Supplementary Information (SI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2024

NaOH/Urea aqueous solution facilitates spectroscopic quantitation

of lignin in corn stalk

Kexin Yan,^a Nan Li,^a Qifan Tian,^a Zijian Tan,^{a,b} Qinchen Qin,^a Jinao Duan,^a Leilei Zhu^{b*} and Haifeng Liu^{a*}

a. Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization,
School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
b. Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of
Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.

Email: haifeng.liu@njucm.edu.cn; zhu_ll@tib.cas.cn

Figure S1 Full-wavelength scanning (200-800 nm) of standard cellulose in 7% NaOH/12% urea aqueous solution.

Figure S2 Full-wavelength scanning (200-800 nm) of standard hemicellulose in 7% NaOH/12% urea aqueous solution.

Figure S3 The dissolution of lignin in NaOH / urea solution with different ratios.

Figure S4 Full-wavelength scanning (200-800 nm) of standard lignin in 7% NaOH/12% urea aqueous solution after incubation at different temperatures.

Figure S5. 2D-HSQC spectrum of lignin-carbohydrate complex in corn straw.

Table S1. Assignment of main	¹³ C- ¹ H cross-signals in HSQC spectra of lignin fractions		
from corn straw.			

label	$\delta_c/\delta_{^{_{\!H}}}$	assignment
X_1	102.2/4.28	C_1 -H ₁ in β -D-xylopyranoside
X_2	73.1/3.06	$\mathrm{C}_2\text{-}\mathrm{H}_2$ in $\beta\text{-}\mathrm{D}\text{-}\mathrm{xylopyranoside}$
X_3	74.2/3.27	$\mathrm{C}_3\text{-}\mathrm{H}_3$ in $\beta\text{-}\mathrm{D}\text{-}\mathrm{xylopyranoside}$
X_4	75.7/3.52	C_4 -H ₄ in β -D-xylopyranoside
X_5	63.5/3.18	C_5 -H ₅ in β -D-xylopyranoside
А	63.5/3.19	β-O-4'linkages
A'	63.5/3.90	C_{α} -ethoxylation β -O-4'linkages