}), 0.97 (t, J=7.8 Hz, 9H, 3xSiCH₂-C<u>H₃</u>), 0.80 (q, J=7.8 Hz, 6H, 3xSiCH₂).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.5 (C_{arom}), 137.6 (C_{arom}), 137.3 (C_{arom}), 134.8 (CH), 133.7 (C), 128.7 (CH), 128.2 (CH), 128.1 (CH), 128.1 (CH), 127.7 (CH), 125.8 (CH), 120.5 (CH), 115.8 (CH), 115.7 (CH), 7.6 (SiCH₂-<u>C</u>H₃), 3.5 (SiCH₂).

¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ -114.2 (s).

²⁹Si{¹H} DEPT 6H NMR (99 MHz, CDCl₃) δ 2.6 (s).

HRMS (DCI-CH₄) calculated for [C₂₀H₂₅FSi] M⁺: 312.1710, found 312.1703.

(E)-triethyl(4-(4-(trifluoromethyl)styryl)phenyl)silane 4b:

According to the general procedure **B**, cross coupling was performed using ((E)-triethyl(4-(2-(triethylgermyl)vinyl)phenyl)silane **2h** (117 mg, 0.31 mmol, 1.0 equiv.) and 1-iodo-4-(trifluoromethyl)benzene (126 mg, 0.46 mmol, 1.5 equiv.). **4b** was obtained after purification by flash chromatography (pentane), 60% yield was obtained (67 mg).

¹H NMR (300 MHz, CDCl₃) δ 7.61 (s, 4H, H_{arom}), 7.51 (s, 4H, H_{arom}), 7.18 (d, *J* = 16.4 Hz, 1H, H_{vinyl}), 7.16 (d, *J* = 16.4 Hz, 1H, H_{vinyl}), 0.98 (t, *J* = 7.8 Hz, 9H, 3xSiCH₂-C<u>H₃</u>), 0.81 (q, *J* = 7.8 Hz, 6H, 3xSiCH₂).

¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ -62.5 (s).

Ethyl (E)-4-(4-(triethylsilyl)styryl)benzoate 4c:

According to the general procedure **B**, cross coupling was performed using ((E)-triethyl(4-(2-(triethylgermyl)vinyl)phenyl)silane **2h** (458 mg, 1.21 mmol, 1.0 equiv.) and ethyl 4-iodobenzoate (502 mg, 1.82 mmol, 1.5 equiv.). **4c** was obtained after purification by flash chromatography (pentane), 69% yield was obtained

(304 mg).

¹H NMR (500 MHz, CDCl₃) δ 8.04 – 8.01 (m, 2H, H_{arom}), 7.58 – 7.55 (m, 2H, H_{arom}), 7.51 (s, 4H, H_{arom/vinyl}), 7.21 (d, *J* = 16.0 Hz, 1H, H_{vinyl}), 7.16 (d, *J* = 16.0 Hz, 1H, H_{vinyl}), 4.39 (q, *J* = 7.1 Hz, 2H, OCH₂), 1.41 (t, *J* = 7.1 Hz, 3H, OCH₂CH₃), 0.98 (t, *J* = 7.8 Hz, 9H, 3xSiCH₂-CH₃), 0.81 (q, *J* = 7.8 Hz, 6H, 3xSiCH₂).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.6 (C=O), 141.9 (C_{arom}), 138.1 (C_{arom}), 137.8 (CH), 137.2 (C_{arom}), 134.8 (CH), 134.3 (CH), 131.4 (CH), 131.2 (CH), 130.1 (CH), 129.4 (C_{arom}), 128.9 (CH), 127.9 (CH), 126.4 (CH), 126.1 (CH), 61.1 (OCH₂), 14.5 (OCH₂CH₃), 7.6 (SiCH₂-CH₃), 3.5 (SiCH₂).

²⁹Si{¹H} DEPT 6H NMR (99 MHz, CDCl₃) δ 2.0 (s).

HRMS (DCI-CH₄) calculated for [C₂₃H₃₀O₂Si] M⁺: 366.2015, found 366.2015.

(E)-dimethyl(4-(4-methylstyryl)phenyl)(phenyl)silane 4d:

PhMe₂Si²

According to the general procedure **B**, cross coupling was performed using (*E*)-dimethyl(phenyl)(4-(2-(triethylgermyl)vinyl)phenyl)silane **2i** (200 mg, 0.50 mmol, 1.0 equiv.) and 4-iodotoluene (166 mg, 0.75 mmol, 1.5 equiv.). **4d** was obtained after purification by flash right was obtained (85 mg)

chromatography (pentane), 52% yield was obtained (85 mg).

¹H NMR (300 MHz, CDCl₃) δ 7.56 – 7.35 (m, 11H, H_{arom or vinyl}), 7.17 (d, *J* = 8.0 Hz, 2H, H_{arom}), 7.17 (d, *J* = 8.0 Hz, 2H, H_{arom}), 2.37 (s, 3H, CH₃), 0.57 (s, 6H, 2xSiCH₃).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 138.4 (C_{arom}), 138.4 (C_{arom}), 137.8 (C_{arom}), 137.5 (C_{arom}), 134.7 (CH), 134.6 (C_{arom}), 134.3 (CH), 129.5 (CH), 129.3 (CH), 129.2 (CH), 127.9 (CH), 127.8 (CH), 126.6 (CH), 125.9 (CH), 21.4 (CH₃), -2.2 (2xSiCH₃).

²⁹Si{¹H} DEPT 6H NMR (99 MHz, CDCl₃) δ -8.2 (s).

HRMS (DCI-CH₄) calculated for $[C_{23}H_{24}Si]$ M⁺: 328.1647, found 328.1655.

VI. Computational details

All calculations were performed on the real systems using the Gaussian 16 package^[17] and the B3PW91 hybrid functional^[18] with D3 dispersion correction of Grimme with Becke–Johnson damping (DFT-D3(BJ)).^[19] All stationary points involved were fully optimized in solvent (DCM: Dichloromethane) by means of SMD model.^[20]

The palladium and tin atoms were described with the relativistic electron core potential SDD and associated basis set,^[21] augmented by a set of f-orbital polarization function for Pd (f:1.472) and d polarization function for Sn (d: 0.180).^[22] The 6-31G** basis set was employed for all other atoms. Frequency calculations were undertaken to confirm the nature of the stationary points, yielding one imaginary frequency for transition states (TS), corresponding to the expected process, and all of them positive for *minima*. The connectivity of the transition states and their adjacent *minima* was confirmed by intrinsic reaction coordinate (IRC) calculations.^[23]

Intrinsic Bond Orbitals (IBO) analysis was also performed in order to analyze the evolution of the main orbitals along the pathway. The calculations of wave functions have been made with version 7.4.2 of Turbomole1989^[24] at RI-B3LYP(D3)/def2-TZVP level of theory on the geometry optimized in solvent with Gaussian 16, at B3PW91-D3(BJ)/SDD+f(Au), SDD+d(Sn), 6-31G**(other atoms) level of theory. Orbital visualizations were produced with IboView (v20150427),^[25] a program developed to analyze molecular electronic structure, based on Intrinsic Atomic Orbitals (IAOs).

To analyze the bonding situation in the adducts coming from the interaction between (P,N,S)Pd+ and H-GeEt3 (η^1 or η^2 coordination mode), Energy Decomposition Analysis (EDA)^[26] was performed with Amsterdam Density Functional 2021.102 program package^[27] at ZORA-B3LYP-D3(BJ)/TZ2P level of theory on the geometries optimized from Gaussian 16 at SMD(DCM)-B3PW91-D3(BJ)/SDD+f(Au), SDD+d(Sn), 6-31G** (other atoms) level. This analysis is based on the EDA method of Morokuma and the ETS partitioning scheme of Ziegler and Rauk. The interaction energy term $\Delta E_{int}(\zeta)$ is decomposed into different chemically meaningful contributions: (i) electrostatic interaction energy between the reagents (ΔV_{elstat}), (ii) Pauli repulsion which account for destabilizing interactions between occupied orbitals of each fragment (ΔE_{Pauli}), (iii) stabilizing orbital interactions (ΔE_{orb}) and iv) dispersion energy (ΔE_{disp}).

$\Delta E_{\rm int} = \Delta V_{\rm elstat} + \Delta E_{\rm Pauli} + \Delta E_{\rm orb} + \Delta E_{\rm disp}$

The main orbital interaction contributions to the total ΔE_{orb} term can be visualized and quantified by means of the Natural Orbital for Chemical Valence (NOCV)^[28] extension of the EDA method. The EDA-NOCV approach is a powerful tool to quantitatively analyze chemical bonds, combining the extended transition state (ETS) method for energy decomposition analysis combined with the natural orbitals for chemical valence (NOCV) theory. Within this methodology, the ΔE_{orb} term is decomposed into the contributions from different natural orbitals of chemical valence (NOCV) eigenvalues (λ_i) as follows:

$$\Delta E_{orb} = \sum_{k} \Delta E_{orb}^{k} = \sum_{k=1}^{M/2} v_{k} [-F_{-k,-k}^{TS} + F_{k,k}^{TS}]$$

where the terms $F^{TS}_{k,k}$ are the diagonal Kohn-Sham matrix elements corresponding to NOCVs. The components ΔE^{k}_{orb} provide energetic estimation of $\Delta \rho^{k}$ and allow to characterize the importance of a particular electron flow channel for the bonding between considered molecular fragments.

In addition, Wiberg Bond indexes (WBI) were also computed using Natural Bond Orbital^[29] analyses (NBO, 6.0 version).^[30] The Natural Localized Molecular Orbitals (NLMO) associated to the σ_{PdH} , σ_{EH} and d(Pd) were also analyzed.

Table S1. Coordination energies of H–EEt3 (E: Si, Ge, Sn) or H-BPin to the (P,N,S)Pd+ fragment to give the corresponding σ -complexes (global minima), computed at SMD(DCM)-B3PW91-D3(BJ)/SDD+f(Pd), SDD+d(Sn), 6-31G^{**} (other atoms). Gibbs Free energy values, ΔG in kcal/mol.

	$\Delta G_{coordination}$
H-SiEt ₃	-26.1
H-GeEt ₃	-42.4
H-SnEt ₃	-36.4
H-BPin	-17.9

Scheme S1. Splitting of the (PdS) dimer by [E]–H, computed at SMD(DCM)-B3PW91-D3(BJ)/SDD+f(Pd), SDD+d(Sn), 6-31G** (other atoms) and formation of the E–H activation product. Gibbs free energies (Δ G) in kcal/mol.

With HEEt₃

$[(\mathbf{P},\mathbf{N},\mathbf{S})\mathbf{Pd}]_2^{2+} \longrightarrow 2 \mathbf{x} (\mathbf{P},\mathbf{N},\mathbf{S})\mathbf{Pd}^+$	ΔG +71.3 kcal/mol
$\frac{1}{2}[(P,N,S)Pd]_2^{2+} \longrightarrow (P,N,S)Pd^+$	ΔG +35.7 kcal/mol
$(\mathbf{P},\mathbf{N},\mathbf{S})\mathbf{Pd}^{+} + \mathbf{HEEt}_{3} \longrightarrow (\mathbf{P},\mathbf{N},\mathbf{S}-\mathbf{EEt}_{3})\mathbf{Pd}(\mathbf{H})^{+}$	E: Si ΔG –34.4 kcal/mol
	E: Ge Δ G –48.2 kcal/mol
	E: Sn Δ G –35.8 kcal/mol

$\frac{1}{2} [(P,N,S)Pd]_2^{2+} + HEEt_3 \longrightarrow (P,N,S-EEt_3)Pd(H)^+$	E: Si ∆G 1.3 kcal/mol
	E: Ge Δ G –12.5 kcal/mol
	E: Sn Δ G –0.1 kcal/mol

With HBPin

$[(\mathbf{P},\mathbf{N},\mathbf{S})\mathbf{Pd}]_2^{2+} \longrightarrow 2 \mathbf{x} (\mathbf{P},\mathbf{N},\mathbf{S})\mathbf{Pd}^+$	ΔG +71.3 kcal/mol
$\frac{1}{2} [(\mathbf{P},\mathbf{N},\mathbf{S})\mathbf{Pd}]_2^{2+} \longrightarrow (\mathbf{P},\mathbf{N},\mathbf{S})\mathbf{Pd}^+$	ΔG +35.7 kcal/mol
$(P,N,S)Pd^+ + HBPin \longrightarrow (P,N,S-BPin)Pd(H)^+$	ΔG –28.8 kcal/mol

 $\frac{1}{2} [(\mathbf{P},\mathbf{N},\mathbf{S})\mathbf{Pd}]_2^{2+} + \mathbf{HBPin} \longrightarrow (\mathbf{P},\mathbf{N},\mathbf{S}-\mathbf{BPin})\mathbf{Pd}(\mathbf{H})^+ \Delta G \ 6.9 \ \text{kcal/mol}$

Figure S3. H–GeEt₃ and H–SnEt₃ σ -complexes computed at SMD(DCM)-B3PW91-D3(BJ)/SDD+f(Pd), SDD+d(Sn), 6-31G** (H, C, N, P, S, Ge). Relative stability, Δ G in kcal/mol. Main hydrogen atoms have been omitted for clarity. Main bond lengths in Å and bond angles in °.

Two adducts close in energy were found on the Potential Energy Surface (PES). The forms 2 were found 2.4 (Ge)/4.2 (Sn) kcal/mol lower in energy than the forms 1. They display slightly shorter Pd...E contacts, suggesting slight shift towards side-on η^2 -coordination compared to forms 1.

Table S2. Energy Decomposition Analysis (EDA) energies (ΔE_{Pauli} , ΔE_{elstat} , ΔE_{orb} , ΔE_{disp} , ΔE_{int} in kcal/mol) for the σ complexes associated to the activation of the Ge–H bond of H–GeEt₃ by the (P,N,S)Pd⁺ fragment, as computed
at ZORA-B3LYP-D3(BJ)/TZ2P level of theory.

	^{&} Ge-H	^{&} Ge-H
	σ-complex, form 1	σ-complex, form 2
ΔE_{Pauli}	161.3	249.8
ΔE_{Elstat}	-131.0 (58.8 %) ^a	-210.3 (62.7 %) ^a
ΔE_{Orb}	-71.8 (32.2 %) ^a	-103.2 (30.8 %) ^a
AE	-41.3 (57.6 %) ^b	-59.53 (57.7 %) ^b
ΔLOrb1	Donation $Pd \rightarrow Ge$	Donation Pd \rightarrow Ge
AE	-14.8 (20.6 %) ^b	-24.3 (23.5 %) ^b
ΔLOrb2	Back-Donation $Ge \rightarrow Pd$	$\%^{b}$ Back-Donation Ge \rightarrow Pd
$\Delta E_{dispersion}$	-20.0 (9.0 %) ^a	-21.9 (6.5 %) ^a
ΔE_{int}	-61.5	-85.7

&Fragmentation: (P,N,S)Pd⁺ and H–GeEt₃. Values into brackets (%) correspond to: ^athe contribution of each term to the total attractive interaction. ^bContribution of each term to the total orbital energy.

To analyze the bonding situation between the (P,N,S)Pd⁺ and H–GeEt₃ fragments in the two σ -complexes localized on the PES, the EDA-NOCV approach was used. The main stabilizing contribution to the ΔE_{int} term comes from the electrostatic term (ΔE_{elstat}), which accounts for approximatively 60% of the total attractive interaction energy. The orbital interactions between the two fragments contribute also significantly (~ 30 %) to the total bonding. Two main interactions are involved in the ΔE_{orb} term, the donation from the σ_{GeH} orbital of HGeEt₃ to the metal center and the back-donation from a d(Pd) orbital to the σ^*_{GeH} orbital (see plot of the NOCV, Figure S2). The σ -donation term is approximatively three times larger than the back-donation. Nevertheless, the back-donation term is not negligible.

Figure S4. σ -Complexes associated to the activation of the Ge–H bond. Plot of the contours of deformation densities contributions ($\Delta \rho_{orb}$) of the main pairwise orbital interactions between H–GeEt₃ and (P,N,S)Pd⁺ fragments and associated orbital interaction energies contributions (ΔE_{orb} , in kcal/mol), computed at ZORA-B3LYP-D3(BJ)/TZ2P level of theory. The charge flow is red \rightarrow blue ($\Delta \rho < 0$ in red and $\Delta \rho > 0$ in blue). The contour value for density is 0.001 a.u.

Table S3. Wiberg Bond Indexes (WBI) and main NLMO from Natural Bond Orbital analysis (NBO) for the σ complexes associated to the activation of the E–H bond of (P,N,S)Pd⁺-HEEt₃ (E: Si, Ge, Sn) and (P,N,S)Pd⁺-HBPin,
computed at B3PW91-D3(BJ)/SDD+f(Pd), SDD+d(Sn), 6-31G^{**}(H, C, N, P, S, Si, Ge, B) level of theory.

	WBI	INLIVIO*	
CHI	Si-H 0.4297 (0.9080) ^a	Pd-H 31.3 % Pd, 46.4 % H, 20.1 % Si	
SIH	Pd-H 0.3565	d(Pd) 95.6 % Pd, 2.6 % Si, 0.7 % H	
σ-complex	Pd-Si 0.2194		
GeH	Ge-H 0.4394 (0.9036) ^a	Pd-H 33.1 % Pd, 44.1 % H, 20.2 % Ge	
σ-complex	Pd-H 0.3480	d(Pd) 95.7 % Pd, 2.3 % Ge, 0.9 % H	
form 1	Pd-Ge 0.2136		
GeH	Ge-H 0.2460 (0.9036) ^a	Pd-H 33.1 % Pd, 41.9 % H, 14.6 % Ge	
σ-complex	Pd-H 0.4750	d(Pd) 92.6 % Pd, 4.7 % Ge, 1.1 % H	
form 2	Pd-Ge 0.2942		
SnH	Sn-H 0.4164 (0.8579) ^a	Pd-H 28.6 % Pd, 52.0 % H, 16.9 % Sn	
σ-complex	Pd-H 0.3437	d(Pd) 97 % Pd, 1.5 % Sn, 0.4 % H	
form 1	Pd-Sn 0.1563		
SnH	Sn-H 0.2737 (0.8579) ^a	Pd-H 38 % Pd, 45.7 % H, 13.2 % Sn	
σ-complex	Pd-H 0.4561	d(Pd) 94.8 % Pd, 3.3 % Sn, 0.7 % H	
form 2	Pd-Sn 0.2249		
ВП	B-H 0.6164 (0.9628) ^a	B-H 12.9 % Pd, 47.3 % H, 34.7 % B	
	Pd-H 0.2306	d(Pd) 96 % Pd, 1.9 % Si, 0.7 % H	
σ-complex	Pd-B 0.2260		

^a into brackets WBI of E–H bond in H–EEt₃ (E: Si, Ge, Sn) and HBPin. ^b Contribution of mains atoms (in %) in the NLMO.

The Wiberg Bond indexes (WBI) confirm the conclusions of the EDA analysis. In all the complexes the E-H bond is weakened compared to that in the Et_3E-H or HBPin substrates and an interaction is observed between Pd and E (E : Si, Ge, Sn, B).

Figure S5. Reaction profile (ΔG in kcal/mol) computed in solvent for the Pd/S cooperative activation of Et₃Si–H with selected Intrinsic Bond Orbitals (IBOs). For clarity, the hydrogen atoms are omitted, except that at Si/Pd. Optimizations performed at the SMD(DCM)-B3PW91-D3(BJ)/SDD+f(Pd),6-31G** (other atoms) level of theory. Main distances are in Å. For the IBOs, the fractions of electrons in the doubly occupied orbitals assigned to each atom are given.

Figure S6. Reaction profile (ΔG in kcal/mol) computed in solvent for the Pd/S cooperative activation of Et₃Ge–H with selected Intrinsic Bond Orbitals (IBOs). For clarity, the hydrogen atoms are omitted, except that at Ge/Pd. Optimizations performed at the SMD(DCM)-B3PW91-D3(BJ)/SDD+f(Pd),6-31G** (other atoms) level of theory. Main distances are in Å. For the IBOs, the fractions of electrons in the doubly occupied orbitals assigned to each atom are given.

Figure S7. Reaction profile (ΔG in kcal/mol) computed in solvent for the Pd/S cooperative activation of Et₃Sn–H with selected Intrinsic Bond Orbitals (IBOs). For clarity, the hydrogen atoms are omitted, except that at Sn/Pd. Optimizations performed at the SMD(DCM)-B3PW91-D3(BJ)/SDD+f(Pd), SDD+d(Sn), 6-31G** (other atoms) level of theory. Main distances are in Å. For the IBOs, the fractions of electrons in the doubly occupied orbitals assigned to each atom are given.

Figure S8. Reaction profile (ΔG in kcal/mol) computed in solvent for the Pd/S cooperative activation of PinB–H with selected Intrinsic Bond Orbitals (IBOs). For clarity, the hydrogen atoms are omitted, except that at B/Pd. Optimizations performed at the SMD(DCM)-B3PW91-D3(BJ)/SDD+f(Pd),6-31G** (other atoms) level of theory. Main distances are in Å. For the IBOs, the fractions of electrons in the doubly occupied orbitals assigned to each atom are given.

Z-matrices and energies in au, in solvent at SMD(DCM)-B3PW91-D3(BJ) level 41

•••			
(S	,N,I	P)F	d+

C	-2.884407000	-0.896617000	0.063966000
С	-3.026302000	1.546538000	-0.238633000
С	-4.426491000	1.477846000	-0.058927000
С	-5.026236000	0.259391000	0.168148000
С	-2.349141000	2.757508000	-0.502792000
Н	-5.006661000	2.393341000	-0.112138000
Н	-6.101658000	0.197381000	0.302579000
С	-0.992295000	2.757341000	-0.701507000
С	-0.266452000	1.553190000	-0.619847000
Н	-2.916616000	3.681767000	-0.555969000
Н	-0.452097000	3.670409000	-0.923209000
S	-1.916560000	-2.361333000	0.117433000
Pd	0.145408000	-1.281135000	-0.028135000
С	1.202457000	1.533461000	-0.889719000
Н	1.351895000	1.399836000	-1.969210000
Н	1.675635000	2.477521000	-0.607776000
Р	1.973757000	0.082316000	-0.069461000
С	2.484748000	0.602225000	1.625897000
Н	2.844447000	-0.324626000	2.090202000
С	3.407146000	-0.457655000	-1.094237000
Н	2.916751000	-0.971076000	-1.932228000
С	1.251462000	1.087771000	2.391003000
Н	0.864334000	2.022372000	1.971991000
Н	0.444804000	0.348110000	2.383093000
Н	1.527368000	1.282265000	3.432027000
С	3.606270000	1.639195000	1.635690000
Н	3.794753000	1.949808000	2.668881000
Н	4.538329000	1.238513000	1.232977000
Н	3.333518000	2.533189000	1.064969000
С	4.236152000	-1.476739000	-0.311656000
Н	3.621372000	-2.297415000	0.073163000
Н	4.997532000	-1.908082000	-0.968529000
Н	4.748923000	-1.005830000	0.532474000
С	4.253120000	0.683154000	-1.660088000
Н	4.787529000	1.225318000	-0.877561000
Н	4.997838000	0.260064000	-2.342501000
Н	3.654882000	1.399601000	-2.229357000
С	-4.263005000	-0.920887000	0.221516000
Н	-4.758784000	-1.872449000	0.388383000
С	-2.255790000	0.352115000	-0.164989000
Ν	-0.885952000	0.398823000	-0.335431000
Sum	of electronic and	l zero-point Ener	oies— -

Sum of electronic and zero-point Energies= 1544.040184

Sum of electronic and thermal Free Energies= 1544.088936

23			
SiH	Et ₃		
Н	-0.158875000	-0.018371000	-1.731605000
Si	-0.165103000	-0.226887000	-0.244145000
С	0.206067000	1.441079000	0.572603000
Н	-0.742682000	1.983044000	0.682467000
Н	0.557047000	1.248361000	1.595927000
С	-1.875907000	-0.853854000	0.262400000
Н	-2.001787000	-1.868504000	-0.138989000
Н	-1.888348000	-0.962222000	1.355970000
С	1.132556000	-1.533600000	0.185655000
Н	0.879223000	-2.449347000	-0.365871000
Н	1.013430000	-1.784971000	1.248913000
С	-3.034370000	0.037668000	-0.191613000
Н	-2.953154000	1.048394000	0.223621000
Н	-3.059025000	0.136332000	-1.282798000

Н	-4.004500000	-0.365185000	0.122	694000
С	1.212596000	2.319170000	-0.176	640000
Η	1.386905000	3.268742000	0.343	532000
Н	2.183382000	1.825267000	-0.287	056000
Η	0.856040000	2.558079000	-1.184	683000
С	2.583575000	-1.135586000	-0.095	536000
Н	3.277603000	-1.955274000	0.125	735000
Н	2.730612000	-0.858331000	-1.145	567000
Н	2.888478000	-0.278857000	0.514	522000
Sum	of electronic and	l zero-point Energ	gies=	-
527 516797				

527.516797 Sum of electronic and thermal Free Energies= 527.553959

-

64			
(P,N	,S)Pd ⁺ H-SiEt	3 (σ-complex)	
C	2.817393000	1.404479000	-0.534554000
С	4.143432000	-0.474226000	0.365731000
С	5.276122000	0.368803000	0.434600000
С	5.171966000	1.680891000	0.029570000
С	4.168530000	-1.835550000	0.748227000
Н	6.211831000	-0.034903000	0.807761000
Н	6.036459000	2.335932000	0.078372000
С	3.040187000	-2.608447000	0.630022000
С	1.846385000	-2.033162000	0.148682000
Н	5.093684000	-2.262365000	1.124409000
Н	3.045335000	-3.659540000	0.894989000
С	0.632579000	-2.872345000	-0.090376000
Н	0.749953000	-3.356603000	-1.068139000
Н	0.551307000	-3.672975000	0.649446000
Р	-0.913847000	-1.861058000	-0.171513000
C	-1.779957000	-2.098040000	1.438808000
Ĥ	-2.646749000	-1.433126000	1.374036000
C	-1.874021000	-2.509607000	-1.608808000
Ĥ	-1.243171000	-2.191009000	-2.450158000
C	-0.857036000	-1.601695000	2.553177000
H	0.017366000	-2.251846000	2.663211000
Н	-0.502238000	-0.584250000	2.370702000
Н	-1.398402000	-1.608156000	3.504245000
C	-2.270453000	-3.520792000	1.697772000
Ĥ	-2.661574000	-3.577374000	2.719273000
Н	-3.075888000	-3.805033000	1.018986000
Н	-1.466686000	-4.258822000	1.612053000
С	-3.217545000	-1.790916000	-1.711502000
Н	-3.091420000	-0.706739000	-1.778276000
Н	-3.741139000	-2.124011000	-2.613149000
Н	-3.857268000	-2.016711000	-0.852484000
С	-2.025310000	-4.030037000	-1.671218000
Η	-2.745399000	-4.398142000	-0.938148000
Η	-2.397041000	-4.301263000	-2.664829000
Н	-1.080007000	-4.558199000	-1.519701000
С	3.954331000	2.195493000	-0.456545000
Η	3.903375000	3.230493000	-0.781084000
С	2.910483000	0.054312000	-0.106391000
Ν	1.790740000	-0.737669000	-0.168367000
Pd	0.007288000	0.189313000	-0.585100000
Н	-1.392306000	0.790565000	-1.040360000
S	1.303603000	2.025929000	-1.195606000
Si	-1.662123000	1.893465000	0.287370000
С	-3.278877000	1.127869000	0.887293000
Н	-3.639354000	0.396983000	0.156596000
Н	-3.064178000	0.569623000	1.806237000
С	-0.537296000	2.380120000	1.727030000
Н	0.182726000	3.103214000	1.328545000
Н	0.055249000	1.519767000	2.055529000
С	-4.370402000	2.171726000	1.153878000
Н	-4.650990000	2.700806000	0.237996000

Η	-5.274427000	1.694258000	1.547949000
Н	-4.053321000	2.922391000	1.883871000
С	-1.987299000	3.320376000	-0.890313000
Н	-2.564923000	4.064721000	-0.325100000
Н	-1.032370000	3.798493000	-1.135638000
С	-1.315251000	2.968762000	2.908591000
Н	-1.881964000	3.860230000	2.620175000
Н	-2.021235000	2.246957000	3.331402000
Н	-0.628702000	3.263838000	3.709920000
С	-2.733077000	2.919731000	-2.163750000
Н	-2.955826000	3.791455000	-2.788312000
Н	-2.136150000	2.227457000	-2.768631000
Η	-3.684515000	2.425160000	-1.938862000
Sum	of electronic and	zero-point Ener	gies= -

2071.619999

20/1.01////

Sum of electronic and thermal Free Energies= 2071.684453

64	
64	

TS_	_HSiEt ₃
-----	---------------------

С	2.713346000	-0.574933000	-0.765641000
С	2.619705000	-2.789469000	0.312874000
С	4.032749000	-2.797857000	0.379030000
С	4.748242000	-1.729342000	-0.113093000
С	1.804158000	-3.850029000	0.777203000
Н	4.534894000	-3.654603000	0.817449000
Н	5.832541000	-1.731761000	-0.065101000
С	0.436746000	-3.780782000	0.655036000
С	-0.152947000	-2.628924000	0.091206000
Н	2.274804000	-4.722794000	1.220567000
Н	-0.199348000	-4.593961000	0.985726000
С	-1.631859000	-2.515957000	-0.130039000
Н	-1.862667000	-2.937026000	-1.117404000
Н	-2.194301000	-3.095918000	0.606377000
Р	-2.178647000	-0.742346000	-0.169200000
С	-2.616378000	-0.342474000	1.580565000
Н	-2.783278000	0.739393000	1.574269000
С	-3.640718000	-0.643653000	-1.288488000
Н	-3.171042000	-0.716299000	-2.278380000
С	-1.411367000	-0.658337000	2.470098000
Н	-1.273465000	-1.739359000	2.575181000
Н	-0.480096000	-0.236031000	2.082474000
Н	-1.579927000	-0.248226000	3.470690000
С	-3.879348000	-1.034870000	2.087804000
Η	-4.000442000	-0.811995000	3.153521000
Н	-4.774543000	-0.682730000	1.571776000
Н	-3.821016000	-2.122771000	1.983264000
С	-4.279059000	0.739465000	-1.158955000
Η	-3.543694000	1.538701000	-1.296904000
Η	-5.053031000	0.858090000	-1.923604000
Н	-4.752045000	0.870091000	-0.180783000
С	-4.656382000	-1.777532000	-1.156459000
Н	-5.195194000	-1.740549000	-0.208127000
Н	-5.393574000	-1.682293000	-1.960879000
Н	-4.193102000	-2.763364000	-1.251586000
С	4.093145000	-0.620159000	-0.688299000
Н	4.679191000	0.206946000	-1.077138000
С	1.963309000	-1.662898000	-0.250482000
Ν	0.601575000	-1.606892000	-0.307130000
Pd	-0.249866000	0.189427000	-0.938365000
Н	-0.968424000	1.450054000	-1.463642000
S	1.892042000	0.798289000	-1.547519000
Si	0.815615000	2.201363000	0.317985000
С	-0.841726000	2.657772000	1.147456000
Н	-1.666262000	2.545088000	0.439566000
Н	-1.016347000	1.938068000	1.952358000

С	2.002779000	1.524746000	1.617288000
Н	3.018721000	1.584421000	1.210219000
Н	1.793756000	0.454537000	1.742164000
С	-0.843232000	4.081732000	1.718118000
Н	-0.803023000	4.833260000	0.924190000
Н	-1.761337000	4.259236000	2.290735000
Н	-0.000864000	4.266011000	2.391531000
С	1.407355000	3.738752000	-0.596206000
Н	1.380081000	4.554899000	0.138268000
Н	2.455538000	3.612107000	-0.884481000
С	1.924875000	2.226655000	2.975419000
Н	2.169155000	3.291248000	2.898613000
Н	0.927016000	2.145871000	3.417971000
Н	2.633081000	1.779999000	3.682491000
С	0.552183000	4.107702000	-1.810132000
Н	0.877504000	5.055039000	-2.253914000
Н	0.612965000	3.342222000	-2.591326000
Н	-0.504439000	4.214824000	-1.540718000
Sum	of electronic and	zero-point Ener	gies= -

2071.612517

Sum of electronic and thermal Free Energies= 2071.673317

64 FP_(PNSSiEt₃)PdH⁺ 1.943776000 -1.457515000 -0.837558000 С С 1.091193000 -3.415287000 0.366532000 С 2.377588000 -3.998671000 0.284764000 С 3.399258000 -3.334198000 -0.352878000С -0.006375000 -4.044702000 1.003469000 Η 2.537031000 -4.977426000 0.726797000 Η 4.384402000 -3.783108000 -0.425562000 С -1.232284000 -3.429983000 1.032364000 С -1.394198000 -2.164234000 0.424383000 Η 0.136000000 -5.019454000 1.460908000 Н -2.085881000 -3.901879000 1.505757000 С -2.746758000 -1.516878000 0.357342000 Η -3.327081000 -2.046582000 -0.408239000 Η -3.288423000 -1.647252000 1.299020000 Р -2.677876000 0.271380000 -0.145190000 С -2.911453000 1.269642000 1.391240000 Н 2.304906000 -2.827115000 1.038555000 С -4.069014000 0.556853000 -1.329448000 Η -3.674723000 0.129874000 -2.260519000 С -1.737798000 0.985635000 2.328610000 Η -1.725402000 -0.058784000 2.658987000 Η -0.7857290001.199884000 1.835657000 Η -1.8148640001.616953000 3.219525000 С -4.262703000 1.082277000 2.074537000 Η -4.269806000 1.642720000 3.015695000 Η -5.083593000 1.457647000 1.460380000 2.314535000 Η -4.461055000 0.032893000 С -4.260324000 2.060547000 -1.527564000 Η -3.318313000 2.562910000 -1.769037000 Н -4.957413000 2.233576000 -2.353397000 -4.681814000 Η 2.526732000 -0.631357000 С -5.380445000 -0.151753000 -0.991061000 Н -5.829763000 0.227786000 -0.071177000 -6.092773000 0.022890000 -1.804520000 Η Η -5.258163000 -1.233595000 -0.892895000 С 3.181897000 -2.060642000 -0.919918000 Η 3.996931000 -1.546306000 -1.419110000 С 0.868241000 -2.134198000 -0.206463000 Ν -0.365736000 -1.546157000 -0.151419000 Pd -0.590201000 0.384373000 -0.919321000 Η -0.843165000 1.818582000 -1.453233000 S 1.694487000 0.197580000-1.493255000

Si	2.523410000	1.325217000	0.258946000	
С	1.768942000	3.038092000	0.095925000	
Н	1.719800000	3.294642000	-0.969952000	
Н	0.728653000	2.983129000	0.438981000	
С	2.029183000	0.372600000	1.802638000	
Н	2.677128000	-0.509083000	1.878005000	
Н	1.008724000	-0.003832000	1.677614000	
С	2.540623000	4.119361000	0.860966000	
Н	3.572037000	4.206060000	0.504688000	
Н	2.066556000	5.098607000	0.733202000	
Н	2.579265000	3.912374000	1.934730000	
С	4.384494000	1.333093000	0.023061000	
Н	4.803531000	1.854386000	0.895591000	
Н	4.747292000	0.300043000	0.094589000	
С	2.120646000	1.213442000	3.080653000	
Н	3.131233000	1.602806000	3.243605000	
Н	1.437774000	2.068181000	3.048596000	
Н	1.856309000	0.615143000	3.959420000	
С	4.864015000	1.990664000	-1.271530000	
Н	5.957563000	1.997042000	-1.333760000	
Н	4.487756000	1.460689000	-2.153084000	
Н	4.524078000	3.028906000	-1.345978000	
Sum of electronic and zero-point Energies= -				

Sum of electronic and zero-point Energies= 2071.634727 Sum of electronic and thermal Free Energies=

2071.697670

_

-

-

23 GeHFt

Geh	LET3		
Н	0.000014000	0.038792000	-1.652766000
Ge	-0.000053000	-0.232804000	-0.120911000
С	0.000024000	1.503923000	0.767166000
Н	-0.878711000	1.551226000	1.420455000
Н	0.878314000	1.550880000	1.421073000
С	-1.621132000	-1.225977000	0.281330000
Н	-1.544381000	-2.217396000	-0.179483000
Н	-1.658513000	-1.377604000	1.366879000
С	-2.861213000	-0.488513000	-0.218170000
Н	-2.946259000	0.505042000	0.236991000
Н	-2.814570000	-0.336327000	-1.302867000
Н	-3.787234000	-1.032566000	0.003370000
С	1.620851000	-1.226244000	0.281423000
Н	1.543870000	-2.217705000	-0.179264000
Н	1.658179000	-1.377762000	1.366989000
С	0.000579000	2.656128000	-0.234566000
Н	0.000651000	3.638003000	0.254379000
Н	0.878413000	2.604570000	-0.888890000
Н	-0.876906000	2.604947000	-0.889388000
С	2.861070000	-0.489081000	-0.218152000
Н	3.787003000	-1.033224000	0.003539000
Н	2.814510000	-0.337100000	-1.302881000
Н	2.946230000	0.504549000	0.236827000

Sum of electronic and zero-point Energies= 2313.042222

Sum of electronic and thermal Free Energies= 2313.080688

64

(P ,	(P,N,S)Pd ⁺ H-GeEt ₃ (σ-complex, form 2)				
C	-2.934758000	-0.379011000	-0.752327000		
С	-3.652596000	1.749868000	0.273310000		
С	-4.975482000	1.255429000	0.346949000		
С	-5.254487000	-0.013154000	-0.110888000		
С	-3.274959000	3.038456000	0.719943000		
Н	-5.751548000	1.885425000	0.770071000		
Η	-6.266880000	-0.400935000	-0.053824000		

С	-1.970958000	3.456754000	0.609508000
С	-1.003673000	2.584458000	0.068348000
Н	-4.029912000	3.693972000	1.144395000
Н	-1.667961000	4.447099000	0.930057000
С	0.412589000	3.018377000	-0.141833000
Н	0.482280000	3.504616000	-1.123884000
Н	0.714489000	3.759690000	0.601382000
Р	1.584760000	1.582029000	-0.190292000
C	2.345383000	1 496018000	1 489236000
н	3 086999000	0.693252000	1 406108000
C	2 806066000	1 986875000	-1 511868000
ч	2.000000000	1.988053000	-2 400172000
C	2.138929000	1.988055000	2 405257000
U U	0.459969000	1.000100000	2.493237000
п	0.438808000	1.823110000	2.342844000
н	0.855209000	0.11//50000	2.249477000
Н	1./0984/000	1.015504000	3.493611000
C	3.060419000	2.774071000	1.924063000
Н	3.435004000	2.634409000	2.943589000
Н	3.913172000	3.010138000	1.287641000
Н	2.388936000	3.638171000	1.939184000
С	3.815719000	0.851050000	-1.653363000
Н	3.314511000	-0.100437000	-1.847827000
Н	4.488758000	1.060169000	-2.490694000
Н	4.427352000	0.745009000	-0.751375000
С	3.479312000	3.355690000	-1.407276000
Н	4.277494000	3.356729000	-0.661961000
Н	3.933616000	3.596275000	-2.374021000
Н	2.777710000	4.158038000	-1.162197000
С	-4.243045000	-0.826998000	-0.659735000
Н	-4.493071000	-1.819682000	-1.022053000
С	-2.632283000	0.919421000	-0.264710000
Ν	-1.335888000	1.353646000	-0.318559000
Pd	0.110344000	-0.058219000	-0.818029000
Н	1.228348000	-1.075123000	-1.203370000
S	-1 676535000	-1 365877000	-1 505951000
Ge	0.490455000	-2 104580000	0.516844000
C	2 272736000	-2.104500000	1 296472000
с u	2.272750000	1 1/0/0000	1.200472000
и П	2.489309000	2 858100000	2.074643000
C	2.191008000	-2.838199000	2.074043000
с u	-0.920413000	-1.878108000	1.041341000
п	-1.734088000	-2.493000000	1.447320000
П	-1.205085000	-0.841105000	1.805924000
C III	3.362062000	-2.4/2204000	0.306348000
Н	3.344589000	-1.82/504000	-0.5//834000
Н	4.361553000	-2.395568000	0.749929000
Н	3.235561000	-3.501930000	-0.040660000
С	0.304575000	-3.792071000	-0.419045000
Н	0.860884000	-4.497859000	0.210637000
Н	-0.755133000	-4.053263000	-0.359901000
С	-0.466609000	-2.366923000	3.212966000
Н	-0.210844000	-3.431997000	3.186924000
Н	0.421681000	-1.825844000	3.554454000
Н	-1.251349000	-2.234230000	3.966636000
С	0.816516000	-3.830574000	-1.852383000
Н	0.752017000	-4.838998000	-2.277197000
Н	0.232793000	-3.167302000	-2.499057000
Н	1.859891000	-3.507817000	-1.915278000
Sum	of electronic and	zero-point Energy	gies= -

Sum of electronic and zero-point Energies= 3857.175691 Sum of electronic and thermal Free Energies= 3857.237256

(P,N	l,S)Pd⁺H-GeE	t₃ (σ-complex, fo	orm 1)
С	-2.760165000	-1.702136000	-0.415436000
С	-4.331889000	0.011326000	0.417885000
С	-5.330888000	-0.979627000	0.552218000
С	-5.044618000	-2.282542000	0.210286000
С	-4.548776000	1.370960000	0.739960000
Η	-6.310193000	-0.693713000	0.922593000
Н	-5.805350000	-3.051018000	0.308222000
С	-3.543225000	2.290414000	0.575672000
С	-2.286023000	1.872869000	0.094894000
Н	-5.521672000	1.677349000	1.113258000
Η	-3.694764000	3.338618000	0.806457000
С	-1.193379000	2.866594000	-0.150248000
Η	-1.356412000	3.324083000	-1.134726000
Н	-1.218185000	3.676904000	0.582822000
Р	0.459245000	2.046910000	-0.229449000
С	1.207290000	2.112713000	1.465447000
Н	1.854436000	1.229519000	1.479346000
С	1.371484000	2.972906000	-1.535150000
Н	0.733977000	2.763452000	-2.405916000
С	0.104190000	1.908935000	2.506895000
Н	-0.513605000	2.806225000	2.606710000
Н	-0.553843000	1.067846000	2.270749000
Н	0.563999000	1.709553000	3.479578000
С	2.039024000	3.353551000	1.766131000
Н	2.431141000	3.277421000	2.786048000
Н	2.888600000	3.453694000	1.087640000
Н	1.435806000	4.264421000	1.709039000
С	2.745114000	2.367021000	-1.797924000
Н	2.668322000	1.302369000	-2.028972000
Н	3.206720000	2.869724000	-2.653626000
Н	3.411993000	2.488260000	-0.940067000
С	1.418253000	4,487548000	-1.330635000
Ĥ	2.116825000	4.769002000	-0.540990000
Н	1.759413000	4.955388000	-2.260060000
Н	0.437897000	4.908530000	-1.090620000
C	-3.771859000	-2.641485000	-0.272830000
Ĥ	-3.575977000	-3.674655000	-0.544288000
C	-3.042884000	-0.356551000	-0.059494000
Ň	-2.053229000	0.587487000	-0.188570000
Pd	-0 186193000	-0.064333000	-0 735833000
Н	1.238540000	-0.418789000	-1.389458000
S	-1 175834000	-2.149991000	-1 047917000
Ge	1.929576000	-1.354375000	-0.030515000
C	3.663829000	-0.475100000	-0.045999000
Ĥ	3.862395000	-0.251612000	-1.097625000
н	3 646162000	0.469807000	0 502107000
C	1.130307000	-1.537490000	1.733018000
н	0 524260000	-2.445033000	1 677208000
Н	0.445298000	-0.706208000	1.902846000
C	4 756323000	-1 406522000	0 479788000
н	4,794857000	-2.340674000	-0.089495000
н	5 740925000	-0.932968000	0 394668000
н	4 604121000	-1 667753000	1 529352000
C	2 185210000	-1 609377000	2 830193000
й	2.818110000	-2.494526000	2.717743000
н	2.838100000	-0.730569000	2.805120000
Н	1.722159000	-1.654529000	3.822415000
Ċ	2.135358000	-3.034245000	-0.981190000
н	1.310746000	-3.172185000	-1.685157000
Н	3.050972000	-2.924665000	-1.571857000
Ċ	2.231289000	-4.213990000	-0.019385000
н	3 038977000	-4 079684000	0 708124000
н	1 298989000	-4 331761000	0 541469000
н	2 418216000	-5 153340000	-0 552016000
	2.110210000	2.1222-0000	0.002010000

64

64

Sum of electronic and zero-point Energies= 3857.170887

Sum of electronic and thermal Free Energies= 3857.233498

-

04			
TS_	_HGeEt ₃	1 022510000	0.054075000
C	-2.48/610000	1.032510000	-0.8640/5000
С	-2.078744000	3.219360000	0.193789000
С	-3.474505000	3.447346000	0.221990000
С	-4.334707000	2.497700000	-0.281838000
С	-1.122154000	4.145759000	0.674994000
Н	-3.848093000	4.377698000	0.638236000
Н	-5.406180000	2.669623000	-0.264954000
С	0.220413000	3.864894000	0.589198000
Ĉ	0.639069000	2 633202000	0.041052000
н	-1 463355000	5 08/017000	1 100597000
и П	-1.403333000	4 572100000	0.022771000
п	0.905500000	4.373190000	0.932771000
C .	2.08/353000	2.302927000	-0.160355000
Н	2.380296000	2.6/3214000	-1.151319000
Н	2.722596000	2.808327000	0.571659000
Р	2.374655000	0.469007000	-0.189458000
С	2.771713000	0.010588000	1.557545000
Η	2.884982000	-1.079615000	1.529328000
С	3.811351000	0.151833000	-1.304247000
Н	3.349858000	0.237002000	-2.296599000
С	1.581869000	0.365396000	2.451009000
Ĥ	1.399559000	1.444668000	2.471620000
н	0.665944000	-0 130589000	2 126412000
н	1 791270000	0.045940000	3 476736000
C	1.77200000	0.615175000	2 081184000
U U	4.072900000	0.015175000	2.001104000
п	4.18/030000	0.340239000	5.150/84000
н	4.944/34000	0.233993000	1.546457000
н	4.074722000	1.707577000	2.01852/000
С	4.271972000	-1.292178000	-1.106759000
Н	3.434058000	-1.993976000	-1.172902000
Н	4.997490000	-1.556701000	-1.882127000
Η	4.755988000	-1.423858000	-0.134070000
С	4.957171000	1.159178000	-1.223531000
Н	5.487453000	1.109854000	-0.270730000
Н	5.678093000	0.933517000	-2.016515000
Н	4.614751000	2.186602000	-1.374019000
C	-3 844820000	1 291712000	-0.825125000
н	-4 541684000	0.561170000	-1 224660000
C	1 500142000	1 008071000	0.3/1780000
C N	-1.390142000	1.73/011000	-0.341789000
IN LU	-0.232213000	0.175905000	-0.3/1/09000
Pa	0.343034000	-0.1/5805000	-0.969505000
п	0.885345000	-1.545040000	-1.443219000
S	-1.8/3698000	-0.4/0943000	-1.590924000
Ge	-1.142788000	-1.788433000	0.479010000
С	0.404556000	-2.747661000	1.200840000
Н	1.185253000	-2.063525000	1.521961000
Н	-0.051833000	-3.176106000	2.103685000
С	-1.975404000	-0.643880000	1.807547000
Н	-3.017018000	-0.548641000	1.487866000
Н	-1.532383000	0.354643000	1.796295000
С	0.953490000	-3.857069000	0.321262000
Ĥ	1.245028000	-3.481861000	-0.666307000
н	1 840850000	-4 317924000	0 771206000
н	0.215719000	-4 649688000	0.169918000
Ċ	-2 3769/000	-3 193/38000	_0.04800000
с u	-2.3707+0000 2.281740000	2 042525000	0.748561000
11 11	-2.201/40000	-3.742333000 2740724000	0.740301000
п	-3.3/4821000	-2./48/34000	0.024180000
U H	-1.885501000	-1.280814000	3.191/86000
H	-2.369345000	-2.263/60000	3.211391000
H	-0.843749000	-1.423771000	3.494678000
Η	-2.372837000	-0.658289000	3.950682000

C -2.164264000 -3.833069000 -1.415214000 H -2.869383000 -4.655323000 -1.584139000 H -2.316609000 -3.107681000 -2.220694000 H -1.153997000 -4.235350000 -1.526816000 Sum of electronic and zero-point Energies= -3857.172205 Sum of electronic and thermal Free Energies= -

Sum of electronic and thermal Free Energies= 3857.231922

64

$FP_(PNSGeEt_3)PdH^+$

С	-1.886129000	1.321193000	-1.032496000
С	-1.149311000	3.377641000	0.081898000
С	-2.477465000	3.861298000	0.020448000
С	-3.467066000	3.092401000	-0.547286000
С	-0.087445000	4.101182000	0.677511000
Н	-2.697973000	4.841753000	0.430962000
Н	-4.487081000	3.459742000	-0.593188000
С	1.173267000	3.561573000	0.727491000
Ĉ	1.405637000	2.278952000	0.181620000
Ĥ	-0.286130000	5.083015000	1.097013000
н	1 997909000	4 101154000	1 179297000
C	2 783528000	1 683611000	0.167499000
н	3 326184000	2 127600000	-0.676984000
н	3 338353000	1 952961000	1.070766000
D D	2 771608000	-0.151639000	-0.110896000
C	2.771000000	0.074651000	1 520478000
с ц	2.909009000	2 042413000	1.329478000
C	2.852011000	-2.042413000	1.203009000
U U	4.243478000	-0.320891000	-1.108081000
п	5.909247000	-0.198550000	-2.100842000
U U	1.08/707000	-0.003098000	2.571555000
н	1.003304000	0.400900000	2.593005000
н	0.755577000	-0.8/00/4000	1.872030000
П	1.727485000	-1.1412/9000	3.323492000
C II	4.215118000	-0.702395000	2.271519000
н	4.166/4/000	-1.165199000	3.263173000
н	5.0/6/81000	-1.1258/3000	1./51/30000
Н	4.38/824000	0.368940000	2.416634000
U U	4.408058000	-2.038198000	-1.20/253000
H	5.555583000	-2.5/6869000	-1.4/2984000
н	5.230902000	-2.2/6264000	-1.955750000
Н	4.821357000	-2.411124000	-0.240609000
C II	5.519895000	0.238980000	-0.813899000
п	5.925905000	-0.063220000	0.153491000
н	6.280173000	0.020538000	-1.5/3000000
Н	5.36/499000	1.321277000	-0.798083000
C	-3.1/3450000	1.815836000	-1.0/1291000
Н	-3.966/29000	1.216202000	-1.505250000
C	-0.849228000	2.095948000	-0.45250/000
N	0.4162/5000	1.583480000	-0.3/4/01000
Pd	0.735451000	-0.388500000	-0.988486000
Н	1.050260000	-1.848646000	-1.408926000
S	-1.541345000	-0.354538000	-1.584988000
Ge	-2.155910000	-1.210229000	0.496570000
C	-1.21/946000	-2.884660000	0.711567000
H	-0.147223000	-2.692198000	0.812917000
Н	-1.592962000	-3.269123000	1.66/841000
C	-1.826031000	0.109004000	1.8/2183000
Н	-2.586837000	0.882822000	1.736913000
H	-0.842883000	0.568426000	1./69911000
U H	-1.520675000	-3.86/36/000	-0.412206000
H	-1.264957000	-3.448262000	-1.391853000
H	-0.957022000	-4.800079000	-0.298547000
H	-2.584152000	-4.123629000	-0.430659000
U H	-4.068948000	-1.484088000	0.365164000
H	-4.258476000	-2.286126000	1.089092000
н	-4.551952000	-0.572980000	0.757585000

С	-1.983045000	-0.582562000	3.226415000	
Н	-2.980967000	-1.022051000	3.337370000	
Н	-1.259840000	-1.396309000	3.341381000	
Н	-1.836815000	0.119107000	4.054705000	
С	-4.621840000	-1.854174000	-1.005009000	
Н	-5.691048000	-2.089040000	-0.953739000	
Н	-4.498989000	-1.034768000	-1.719645000	
Н	-4.107830000	-2.723009000	-1.426585000	
Sum of electronic and zero-point Energies= -				
3857.184802				

Sum of electronic and thermal Free Energies= 3857.246408

_

-

23

SnE	IEt ₃		
Н	0.021008000	-1.124000000	-1.848376000
Sn	0.007466000	-0.323236000	-0.301185000
С	-0.022711000	1.836138000	-0.624276000
Н	0.861317000	2.103294000	-1.214223000
Н	-0.893930000	2.072746000	-1.245521000
С	-1.793041000	-0.916970000	0.780537000
Н	-1.789652000	-2.009485000	0.867071000
Н	-1.707216000	-0.523701000	1.800131000
С	-0.059935000	2.625929000	0.683340000
Н	-0.947469000	2.382721000	1.278750000
Н	0.813978000	2.413921000	1.309978000
Н	-0.075929000	3.709509000	0.506496000
С	-3.081519000	-0.428982000	0.120379000
Н	-3.110428000	0.664090000	0.047385000
Н	-3.189945000	-0.822140000	-0.897004000
Н	-3.971497000	-0.739074000	0.683978000
С	1.816681000	-0.876255000	0.787675000
Н	1.830477000	-1.967941000	0.883514000
Н	1.723205000	-0.475808000	1.803789000
С	3.098236000	-0.373655000	0.125098000
Н	3.992154000	-0.665862000	0.692002000
Н	3.213847000	-0.772859000	-0.889134000
Н	3.110502000	0.719148000	0.043903000
Sum	of electronic and	l zero-point Ener	gies= -

Sum of electronic and zero-point Energies= -241.430896

Sum of electronic and thermal Free Energies= 241.472420

64

(P,N,S)Pd⁺...H-SnEt₃ (σ-complex, form 2)

C	-2.751928000	-1.424005000	-0.601467000
С	-4.250957000	0.249623000	0.427291000
С	-5.254780000	-0.738832000	0.550626000
С	-5.004036000	-2.019945000	0.112375000
С	-4.425118000	1.590458000	0.843795000
Н	-6.209547000	-0.469732000	0.991152000
Н	-5.768347000	-2.785563000	0.204276000
С	-3.414562000	2.506648000	0.679747000
С	-2.189506000	2.097737000	0.114295000
Н	-5.371615000	1.887459000	1.286263000
Η	-3.539034000	3.541924000	0.975967000
С	-1.084952000	3.075279000	-0.150940000
Η	-1.262240000	3.533313000	-1.132746000
Н	-1.075565000	3.884422000	0.584405000
Р	0.555912000	2.227557000	-0.252021000
С	1.251506000	2.290035000	1.456885000
Н	2.097613000	1.594378000	1.429810000
С	1.562431000	3.162877000	-1.480442000
Η	1.080921000	2.875105000	-2.424901000
С	0.197808000	1.746731000	2.424026000
Η	-0.631370000	2.452095000	2.538280000
Η	-0.212734000	0.789412000	2.095217000

Н	0.649035000	1.604068000	3.410554000		
С	1.737712000	3.672074000	1.883676000		
Н	2.048178000	3.632402000	2.933348000		
Н	2.593215000	4.008391000	1.295070000		
Н	0.940203000	4.418048000	1.802126000		
С	2.995054000	2.634266000	-1.486575000		
Н	3.026375000	1.554902000	-1.657449000		
Н	3.559248000	3.119433000	-2.289180000		
Н	3.504360000	2.850319000	-0.542318000		
С	1.497334000	4.684747000	-1.354701000		
Н	2.019674000	5.045455000	-0.467129000		
Н	1.984970000	5.127519000	-2.229625000		
Н	0.470323000	5.058515000	-1.327211000		
С	-3.763819000	-2.361436000	-0.463257000		
Н	-3.597306000	-3.377330000	-0.809084000		
C	-2.995011000	-0.103421000	-0.138081000		
Ň	-1.995929000	0.827450000	-0.245886000		
Pd	-0.144933000	0.159025000	-0.872963000		
Н	1.251927000	-0.216716000	-1.497751000		
S	-1 213058000	-1 841579000	-1 366604000		
Sn	1.774969000	-1.528605000	0.128867000		
C	3 717047000	-0 555273000	0 250717000		
н	4 168622000	-0.615778000	-0 745235000		
н	3 585016000	0.504687000	0.479556000		
C	0.920790000	-1 809947000	2 114568000		
н	1 486126000	-2 664252000	2.507846000		
н	1 208109000	-0.938896000	2.307040000		
C	1.200105000	-3 352570000	-1.043132000		
н	2 992918000	-3 529544000	-1 193148000		
н	1 / 90310000	-3.153857000	-2 0293/3000		
C	4 599155000	-1 234750000	1 297497000		
с ц	4.377133000	2 3012/1000	1.277477000		
н ц	4.739009000	-2.301241000	1.08/0/1000		
п u	171320000	-0.780112000	2 302048000		
C	4.171329000	-1.155804000	2.302948000		
с u	-0.370118000	-2.0/1/18000	2.100090000		
п	-0.880923000	-2.204372000	1 822776000		
п	-1.130/02000	-1.219952000	1.825770000		
п	-0.808/00000	-2.935255000	1.585001000		
U U	1.251779000	-4.555520000	-0.381925000		
H	1.6/4439000	-4./6506/000	0.606259000		
н	0.177685000	-4.38/313000	-0.254148000		
Н	1.3/5425000	-5.459297000	-0.988/04000		
Sum of electronic and zero-point Energies= -					
1/85.553423					
Sum of electronic and thermal Free Energies= -					
1/8	0.019393				

64

(P,N,S)Pd⁺...H-SnEt₃ (σ-complex, form 1)

С	-2.595061000	-1.952817000	-0.538040000
С	-4.389278000	-0.509056000	0.357398000
С	-5.223471000	-1.642715000	0.491883000
С	-4.749859000	-2.881938000	0.122997000
С	-4.797758000	0.796728000	0.715601000
Η	-6.225683000	-1.516065000	0.888809000
Н	-5.382275000	-3.758565000	0.224563000
С	-3.943787000	1.859241000	0.552497000
С	-2.648586000	1.642226000	0.040587000
Н	-5.796470000	0.947145000	1.115172000
Η	-4.243887000	2.869036000	0.808026000
С	-1.718100000	2.786334000	-0.217356000
Η	-1.945499000	3.195840000	-1.210368000
Η	-1.865478000	3.595042000	0.503624000
Р	0.039678000	2.220789000	-0.265757000
С	0.735190000	2.489490000	1.422393000
Н	1.662695000	1.904388000	1.420588000
С	0.864454000	3.218786000	-1.577476000

Н	0.382232000	2.824698000	-2.482595000
С	-0.233268000	1.875830000	2.435786000
Н	-1.147564000	2.472608000	2.514919000
Н	-0.516124000	0.853070000	2.174342000
Н	0.237152000	1.857310000	3.423495000
С	1.052818000	3.943207000	1.759467000
Н	1.375569000	4.004010000	2.804411000
Н	1.857605000	4.340890000	1.138522000
Н	0.172610000	4.584250000	1.646254000
C	2.352296000	2.884894000	-1.636232000
Ĥ	2,518405000	1.813084000	-1.774358000
н	2.811808000	3,409405000	-2.479872000
н	2.868393000	3.202398000	-0.725093000
C	0.601960000	4 723797000	-1 510683000
н	1 149134000	5 197705000	-0.694070000
н	0.942714000	5 178730000	-2 446681000
н	-0.459523000	4 959890000	-1 396918000
\hat{C}	-3.447624000	-3.037126000	-0.390600000
н	-3 102306000	-4.025306000	-0.679733000
C	-3.070147000	-0.671567000	-0.1/98//000
N	-2 233668000	0.410715000	-0.142044000
Pd	-0.284072000	0.410/15000	-0.750771000
гu u	1 287833000	0.103/00000	1 167702000
s S	0.078245000	2 1/0286000	1 220764000
S Sn	2 00/038000	-2.140280000	-1.220704000
C	2.094958000	0.1366/1000	0.137751000
н	<i>4</i> 3 <i>4</i> 3760000	0.130041000	-0.737632000
н	3 513780000	1 162/69000	0.410147000
\hat{C}	1 31/739000	-1.102+0.000	2 153/68000
н	2 0580/2000	-2.065748000	2.133400000
н	1 386759000	-0.442375000	2.627310000
\hat{C}	2 480876000	2 000/73000	0.042418000
с u	2.480870000	-2.990473000	-0.942418000
и П	2.274807000	-2.799707000	-2.000793000
п С	1.747263000	-3.720403000	-0.000810000
с u	4.800939000	-0.30/3/3000	1.54/741000
п u	5.680620000	-1.330319000	1.195155000
п	1 220255000	0.342974000	2 222082000
п С	4.529255000	-0.2/5009000	2.555082000
с п	-0.081810000	-2.003140000	2.285580000
п	-0.344033000	-2.136614000	3.337000000
п	-0.841080000	-1.353205000	1.841/03000
H C	-0.163180000	-2.970231000	1.//4/62000
C H	3.90/825000	-3.498031000	-0.743412000
H	4.651300000	-2.772206000	-1.089912000
H	4.1216/8000	-3./1045/000	0.309836000
H	4.077049000	-4.427/06000	-1.301148000
Sum	of electronic and	i zero-point Energ	gies= -
1/85.546363			
Sum of electronic and thermal Free Energies= -			
1/8:	0.012070		

64 TS_HSnEt₃

С	-2.096494000	1.779363000	-0.834931000
С	-1.322508000	3.710347000	0.484252000
С	-2.642505000	4.218787000	0.486507000
С	-3.643208000	3.528114000	-0.159048000
С	-0.237748000	4.353383000	1.127274000
Η	-2.846548000	5.152322000	1.001646000
Η	-4.657686000	3.913920000	-0.161934000
С	1.021172000	3.806019000	1.078451000
С	1.223947000	2.585903000	0.398134000
Η	-0.413678000	5.287240000	1.653440000
Η	1.865424000	4.295051000	1.551073000
С	2.596049000	2.002729000	0.237437000
Η	3.077996000	2.521700000	-0.600936000
Η	3.214197000	2.195182000	1.118339000

ъ	0 5 (1771000	0 107055000	0.100502000
P	2.561771000	0.19/055000	-0.199582000
C	2.929949000	-0./13949000	1.363187000
Н	2.858957000	-1./68493000	1.073822000
C	3.88/341000	-0.092620000	-1.454618000
Н	3.424949000	0.296031000	-2.371266000
С	1.829971000	-0.404840000	2.376389000
Н	1.860861000	0.642997000	2.692589000
Н	0.838241000	-0.605500000	1.966035000
Н	1.962621000	-1.026689000	3.267137000
С	4.323411000	-0.463912000	1.934491000
Н	4.413619000	-0.991386000	2.890284000
Н	5.107047000	-0.839677000	1.274002000
Н	4.508190000	0.597571000	2.126670000
С	4.094601000	-1.598614000	-1.617614000
Н	3.150501000	-2.121323000	-1.801482000
Н	4,755665000	-1.786428000	-2.469344000
н	4 562986000	-2.033033000	-0.728635000
C	5 200043000	0.654986000	-1 225255000
н	5 732120000	0.294602000	-0 342787000
и Ц	5.840010000	0.204002000	2 002178000
и П	5.0531/3000	1 733310000	1 121733000
C	2 272077000	2 211808000	-1.121733000
U U	-3.373077000	2.311090000	-0.820037000
п	-4.1/9434000	1.782320000	-1.516156000
U N	-1.035334000	2.465070000	-0.179510000
N DJ	0.203649000	1.949811000	-0.1/49/4000
Pa	0.445550000	0.04/882000	-0.988404000
H	0.713284000	-1.340011000	-1.620131000
3	-1./63580000	0.250768000	-1.682209000
Sn	-1.311//9000	-1.882447000	0.190368000
C	0.290264000	-3.353033000	0.388153000
Н	0.442541000	-3.780709000	-0.608171000
Н	1.206990000	-2.831467000	0.665674000
С	-1.905424000	-1.057568000	2.123976000
Н	-2.904311000	-1.475225000	2.294203000
Η	-1.232360000	-1.535912000	2.843951000
С	-2.957085000	-2.828925000	-0.870861000
Н	-2.942713000	-3.882247000	-0.565819000
Н	-2.717305000	-2.804178000	-1.939278000
С	-0.079668000	-4.421546000	1.412786000
Н	-1.006336000	-4.942586000	1.147249000
Н	0.707027000	-5.183100000	1.490935000
Н	-0.217247000	-3.995615000	2.412901000
С	-1.915455000	0.452625000	2.311538000
Н	-2.184076000	0.712774000	3.343050000
Н	-0.935900000	0.893078000	2.109027000
Н	-2.639012000	0.936479000	1.651491000
C	-4.312752000	-2.191399000	-0.592143000
Ĥ	-4.580202000	-2.252853000	0.468398000
Н	-4.321436000	-1.132624000	-0.871861000
н	-5 111621000	-2 686234000	-1 158665000
Sum	of electronic and	zero-noint Eper	nies
Sum of electronic and zero-point Energies			

1785.548864 Sum of electronic and thermal Free Energies= 1785.612344

64

FP_	(PNSSnEt ₃)PdH ⁺		
С	-1.573862000	1.789287000	-0.918703000
С	-0.603209000	3.673901000	0.322691000
С	-1.855911000	4.328674000	0.271443000
С	-2.919625000	3.731344000	-0.364509000
С	0.525474000	4.214400000	0.985013000
Η	-1.958926000	5.302463000	0.740253000
Η	-3.881634000	4.231411000	-0.409552000
С	1.707831000	3.518489000	1.015525000
С	1.792617000	2.261699000	0.376248000
Н	0.439820000	5.182894000	1.468941000

Н	2.583411000	3.917684000	1.515103000
С	3.093039000	1.514029000	0.318662000
Н	3.705631000	1.975785000	-0.466445000
Н	3.650416000	1.622234000	1.253905000
Р	2.874883000	-0.268428000	-0.155358000
С	2.856013000	-1.253133000	1.409800000
Н	2.666705000	-2.276106000	1.060877000
С	4.329090000	-0.722386000	-1.200062000
Н	4.074038000	-0.261339000	-2.163174000
С	1.664205000	-0.803288000	2.256467000
Н	1.796966000	0.220115000	2.623311000
Н	0.731824000	-0.842364000	1.685496000
Н	1.562909000	-1.458970000	3.127178000
С	4.161325000	-1.227061000	2.199831000
H	4.020904000	-1.763651000	3.144541000
Н	4.974768000	-1.715532000	1.659874000
Н	4.469997000	-0.205422000	2.443951000
C	4.3662.04000	-2.239296000	-1.383396000
й	3 401873000	-2 630991000	-1 722279000
н	5 119136000	-2 498375000	-2 134351000
н	4 636400000	-2.490975000	-0.451109000
C	5 673517000	-0.160647000	-0.737725000
ч	5 99/671000	-0.100047000	0.213253000
н	6 433581000	-0.382258000	-1 486477000
н	5 659038000	0.927504000	-0.63/003000
C	2 778607000	2 461405000	-0.034993000
с u	-2.778097000	2.401403000	-0.902020000
C	-3.031120000	2.001021000	-1.450152000
с N	-0.438032000	2.397817000	-0.280014000
D.J	0.734381000	0.170660000	1.062560000
гu u	1.012124000	-0.179000000	-1.003300000
п с	1.012134000	-1.598044000	1 657128000
3 5	-1.409/22000	1 200775000	-1.03/120000
SII	-2.190/94000	-1.399773000	0.235201000
с п	-0.895558000	-3.13/002000	0.134934000
п	-0.700431000	-3.3/0182000	-0.924623000
п	0.083044000	-2.841442000	0.320733000
С П	-2.1/2013000	-0.440524000	2.211915000
H	-3.211152000	-0.518545000	2.551296000
Н	-1.585114000	-1.1305/2000	2.828737000
C H	-4.20/8/5000	-1.839385000	-0.420306000
H	-4.6/2/14000	-2.3958/9000	0.402520000
H	-4.126266000	-2.529755000	-1.266501000
С	-1.475253000	-4.32062/000	0.907070000
H	-2.450587000	-4.625131000	0.5121/1000
H	-0.813228000	-5.193374000	0.846482000
H	-1.6089/5000	-4.090280000	1.970134000
C	-1.662123000	0.984435000	2.374095000
H	-1.698040000	1.284103000	3.428941000
H	-0.625909000	1.084166000	2.043629000
H	-2.263935000	1.700945000	1.809732000
C	-5.038098000	-0.614648000	-0.788409000
H	-5.101211000	0.102522000	0.037365000
H	-4.614822000	-0.089798000	-1.651027000
H	-6.064466000	-0.896461000	-1.054588000
Sum	of electronic and	l zero-point Ener	gies= -

1785.553679 Sum of electronic and thermal Free Energies= 1785.618437 -

22			
HBI	Pin		
С	-0.781472000	-0.190348000	0.051541000
С	0.781301000	-0.190971000	-0.051540000
0	-1.072247000	1.194816000	0.405601000
0	1.073271000	1.193724000	-0.406057000
В	0.000809000	1.932042000	-0.000467000
Н	0.001330000	3.123708000	-0.000737000
С	1.348541000	-1.098069000	-1.127405000
Н	0.980357000	-0.827677000	-2.118971000
Н	2.439872000	-1.022508000	-1.135103000
Н	1.082913000	-2.140595000	-0.927065000
С	-1.349255000	-1.096666000	1.127812000
Н	-2.440552000	-1.020576000	1.135434000
Н	-1.084112000	-2.139329000	0.927547000
Н	-0.980954000	-0.826457000	2.119366000
С	-1.472135000	-0.449399000	-1.282666000
Н	-1.069213000	0.193033000	-2.071157000
Н	-1.362094000	-1.492406000	-1.592107000
Н	-2.539132000	-0.233024000	-1.178708000
С	1.471524000	-0.449596000	1.282993000
Н	2.538699000	-0.234144000	1.178851000
Н	1.068993000	0.193942000	2.070768000
Η	1.360643000	-1.492208000	1.593452000
Sum	of electronic and	l zero-point Energ	gies= -

Sum of electronic and zero-point Energies= 411.585296 Sum of electronic and thermal Free Energies= 411.618334

63

(P,N,S)Pd⁺...H-BPin (σ-complex)

Ċ	-1.821577000	2.521856000	-0.191934000
С	-4.039810000	1.640484000	0.433199000
С	-4.503516000	2.962647000	0.620150000
С	-3.648283000	4.020049000	0.404700000
С	-4.861386000	0.504341000	0.610659000
Н	-5.532270000	3.120606000	0.927437000
Н	-3.996214000	5.038997000	0.543763000
С	-4.359368000	-0.752410000	0.382057000
С	-3.013985000	-0.910596000	-0.004472000
Н	-5.894472000	0.639525000	0.917317000
Н	-4.978313000	-1.635662000	0.489217000
С	-2.465136000	-2.261499000	-0.334457000
Н	-2.947403000	-3.043726000	0.258081000
Н	-2.679062000	-2.476516000	-1.387906000
Р	-0.637451000	-2.272676000	-0.098871000
С	0.080581000	-3.473457000	-1.292521000
Н	-0.467128000	-4.412381000	-1.140077000
С	-0.427632000	-2.816743000	1.654526000
Н	-1.223744000	-2.249256000	2.156028000
С	1.566069000	-3.692778000	-1.010044000
Н	1.740359000	-4.159492000	-0.038565000
Н	1.984234000	-4.350277000	-1.778738000
Н	2.119403000	-2.747743000	-1.043979000
С	-0.138462000	-2.969894000	-2.719380000
Н	0.255912000	-3.708023000	-3.425046000
Н	-1.193058000	-2.811477000	-2.960455000
Н	0.393908000	-2.027005000	-2.884457000
С	0.910087000	-2.394954000	2.256337000
Н	1.082098000	-1.321862000	2.154047000
Н	0.915759000	-2.646124000	3.322186000
Н	1.749705000	-2.915565000	1.788507000
С	-0.703174000	-4.311050000	1.820318000
Н	0.083960000	-4.913669000	1.358437000
Η	-0.724804000	-4.552856000	2.887936000
Η	-1.663842000	-4.612945000	1.392630000
С	-2.318861000	3.803404000	-0.005042000

Н	-1.669071000	4.654921000	-0.183611000
С	-2.688707000	1.425796000	0.042320000
Ν	-2.207268000	0.149896000	-0.132849000
Pd	-0.213122000	-0.068697000	-0.482478000
S	-0.171625000	2.251890000	-0.753774000
Н	1.287958000	-0.575751000	-0.908532000
С	3.792887000	1.716559000	-0.326473000
С	3.812874000	0.796635000	0.943908000
В	1.997487000	0.358542000	-0.310533000
0	2.764033000	1.076346000	-1.162081000
0	2.448702000	0.246005000	0.959937000
С	3.307254000	3.128957000	-0.041307000
Н	3.133159000	3.643582000	-0.989983000
Н	2.370737000	3.126969000	0.521271000
Н	4.059097000	3.688812000	0.521142000
С	5.088691000	1.740750000	-1.111546000
Н	5.898366000	2.131698000	-0.488464000
Н	5.367649000	0.746935000	-1.466470000
Н	4.979545000	2.398759000	-1.978050000
С	4.741523000	-0.402160000	0.810720000
Н	4.552893000	-1.091932000	1.637737000
Н	4.572814000	-0.936414000	-0.128710000
Н	5.789228000	-0.093563000	0.852824000
С	4.049294000	1.523248000	2.251345000
Н	3.289351000	2.285242000	2.432417000
Н	4.027390000	0.807762000	3.078189000
Н	5.032593000	2.002492000	2.242715000
Sum of electronic and zero-point Energies= -			
O O C H H H C H H H C H H H C H H H Sum	2.764033000 2.448702000 3.307254000 3.133159000 2.370737000 4.059097000 5.088691000 5.898366000 5.367649000 4.979545000 4.741523000 4.552893000 4.572814000 5.789228000 4.049294000 3.289351000 4.027390000 5.032593000 of electronic and	1.076346000 0.246005000 3.128957000 3.643582000 3.643582000 3.688812000 1.740750000 2.131698000 0.746935000 2.398759000 -0.402160000 -1.091932000 -0.93663000 1.523248000 2.285242000 0.807762000 2.002492000 zero-point Energ	-1.162081000 0.959937000 -0.041307000 -0.989983000 0.521271000 0.521142000 -1.111546000 -0.488464000 -1.466470000 -1.978050000 0.810720000 1.637737000 -0.128710000 0.852824000 2.251345000 2.432417000 3.078189000 2.242715000 gies= -

1955.675099

Sum of electronic and thermal Free Energies= 1955.735782 -

63 **TS HBPin**

10			
С	-0.605600000	2.748268000	-0.409306000
С	-2.888627000	2.882033000	0.513495000
С	-2.691010000	4.262731000	0.753295000
С	-1.488808000	4.849500000	0.431460000
С	-4.081985000	2.193489000	0.838824000
Н	-3.494521000	4.838801000	1.201253000
Н	-1.329375000	5.905916000	0.622196000
С	-4.192819000	0.841842000	0.612815000
С	-3.102812000	0.139463000	0.059630000
Н	-4.905908000	2.746607000	1.279961000
Н	-5.098619000	0.301736000	0.863021000
С	-3.129614000	-1.337037000	-0.199548000
Η	-3.834225000	-1.849409000	0.461359000
Н	-3.456812000	-1.514227000	-1.230457000
Р	-1.412516000	-2.025456000	-0.019053000
С	-1.321597000	-3.564585000	-1.019409000
Η	-2.140969000	-4.206572000	-0.671696000
С	-1.270450000	-2.356675000	1.793443000
Н	-1.768572000	-1.476673000	2.223653000
С	0.017620000	-4.265245000	-0.792479000
Η	0.137818000	-4.608927000	0.237328000
Н	0.081731000	-5.139046000	-1.448582000
Η	0.853757000	-3.600364000	-1.036217000
С	-1.521553000	-3.222727000	-2.495973000
Η	-1.464752000	-4.141387000	-3.088601000
Η	-2.491240000	-2.758994000	-2.696094000
Η	-0.736479000	-2.544045000	-2.847237000
С	0.179772000	-2.357960000	2.268805000
Η	0.688006000	-1.430416000	1.995601000
Η	0.201335000	-2.454452000	3.359428000
Η	0.744169000	-3.195091000	1.849907000
С	-2.037807000	-3.611968000	2.205365000
Н	-1.562887000	-4.515567000	1.812457000

Н	-2.045203000	-3.686363000	3.297612000
Н	-3.078056000	-3.593558000	1.866509000
С	-0.447005000	4.096812000	-0.152369000
Н	0.486505000	4.586291000	-0.412972000
С	-1.832638000	2.124754000	-0.059697000
Ν	-1.977672000	0.780404000	-0.257270000
Pd	-0.252220000	-0.218876000	-0.744893000
S	0.650736000	1.855526000	-1.318276000
Н	1.043409000	-1.072830000	-0.984986000
С	4.063214000	0.449493000	-0.295934000
С	3.511666000	0.077723000	1.120013000
В	1.818826000	0.260839000	-0.367516000
0	2.933001000	0.110353000	-1.158420000
0	2.080520000	0.358498000	0.974921000
С	4.327704000	1.940411000	-0.462585000
Н	4.495083000	2.154280000	-1.521841000
Н	3.479562000	2.540052000	-0.121977000
Н	5.217823000	2.245453000	0.094151000
С	5.262435000	-0.362548000	-0.742211000
Н	6.099373000	-0.210410000	-0.053914000
Η	5.033212000	-1.428994000	-0.785198000
Н	5.578485000	-0.037576000	-1.737621000
С	3.649871000	-1.404093000	1.442895000
Η	3.091009000	-1.626730000	2.355171000
Н	3.255673000	-2.027325000	0.635171000
Η	4.696253000	-1.672408000	1.611666000
С	4.048242000	0.928363000	2.253244000
Н	3.820704000	1.985581000	2.105126000
Н	3.600968000	0.608244000	3.198727000
Н	5.133056000	0.810039000	2.334211000
Sum of electronic and zero-point Energies= -			

Sum of electronic and zero-point Energies= 1955.669124

Sum of electronic and thermal Free Energies= 1955.727814

-

63

FP_(PNSBPin)PdH⁺

С	1.999273000	1.772204000	-0.970469000
С	1.582050000	3.270720000	0.919655000
С	2.791375000	3.943038000	0.622236000
С	3.566984000	3.538130000	-0.438079000
С	0.738805000	3.634816000	1.997431000
Η	3.090193000	4.780839000	1.244740000
Н	4.494024000	4.052687000	-0.668292000
С	-0.418023000	2.936435000	2.234510000
С	-0.767740000	1.859166000	1.389698000
Н	1.022826000	4.469161000	2.631848000
Н	-1.070912000	3.194266000	3.060690000
С	-1.994075000	1.037124000	1.660710000
Н	-1.783511000	0.379204000	2.513485000
Н	-2.831193000	1.675553000	1.959296000
Р	-2.470126000	-0.055383000	0.232731000
С	-3.921259000	0.778390000	-0.540024000
Н	-4.659726000	0.898292000	0.262933000
С	-2.970954000	-1.646146000	1.026688000
Н	-2.187421000	-1.785506000	1.782554000
С	-4.514122000	-0.068076000	-1.662829000
Н	-4.916768000	-1.015481000	-1.296594000
Η	-5.332306000	0.482131000	-2.139191000
Η	-3.761583000	-0.285059000	-2.428336000
С	-3.488939000	2.155493000	-1.043677000
Н	-4.350238000	2.670551000	-1.481546000
Н	-3.092292000	2.788985000	-0.244787000
Н	-2.719054000	2.060133000	-1.817664000
С	-2.906066000	-2.825628000	0.059301000
Н	-1.914023000	-2.916488000	-0.390776000
Н	-3.124461000	-3.750828000	0.602864000

Н	-3.635465000	-2.733064000	-0.749822000
С	-4.321019000	-1.527626000	1.733620000
Н	-5.137547000	-1.407541000	1.015668000
Η	-4.512619000	-2.441397000	2.305503000
Н	-4.349435000	-0.684965000	2.431725000
С	3.172184000	2.443215000	-1.236714000
Η	3.801607000	2.124147000	-2.061542000
С	1.171416000	2.179857000	0.106890000
Ν	0.002779000	1.519832000	0.358744000
Pd	-0.615554000	0.035691000	-0.986112000
S	1.526863000	0.371707000	-1.999841000
Н	-1.185932000	-1.035937000	-1.945348000
С	2.217163000	-3.095579000	-0.028267000
С	2.203774000	-2.054478000	1.142704000
В	1.897211000	-1.013849000	-0.808046000
0	1.687152000	-2.308460000	-1.150279000
0	2.398207000	-0.785601000	0.431400000
С	3.618114000	-3.529036000	-0.432203000
Н	3.561138000	-4.084770000	-1.372013000
Н	4.274357000	-2.666585000	-0.581041000
Н	4.061722000	-4.180397000	0.325334000
С	1.309766000	-4.289930000	0.180911000
Η	1.622765000	-4.851225000	1.066323000
Н	0.269208000	-3.985372000	0.307360000
Η	1.371540000	-4.956468000	-0.683780000
С	0.849123000	-1.941606000	1.830628000
Η	0.864484000	-1.077272000	2.499970000
Н	0.053087000	-1.789491000	1.094160000
Н	0.625000000	-2.833358000	2.421393000
С	3.319110000	-2.219212000	2.152715000
Н	4.302393000	-2.141244000	1.685611000
Н	3.238397000	-1.443585000	2.919612000
Н	3.239305000	-3.192998000	2.644741000
Sum of electronic and zero-point Energies= -			
1955 693325			

1955.693325 Sum of electronic and thermal Free Energies= 1955.753175

VII. References

- a) K. Nozaki, Y. Ichinose, K. Wakamatsu, K. Oshima, K. Utimoto, *Bull. Soc. Chim. Jpn* **1990**, 63, 2268–2272; b) S. Bernardoni, M. Lucarini, G. F. Pedulli, L. Valgimigli, V. Gevorgyan, C. Chatgilialoglu, *J. Org. Chem.* **1997**, 62, 8009–8014; c) H. Liang, Y.-X. Ji, R.-H. Wang, Z.-H. Zhang, B. Zhang, *Org. Lett.* **2019**, 21, 2750–2754;
- [2] a) R. J. P. Corriu, J. J. E. Moreau, *J. Chem. Soc. D* 1971, 812; b) Y. Ichinose, H. Oda, K. Oshima, K. Utimoto, *Bull. Soc. Chim. Jpn* 1987, *60*, 3468–3470; c) M. R. Radzhabov, N. P. Mankad, *Org. Lett.* 2021, *23*, 3221–3226;
- [3] a) T. Matsuda, S. Kadowaki, Y. Yamaguchi, M. Murakami, Org. Lett. 2010, 12, 1056–1058; b) S. M. Rummelt, K. Radkowski, D.-A. Roşca, A. Fürstner, J. Am. Chem. Soc. 2015, 137, 5506–5519;
- [4] a) M. Itazaki, M. Kamitani, H. Nakazawa, *Chem. Commun.* 2011, 47, 7854–7856; b) M. Bołt, A. Mermela, P. Żak, *Chem. Commun.* 2023, *59*, 11548–11551;
- [5] T. Schwier, V. Gevorgyan, Org. Lett. 2005, 7, 5191–5194.
- [6] a) L. Ferrand, Y. Lyu, A. Rivera-Hernández, B. Fallon, M. Amatore, C. Aubert, M. Petit, *Synthesis* **2017**, *49*, 3895–3904; b) A. Jayaraman, S. Lee, *Org. Lett.* **2019**, *21*, 3485–3489;
- [7] C. Kim, P.-Y. Huang, J.-W. Jhuang, M.-C. Chen, J.-C. Ho, T.-S. Hu, J.-Y. Yan, L.-H. Chen, G.-H. Lee, A. Facchetti, T. J. Marks, *Organic Electronics* **2010**, *11*, 1363–1375.
- [8] H.-J. Lee, C. Kwak, D.-P. Kim, H. Kim, *Green Chem.* **2021**, *23*, 1193–1199.
- [9] D.-Y. Wang, X. Wen, C.-D. Xiong, J.-N. Zhao, C.-Y. Ding, Q. Meng, H. Zhou, C. Wang, M. Uchiyama, X.-J. Lu, A. Zhang, *iScience* 2019, *15*, 307–315.
- [10] A. Clerc, M. Humbert, S. Mallet-Ladeira, K. Miqueu, J. Monot, B. Martín-Vaca, D. Bourissou, *ChemistryEurope* **2024**, e202400079.
- [11] M. Shindo, K. Matsumoto, K. Shishido, *Tetrahedron* **2007**, *63*, 4271–4277.
- [12] B. Marciniec, H. Ławicka, M. Majchrzak, M. Kubicki, I. Kownacki, *Chem. Eur. J.* **2005**, *12*, 244–250.
- [13] A. Selmani, F. Schoenebeck, Org. Lett. 2021, 23, 4779–4784.
- [14] A. Louka, M. Stratakis, Org. Lett. **2021**, 23, 3599–3603.
- [15] A. Dahiya, M. D. Schoetz, F. Schoenebeck, Angew. Chem. Int. Ed. 2023, 62, e202310380.
- [16] C. Fricke, G. J. Sherborne, I. Funes-Ardoiz, E. Senol, S. Guven, F. Schoenebeck, Angew. Chem. Int. Ed. 2019, 58, 17788–17795.
- [17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, Montgomery, J. A, Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, Fox, D. J. Gaussian, Inc, Wallingford CT, *Gaussian 16, Revision B.01;* Gaussian, Inc, Wallingford CT, **2016**.
- [18] a) Ed. P. Ziesche and H. Eschrig, Akademie Verlag, Berlin, Ed, *Electronic Structure of Solids '91*, **1991**; b) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648–5652;

- [19] a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; b) S.
 Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465;
- [20] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- [21] A. da Silva, H. da Costa, M. Trsic, Mol. Phys. 1989, 68, 433–445.
- [22] A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, *Chem. Phys. Lett.* **1993**, *208*, 111–114.
- [23] a) K. Fukui, Acc. Chem. Res. 1981, 14, 363–368; b) C. Dykstra, G. Frenking, K. S. Kim, Theory and applications of computational chemistry; Elsevier Science, San Diego, CA, 2005;
- [24] R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165–169.
- [25] a) G. Knizia, J. Chem. Theory Comput. 2013, 9, 4834–4843; b) G. Knizia, J. E. M. N. Klein, Angew. Chem. Int. Ed. 2015, 54, 5518–5522;
- [26] K. Morokuma, J. Chem. Phys. 1971, 55, 1236–1244.
- [27] a) E. J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, S. Gusarov, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, J. W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M. V. Krykunov, E. van Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj, S. M. Morton, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, M. Pavanello, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, J. I. Rodríguez, P. Ros, P. R. T. Schipper, H. van Schoot, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovle, ADF 2021, SCM, Theoretical Chemistry; Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com; b) ADF 2021.1, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.; c) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J Comput Chem 2001, 22, 931-967;
- [28] M. P. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory Comput. 2009, 5, 962–975.
- [29] a) J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211–7218; b) A. E. Reed, F. Weinhold, J. Chem. Phys. 1985, 83, 1736–1740; c) A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899–926;
- [30] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis and F. Weinhold, *NBO 6.0 program;* Theoretical Chemistry Institute, University of Wisconsin, Madison, **2018**.

Chromatogram obtained for hydrogermylation of diphenylacetylene by GC/MS in DCM:

* 1,2,4,5-tetramethylbenzene = internal standard of the reaction # Products from decomposition of Et_3GeH

Chromatogram obtained after purification for hydrogermylation of phenylacetylene by GC/MS in DCM:

* 1,2,4,5-tetramethylbenzene = internal standard of the reaction

¹H NMR (500 MHz, CD₂Cl₂):

¹³C{¹H} NMR (126 MHz, CD₂Cl₂):

³¹P{¹H} NMR (121 MHz, CD₂Cl₂):

f1 (ppm)

¹³C{¹H} NMR (75 MHz, CDCl₃):

¹H NMR (300 MHz, CDCl₃):

¹⁹F NMR (471 MHz, CDCl₃):

¹H-¹H NOESY NMR (500 MHz, CD₂Cl₂):

¹³C{¹H} NMR (126 MHz, CDCl₃):

²⁹Si{¹H} DEPT 6H NMR (99 MHz, CDCl₃):

¹³C{¹H} NMR (126 MHz, CDCl₃):

²⁹Si{¹H} DEPT 6H NMR (99 MHz, CDCl₃):

¹H NMR (300 MHz, CDCl₃):

¹H NMR (300 MHz, CD₂Cl₂):

¹H NMR (500 MHz, CDCl₃):

²⁹Si{¹H} DEPT 6H NMR (99 MHz, CDCl₃):

¹H NMR (500 MHz, CDCl₃):

¹³C{¹H} NMR (126 MHz, CDCl₃):

¹⁹F{¹H} NMR (282 MHz, CDCl₃):

²⁹Si{¹H} DEPT 6H NMR (99 MHz, CDCl₃):

¹⁹F{¹H} NMR (282 MHz, CDCl₃):

¹H NMR (500 MHz, CDCl₃):

²⁹Si{¹H} DEPT 6H NMR (99 MHz, CDCl₃):

$^{29}\text{Si}\{^1\text{H}\}$ DEPT 6H NMR (99 MHz, CDCl₃):

S58