Supporting Information

Electrochemical Oxidative Dearomatization of Electron-deficient Phenols Using Br⁺/Br⁻ Catalysis

Kai Matsui, Muhammet Uyanik,* and Kazuaki Ishihara*

Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan E-mail: muha@chembio.nagoya-u.ac.jp, ishihara@cc.nagoya-u.ac.jp

Table of Contents:

Material and Methods	S2
Additional Information	S3
Synthesis and Characterization of Substrates	S6
Procedures for Oxidation and Characterization of Products	S9
General for Electrolysis	S9
Electrooxidative Dearomative Cyclization of Arenols	S10
Cyclic Voltammetry	S16
References	S18
NMR Spectra	S19

Materials and Methods

Infrared (IR) spectra were recorded on a JASCO FT/IR 460 plus spectrometer. ¹H NMR spectra were measured on a JEOL ECS-400 (400 MHz) at ambient temperature. Chemical shifts are reported in ppm from Me₄Si resonance (0.00 ppm; CDCl₃) as internal standard. Data were recorded as follows: the chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (s = singlet; d = doublet; t = triplet; q = quartet; quin = quintet; sept = septet; m = multiplet; brs = broad singlet), coupling constant (Hz), and integration. ¹³C NMR spectra were measured on a JEOL ECS-400 (100 MHz) spectrometer at ambient temperature. Chemical shifts were recorded in ppm from the solvent resonance employed as the internal standard (CDCl₃: 77.16 ppm, C₆D₆: 128.06 ppm). Chemical shifts were recorded in ppm from the solvent resonance employed as the external standard (CPCl₃ at 0 ppm). High-resolution mass spectral analysis (HRMS) was performed at Chemical Instrument Center, Nagoya University [JEOL JMS-T100TD (DART), Bruker compact (ESI)]. For thin-layer chromatography (TLC) analysis, Merck precoated TLC plates (silica gel 60 F₂₅₄ 0.25 mm) were used. The products were purified by column chromatography on silica gel (KANTO Chemical Co., Inc. 37562-84).

In experiments that required dry solvents, toluene, benzene, diethyl ether (Et₂O), tetrahydrofuran (THF), and dichloromethane (CH₂Cl₂) were purchased from FUJIFILM Wako Pure Chemical Industries, Ltd. as the "anhydrous" and stored over molecular sieves 4A. Other solvents were purchased from Aldrich Chemical Co., Inc., FUJIFILM Wako Pure Chemical Industries, Ltd., or Tokyo Chemical Industry Co., Ltd. and used without further purification. Tetrabutylammonium bromide (Bu₄NBr) and NaBF₄ were purchased from FUJIFILM Wako Pure Chemical Industries, Ltd. and used without further purification. Other simple chemicals were analytical-grade and obtained commercially and used without further purification.

Additional Information

	<i>t</i> -Bu	OH	ОН	Anode (+) I Cathode (–) Bu ₄ NBr (<i>x</i> mol%) Electrolyte (2 equiv)			t-Bu		
		Br	1a	Solvent (0.1 <i>M</i>) / H ₂ O (1:2, <i>v/v</i>) CCE (0.5 mA), 2.6 F/mol (27.9 h) undivided cell			Br 2a		
entry	x	Т	Anode	Cathode	Electrolyte	Solvent	1a ,	2a,	
	(mol%)	(°C)					Conv. (%) ^{b}	Yield $(\%)^b$	
1	20	25	Pt	SST	NaBF ₄	DCE	84	72	
2 ^c	20	25	Pt	SST	NaBF ₄	DCE	73	60	
3	20	5	Pt	SST	NaBF ₄	DCE	78	71	
4	40	5	Pt	SST	NaBF ₄	DCE	95	92	
5	40	5	Pt	SST	NaBF ₄	CH ₂ Cl ₂	83	78	
6	40	5	Pt	SST	NaBF ₄	$C_6F_5CF_3$	88	83	
7	40	5	Pt	SST	NaBF ₄	CH_3NO_2	18	5	
8^d	40	5	Pt	SST	NaBF ₄	DCE	94	92 (92) ^e	
9	0 ^f	25	Pt	SST	NaBF ₄	DCE	12 ^g	<5	
10	40	5	Pt	SST	NaClO ₄	DCE	>95	91	
11	40	5	Pt	SST	NaPF ₆	DCE	>95	92	
12	40	5	Pt	SST	LiClO ₄	DCE	94	87	
13	40	5	Pt	Pt	NaBF ₄	DCE	>95	85	
14 ^{<i>h</i>}	20	25	GC	SST	NaBF ₄	CH_2Cl_2	>95%	36–75 ^{<i>i</i>}	
15 ^h	20	25	С	SST	NaBF ₄	CH ₂ Cl ₂	>95%	32	
16 ^h	10	25	Pt	SST	NaBF ₄	CH ₂ Cl ₂	>95%	66	

Table S1. Full Data for Electrooxidative Dearomative Spirolactonization of 1a^a

^{*a*} Unless otherwise noted, the reactions were carried out using **1a** (0.2 mmol), Bu4NBr (*x* mol%), and electrolyte (2.0 equiv) under constant-current electrolysis using an anode (10 mm × 10 mm × 0.2 mm) and a cathode (10 mm × 10 mm × 0.15 mm). The distance between electrodes was 10 mm. ^{*b*} Determined by ¹H NMR analysis of the crude product using methyl 3,5-dibromobenzoate as an internal standard. ^{*c*} NaHSO₄ (2.0 equiv) was used as an additive. ^{*d*} CCE (1.0 mA); reaction time: 13.9 h. ^{*e*} Isolated yield. ^{*f*} Bu4NPF₆ (20 mol%) was used instead of Bu4NBr. ^{*g*} 6-Bromo-8-(*tert*-butyl)chroman-2-one generated by intramolecular dehydration of **1a** was obtained in 9% as the main side product. ^{*h*} Electrooxidation was performed using IKA ElectraSyn 2.0. Reaction conditions: NaBF₄ (2.5 equiv), CH₂Cl₂/pH 4.4 buffer (1:2.5, *v*/*v*), CCE (0.5 mA). ^{*i*} No reproducible results were obtained. GC: Glassy carbon; C: graphite; SST: Stainless steel.

Ex-cell reaction (in the divided cell, ElectraSyn + Pro Divide)

Scheme S1. Control experiment using a divided cell. Initially, we electrochemically oxidized 1 equivalent of Bu₄NBr at the anode, and after 13.9 hours, we stopped the electricity and added substrate 1a to the reaction mixture. Although the oxidative dearomative spirolactonization proceeded, only 12% of the desired product 2a was obtained. This result suggests that while Br⁺ species were likely generated under electrochemical conditions, they were unstable and decomposed before the substrate was added, which prevented the oxidation reaction from proceeding efficiently. In addition, we conducted the same reaction in the presence of *N-tert*-butyl- α -phenylnitrone (PBN), a radical scavenger, which provided the same yield of 2a, suggesting that a radical mechanism for the oxidative dearomatization is unlikely under these conditions.

$$1a \xrightarrow{9\% \text{ NaBrO aq. (1 equiv)}}{Bu_4 \text{NHSO}_4 (1 equiv)} 2a: 19\% \text{ yield}$$

Scheme S2. Control experiment using hypobromite as a sole oxidant. The oxidation of 1a using commercially available 9% aqueous solution of sodium hypobromite in the presence of tetrabutylammonium hydrogen sulfate proceeded to give spirolactone 2a, suggesting that hypobromite could mediate the present oxidative dearomatization albeit in low yield under stoichiometric conditions.

These control experiments highlight the importance of using a catalytic approach to generate such unstable active species in the reaction system. Catalytic reactions utilizing in situ-generated active species, as opposed to stoichiometric processes, offer improved chemoselectivity and reaction efficiency, which are crucial for achieving the desired transformation. Furthermore, the use of a biphasic reaction system is particularly advantageous in this context, as it enables the reaction of substrates that might otherwise be incompatible with the electrochemical conditions.

Scheme S3. Direct electrolysis of 1a under Kalek's conditions (*Synthesis*, 2023, 55, 4173). Electrooxidation was performed using IKA ElectraSyn 2.0. Although the reaction proceeded and 1a was completely consumed, the desired product 2a was obtained in 54% yield, with the remaining material consisting of multiple unidentified compounds. This result clearly demonstrates that direct electrolysis leads to lower selectivity and product yield compared to the indirect electrolysis method using a bromide mediator. It highlights the importance of using a bromide mediator in a biphasic system for achieving chemoselective oxidation, as outlined in our proposed mechanism.

Synthesis and Characterization of Substrates

1a,¹ 1b,¹ 1d–g,¹ 1h,² 1i,³ 1j,¹ and 1l¹ were known compounds and prepared by following the literature procedures.

1m was purchased from Tokyo Chemical Industry Co., Ltd., and used without further purification.

Synthesis of 1c:

3-(5-benzoyl-3-(tert-butyl)-2-hydroxyphenyl)propanoic acid (1c): This step was adopted from the literature and slightly modified.⁴ To a stirred solution of anhydrous AlCl₃ (FUJIFILM Wako, 5.00 mmol, 0.800 g) in dry toluene (15.0 mL) was added 2-tert-butylphenol (TCI, 3.36 mmol, 0.770 g) and stirred at -35 °C for 1 h. Then, benzoyl chloride (FUJIFILM Wako, 6.00 mmol, 0.691 mL) was added to the flask and the mixture was stirred for 5 h. The reaction was quenched by H₂O (5.00 mL), poured into 1 MHCl (15.0 mL), and extracted with EtOAc (three times). The combined organic phase was washed with brine (15.0 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated. of mixture hexane/CHCl₃ Reprecipitation crude from afforded (3-(tert-butyl)-4hydroxyphenyl)(phenyl)methanone (0.827 g, 3.25 mmol, 65% yield) as a white solid.

To a solution of this phenol and triethyl ortho acrylate⁵ (0.906 g, 5.20 mmol) in toluene (16.3 mL) was added pivalic acid (TCI, 0.166 g, 1.63 mmol) and the resulting mixture was refluxed for 16 h. The resulting mixture was poured into 1*M* NaOH (30.0 mL), extracted with Et₂O (twice), and washed with brine. The combined organic layers were dried over anhydrous Na₂SO₄, and solvents were removed in *vacuo*. The residue was purified by flash column chromatography on silica gel (eluent: hexane-EtOAc = 15:1) to give (8-(*tert*-butyl)-2,2-diethoxychroman-6-yl)(phenyl)methanone (0.970 g, 2.54 mmol, 78% yield) as a yellow oil.

This step was adopted from the literature.¹ To a solution of this ortho ester in Et₂O (13.0 mL) was added 2 *M* HCl (6.50 mL) and the resulting mixture was stirred for 48 h at 25 °C. The resulting

mixture was extracted with Et₂O (twice), and the combined organic layers were washed with brine. The organic layer was dried over anhydrous Na₂SO₄, and solvents were removed in *vacuo*. To a solution of the crude product in THF (6.50 mL) and MeOH (6.50 mL) was added 2*M* NaOH (6.50 mL), and the resulting mixture was stirred for 7 h at 25 °C. The resulting mixture was poured into 1 *M* HCl, extracted with Et₂O (twice), and washed with brine. The combined organic layers were dried over anhydrous Na₂SO₄, and solvents were removed in *vacuo*. The residue was purified by flash chromatography on silica gel (eluent: hexane–EtOAc = 1:2) to give **1c** (0.406 g, 1.24 mmol) in 49% yield (2 steps) as a white solid. **Mp**: 55.8–63.7 °C (decomposition); **TLC**, R_f = 0.47 (hexane–EtOAc–AcOH = 50:50:1); **IR** (KBr) 3194, 2955, 1707, 1631, 1572 cm⁻¹; ¹**H** NMR (CDCl₃, 400 MHz) δ 7.93 (br, 1H), 7.75 (d, *J* = 7.3 Hz, 2H), 7.71 (d, *J* = 2.3 Hz, 1H), 7.57 (t, *J* = 7.3 Hz, 1H), 7.52–7.46 (m, 3H), 2.95–2.92 (m, 2H), 2.86–2.83 (m, 2H), 1.41 (s, 9H); ¹³C NMR (CD₃OD, 400 MHz) δ 198.3, 178.0, 159.9, 139.8, 138.9, 133.1, 132.5, 130.7, 129.8, 129.3, 129.2, 129.2, 36.0, 35.2, 30.0, 26.1; **HRMS** (ESI+) m/z calcd for [C₂₀H₂₃O₄+H]⁺ 327.1591, found 327.1579.

Synthesis of 1k:

3-(3-bromo-5-(*tert***-butyl)-4-hydroxyphenyl)propanoic acid (1k**): This step was adopted from the literature.⁶ To a stirred solution of Pd(OAc)₂ (TCI, 0.168 mmol, 0.0377 g) and tris(*o*-tolyl)phosphine (FUJIFILM Wako, 0.68 mmol, 0.0205 g) in Et₃N (6.72 mL) were added 2-*tert*-butyl-4-bromophenol (TCI, 3.36 mmol, 0.770 g) and methyl acrylate (FUJIFILM Wako, 6.72 mmol, 0.602 mL). The reaction mixture was heated to 110 °C (oil bath) under a nitrogen atmosphere for 16 h. The reaction was then cooled to room temperature, poured into 1 *M* HCl (15.0 mL), and extracted with Et₂O (twice). The combined organic phase was washed with brine (15.0 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude residue was purified by flash chromatography on silica gel (eluent: hexane-EtOAc = 4:1) to give methyl (*E*)-3-(3-(*tert*-butyl)-4-hydroxyphenyl)acrylate (0.787 g, 3.36 mmol, >99% yield) as a white solid.

To a solution of this olefin in MeOH (16.8 mL) was added 10% Pd/C (TCI, 78.7 mg). The flask containing the mixture was then evacuated and purged with H₂ three times. After stirring for 9 h at 25 °C, the mixture was filtered through celite with EtOAc, and the crude product was obtained after removing the solvent *in vacuo*. The residue was purified by flash chromatography on silica gel (eluent: hexane–EtOAc = 4:1) to give methyl 3-(3-(tert-butyl)-4-hydroxyphenyl)propanoate (0.794 g, 3.36 mmol, >99% yield) as a colorless oil.

To a solution of this methyl ester in CH₃CN (16.8 mL) and AcOH (16.8 mL) under a nitrogen atmosphere was added *N*-bromosuccinimide (FUJIFILM Wako, 0.658 g, 3.70 mmol) at 0 °C. After stirring for 4 h at 25 °C, the resulting mixture was quenched by saturated Na₂S₂O₃ (10.0 mL) and diluted with water. The aqueous layers were separated and extracted with Et₂O (twice). The combined organic layers were washed with water, saturated NaHCO₃ and brine. The organic layer was dried over anhydrous Na₂SO₄; then, the solvents were removed *in vacuo*. The residue was purified by flash chromatography on silica gel (eluent: hexane–EtOAc = 5:1) to give methyl 3-(3-bromo-5-(*tert*-butyl)-4-hydroxyphenyl)propanoate (0.964 g, 3.06 mmol, 91% yield) as a white solid.

To a solution of this methyl ester in THF (7.15 mL) and MeOH (7.15 mL) was added 1 *M* NaOH (7.15 mL), and the resulting mixture was stirred at 25 °C for 7 h. Then, the resulting mixture was diluted with Et₂O and water. The aqueous layer was separated and poured into Et₂O. To the resulting mixture was added 1 *M* HCl until instantaneous precipitation of a white solid was no longer observed. The precipitated white solids immediately dissolved into the ether phase. The aqueous phase was extracted with Et₂O (twice), and the combined organic layers were washed with distilled water. The combined organic layers were dried over anhydrous Na₂SO₄, and solvents were removed *in vacuo* to give **1k** (0.580 g, 1.93 mmol, 63% yield) as a white solid. **Mp**: 86.9–87.9 °C (decomposition); **TLC**, $R_f = 0.50$ (Hexane–EtOAc–AcOH = 10:10:1); **IR** (KBr) 3426, 2955, 1693, 1160 cm⁻¹; ¹**H NMR** (CDCl₃, 400 MHz) δ 7.19 (d, J = 2.3 Hz, 1H), 7.04 (d, J = 1.8 Hz, 1H), 5.70 (s, 1H), 2.86 (t, J = 7.8 Hz, 2H), 2.66–2.62 (m, 2H), 1.38 (s, 9H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 178.8, 149.0, 137.7, 132.7, 129.1, 126.8, 112.2, 35.9, 35.5, 29.9, 29.4; **HRMS** (ESI–) m/z calcd for [C₁₃H₁₇⁷⁹BrO₃–H]⁻/[C₁₃H₁₇⁷⁹BrO₃–H]⁻/[C₁₃H₁₇⁷⁹BrO₃–H]⁻/[C₁₃H₁₇⁸¹BrO₃–H]⁻ 299.0288/301.0269, found 209.0277/301.0257.

Procedures for Electrolysis and Characterization of Products

General for Electrolysis

Electrolysis was carried out using a Pt plate anode ($10 \text{ mm} \times 10 \text{ mm} \times 0.2 \text{ mm}$) and an SST cathode ($10 \text{ mm} \times 10 \text{ mm} \times 0.15 \text{ mm}$) connected to Pt wire (diameter: 0.50 mm) (Figure S1 (a)). The electrochemical reactions were performed in a 10 mL vial equipped with the two electrodes (the distance between the electrodes: ca. 10 mm) (Figure S1 (b)). The two electrodes were connected to a DC power supply (KIKUSUI PMX350-0.2A) and an ammeter (Colluck PM-128E). The reactions were carried out in a cool bath stirrer (Nissin SWC L-20) (Figure S1 (c) and (d)).

Figure S1. (a) Electrodes (right: Pt, left: SST). (b) A 10 mL vial is equipped with electrodes and charged with the reaction mixture. (c, d) Electrolysis system and reaction in a cool bath stirrer.

Electrooxidative Dearomative Cyclization of Arenol Derivatives

Representative Example: The electrooxidative spirocyclization was carried out in a 10 ml vial equipped with a Pt plate anode, and a SST plate cathode. A 10 mL vial was charged with a solution of **1a** (0.0602 g, 0.200 mmol) and Bu₄NBr (0.0258 g, 0.0800 mmol, 40 mol%) in dichloroethane (2.00 mL) and a solution of NaBF₄ (0.0439 g, 0.400 mmol) in H₂O (4.00 mL). A constant current (1.0 mA, 2.6 F/mol, 13.9 h) was supplied at 5 °C with magnetic stirring (350 rpm). The resulting mixture was extracted with ethyl acetate (5 times). The combined organic phase was dried over Na₂SO₄, and concentrated under reduced pressure (bath temperature: 25 °C). The residue was purified by flash column chromatography on silica gel (KANTO Chemical Co., Inc. 37562-84, eluent: hexane–EtOAc = 4:1) to give **2a** (0.0552 g, 0.184 mmol) in 92% yield as a yellow solid.

Scale-up (1.00 mmol scale) procedure: The electrooxidative spirocyclization was carried out in a 15 ml vial equipped with a Pt plate anode (10 mm × 15 mm × 0.2 mm), and a SST plate cathode (10 mm × 15 mm × 0.15 mm). A 15 mL vial was charged with a solution of **1a** (0.301 g, 1.00 mmol) and Bu₄NBr (0.129 g, 0.400 mmol, 40 mol%) in dichloroethane (5.00 mL) and a solution of NaBF₄ (0.0878 g, 0.800 mmol) in H₂O (8.00 mL). A constant current (1.5 mA, 2.6 F/mol, 46.5 h) was supplied at 5 °C with magnetic stirring (350 rpm). The resulting mixture was extracted with ethyl acetate (5 times). The combined organic phase was dried over Na₂SO₄, and concentrated under reduced pressure (bath temperature: 25 °C). The residue was purified by flash column chromatography on silica gel (KANTO Chemical Co., Inc. 37562-84, eluent: hexane–EtOAc = 4:1) to give **2a** (0.298 g, 0.996 mmol) in >99% yield as a yellow solid.

9-Bromo-7-*(tert*-butyl)-1-oxaspiro[4.5]deca-7,9-diene-2,6-dione (2a):¹ TLC, *R*_f = 0.49 (hexane– EtOAc = 2:1); ¹H NMR (CDCl₃, 400 MHz)δ 6.75 (d, *J* = 2.7 Hz, 1H), 6.54 (d, *J* = 2.3 Hz, 1H), 2.81– 2.72 (m, 1H), 2.55 (m, 1H), 2.42–2.36 (m, 1H), 2.15–2.06 (m, 1H), 1.23 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 196.5, 175.8, 145.3, 139.4, 136.2, 118.0, 86.1, 34.8, 30.0, 29.0, 25.8.

9-Acetyl-7-*(tert-butyl)-1-oxaspiro*[**4.5**]deca-7,9-diene-2,6-dione (2b):¹ 0.0372 g, 0.142 mmol, 71% yield. This compound was purified by flash column chromatography on silica gel (KANTO Chemical Co., Inc. 37562-84, eluent: hexane–EtOAc = 2:1). Yellow solid. **TLC**, $R_f = 0.58$ (Hexane–EtOAc = 1:1); ¹**H NMR** (CDCl₃, 400 MHz) δ 7.40 (d, J = 2.1 Hz, 1H), 7.10 (d, J = 1.8 Hz, 1H), 2.84–2.74 (m, 1H), 2.58 (m, 1H), 2.45 (s, 3H), 2.46–2.39 (m, 3H), 2.20–2.11 (m, 1H), 1.25 (s, 9H); ¹³C NMR (C₆D₆, 100 MHz) δ 197.6, 194.3, 175.3, 143.9, 143.5, 133.5, 131.8, 84.7, 34.7, 29.2, 28.9, 25.2, 24.8.

9-Benzoyl-7-(*tert*-butyl)-1-oxaspiro[4.5]deca-7,9-diene-2,6-dione (2c): 0.0543 g, 0.167 mmol, 84% yield. This compound was purified by flash column chromatography on silica gel (KANTO Chemical Co., Inc. 37562-84, eluent: hexane–EtOAc = 4:1). Yellow solid. **Mp**: 137–143 °C (decomposition); **TLC**, $R_f = 0.22$ (Hexane–EtOAc = 4:1); ¹H **NMR** (CDCl₃, 400 MHz) δ 7.80–7.77 (m, 2H), 7.65–7.61 (m, 1H), 7.53–7.49 (m, 2H), 7.37 (d, J = 2.3 Hz, 1H), 6.79 (d, J = 2.3 Hz, 1H), 2.84–2.74 (m, 1H), 2.57–2.41 (m, 2H), 2.15–2.06 (m, 1H), 1.29 (s, 9H); ¹³C **NMR** (CDCl₃, 100 MHz) δ 197.3, 193.5, 175.8, 144.9, 144.1, 135.8, 133.8, 133.5, 133.4, 129.7, 128.9, 85.0, 35.0, 29.8, 29.1, 25.4.

9-Bromo-7-(triisopropylsilyl)-1-oxaspiro[4.5]deca-7,9-diene-2,6-dione (2d):¹ 0.0647 g, 0.162 mmol, 81% yield. This compound was purified by flash column chromatography on silica gel

(KANTO Chemical Co., Inc. 37562-84, eluent: hexane–EtOAc = 4:1). Yellow solid. **TLC**, $R_f = 0.62$ (Hexane–EtOAc = 2:1); ¹**H NMR** (CDCl₃, 400 MHz) δ 7.06 (t, J = 2.3 Hz, 1H), 6.63 (t, J = 2.1 Hz, 1H), 2.78–2.69 (m, 1H), 2.57–2.51 (m, 1H), 2.47–2.42 (m, 1H), 2.20–2.11 (m, 1H), 1.39–1.31 (sept, J = 7.3, 3H), 1.06–1.03 (m, 18H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 199.8, 175.6, 153.3, 138.3, 136.7, 118.5, 85.6, 30.4, 25.7, 18.7, 18.7, 11.2.

4'-Bromo-3,4,5',6',7',8'-hexahydro-1'*H***,5***H***-spiro**[**furan-2,2'-naphthalene**]**-1',5-dione** (2e):¹ 0.0481 g, 0.162 mmol, 81% yield. This compound was purified by flash column chromatography on silica gel (KANTO Chemical Co., Inc. 37562-84, eluent: hexane–EtOAc = 4:1). Yellow solid. **TLC**, $R_{\rm f} = 0.57$ (Hexane–EtOAc = 1:1); ¹**H NMR** (CDCl₃, 400 MHz) δ 6.62 (s, 1H), 2.94–2.85 (m, 1H), 2.60–2.55 (m, 1H), 2.53–2.24 (m, 5H), 2.19–2.10 (m, 1H), 1.81–1.56 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ 196.6, 176.1, 148.2, 135.8, 131.7, 124.2, 83.5, 31.3, 31.0, 26.4, 22.5, 22.2, 21.0.

9-Chloro-7-isopropyl-10-methyl-1-oxaspiro[**4.5**]**deca-7,9-diene-2,6-dione** (**2f**):¹ 0.0472 g, 0.185 mmol, 92% yield. This compound was purified by flash column chromatography on silica gel (KANTO Chemical Co., Inc. 37562-84, eluent: hexane–EtOAc = 4:1). Yellow solid. **TLC**, R_f = 0.51 (Hexane–EtOAc = 1:1); ¹**H NMR** (CDCl₃, 400 MHz) δ 6.68 (s, 1H), 2.93–2.86 (m, 1H), 2.82–2.73 (m, 1H), 2.56 (ddd, *J* = 17.9, 9.6, 1.8 Hz), 2.32–2.26 (m, 1H), 2.14–2.05 (m, 1H), 2.00 (s, 3H), 1.10 (d, *J* = 6.9, 6H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 197.5, 176.1, 140.8, 139.3, 138.3, 125.2, 87.6, 29.3, 26.5, 25.7, 21.4, 21.3, 14.8

7-Bromo-9-chloro-8,10-dimethyl-1-oxaspiro[**4.5**]deca-7,9-diene-2,6-dione (**2g**):¹ 0.0568 g, 0.186 mmol, 93% yield. This compound was purified by flash column chromatography on silica gel (KANTO Chemical Co., Inc. 37562-84, eluent: hexane–EtOAc = 4:1). Yellow solid. **TLC**, R_f = 0.58 (Hexane–EtOAc = 1:1); ¹**H NMR** (CDCl₃, 400 MHz) δ 2.90–2.80 (m, 1H), 2.62–2.57 (m, 1H), 2.49 (s, 3H), 2.39–2.33 (m, 1H), 2.20–2.11 (m, 1H), 2.06 (s, 3H); ¹³C **NMR** (CDCl₃, 100 MHz) δ 190.9, 175.5, 152.8, 141.7, 127.5, 119.6, 87.0, 30.4, 25.6, 24.2, 15.9.

2',5-Dioxo-4,5-dihydro-2'*H***,3***H***-spiro[furan-2,1'-naphthalene]-6'-carbonitrile (2h):^{1,2} 0.0289 g, 0.121 mmol, 60% yield. This compound was purified by flash column chromatography on silica gel (KANTO Chemical Co., Inc. 37562-84, eluent: hexane–EtOAc = 1:1). White solid. TLC**, $R_f = 0.30$ (Hexane–EtOAc = 1:1); ¹**H NMR** (CDCl₃, 400 MHz) δ 7.77 (dd, J = 8.2, 1.4 Hz, 1H), 7.71 (d, J = 8.2 Hz, 1H), 7.67 (d, J = 1.4 Hz, 1H), 7.49 (d, J = 9.6 Hz, 1H), 6.32 (d, J = 9.6 Hz, 1H), 2.90–2.80 (m, 1H), 2.73–2.64 (m, 2H), 2.16–2.08 (m, 1H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 196.0, 175.7, 145.2, 143.6, 134.2, 132.8, 130.4, 126.7, 124.7, 117.5, 113.6, 85.4, 35.6, 26.3.

(1'*S*,2*R*,4'*R*,4a'*R*,10'*R*)-2',4',4a',6'-Tetrabromo-1',3,3'',4,4',4a',4'',8a'-octahydro-5*H*,5''*H*,7'*H*dispiro[furan-2,8'-[1,4]ethanonaphthalene-10',2''-furan]-5,5'',7',9'-tetraone (3i):^{1,3} Constant current electrolysis (0.5 mA, 27.9 h). 0.0521 g, 0.0810 mmol, 81% yield. This compound was purified

by flash column chromatography on silica gel (KANTO Chemical Co., Inc. 37562-84, eluent: hexane–EtOAc = 4:1). Yellow solid. **TLC**, $R_f = 0.57$ (Hexane–EtOAc = 1:1); ¹H NMR (CDCl₃, 400 MHz) δ 7.33 (s, 1H), 6.53 (d, J = 2.7 Hz, 1H), 4.01 (s, 1H), 3.76 (s, 1H), 3.00–2.91 (m, 1H), 2.79–2.52 (m, 5H), 2.47–2.40 (m, 1H), 2.33–2.25 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 193.4, 185.5, 174.3, 173.5, 144.5, 133.3, 124.0, 121.9, 83.4, 80.6, 75.9, 61.0, 54.7, 53.0, 35.0, 30.3, 28.2, 27.0.

(1'*S*,2*R*,4'*R*,4a'*R*,10'*R*)-2',4',4a',6'-Tetrachloro-1',4,4',4a',4'',5,5'',8a'-octahydro-7'Hdispiro[pyran-2,8'-[1,4]ethanonaphthalene-10',2''-pyran]-6,6'',7',9'(3H,3''H)-tetraone (3j):¹ Constant current electrolysis (0.5 mA, 27.9 h). The reaction mixture was stirring for 14 h at 25 °C after electrolysis for the completion of (4+2) dimerization. 0.0287 g, 0.0580 mmol, 58% yield. This compound was purified by flash column chromatography on silica gel (KANTO Chemical Co., Inc. 37562-84, eluent: hexane–EtOAc = 2:1). White solid. TLC, $R_f = 0.18$ (Hexane–EtOAc = 1:1); ¹H NMR (CDCl₃, 400 MHz) δ 6.90 (s, 1H), 6.05 (d, *J* = 2.7 Hz, 1H), 4.03 (s, 1H), 3.87 (t, *J* = 2.3 Hz, 1H), 2.85–2.68 (m, 2H), 2.63–2.50 (m, 3H), 2.21–2.10 (m, 3H), 2.05–1.90 (m, 3H), 1.50–1.43 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 193.1, 187.5, 168.1, 168.0, 138.7, 137.6, 131.5, 128.1, 83.2, 80.2, 79.6, 70.3, 52.0, 50.7, 34.3, 29.4, 29.3, 28.5, 16.6, 16.4.

7-Bromo-9-(*tert*-butyl)-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (2k): 0.0594 g, 0.199 mmol, >99% yield. This compound was purified by flash column chromatography on silica gel (KANTO Chemical Co., Inc. 37562-84, eluent: hexane–EtOAc = 4:1). Yellow solid. **Mp**: 125–132 °C (decomposition); **TLC**, $R_f = 0.32$ (Hexane–EtOAc = 4:1); **IR** (KBr) 2960, 1789, 1662, 1173 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.23 (d, J = 2.7 Hz, 1H), 6.61 (d, J = 3.2 Hz, 1H), 2.80 (t, J = 8.2 Hz, 2H), 2.42–2.37 (m, 2H), 1.25 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 177.2, 175.0, 146.1, 144.0,

139.7, 127.7, 80.5, 77.5, 77.1, 76.8, 35.4, 32.4, 29.1, 28.1; **HRMS** (DART+) m/z calcd for $[C_{13}H_{15}^{79}BrO_3+H]^+/[C_{13}H_{15}^{81}BrO_3+H]^+$ 299.0283/301.0262, found 299.0288/301.0275.

9-Bromo-7-*(tert-butyl)-1-oxaspiro*[4.5]deca-7,9-dien-6-one (21):¹ Constant current electrolysis (0.5 mA, 27.9 h) at 25 °C. 0.0268 g, 0.0940 mmol, 47% yield. This compound was purified by flash column chromatography on silica gel (KANTO Chemical Co., Inc. 37562-84, eluent: hexane–EtOAc = 3:1). Pale-yellow solid. TLC, $R_f = 0.45$ (Hexane–EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz) δ 6.65 (d, J = 2.3 Hz, 1H), 6.49 (d, J = 2.7 Hz, 1H), 4.24–4.19 (m, 1H), 4.13–4.07 (m, 1H), 2.21–2.06 (m, 2H), 2.01–1.93 (m, 1H), 1.90–1.84 (m, 1H), 1.21 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 202.0, 145.9, 140.5, 138.4, 115.3, 88.2, 77.5, 77.2, 76.8, 70.9, 35.6, 34.6, 29.2, 24.8.

2',3',4,5,5',7-Hexachloro-3*H*-spiro[benzofuran-2,1'-cyclohexane]-2',4'-dien-6'-one (2m):¹ Constant current electrolysis (0.5 mA, 27.9 h) at 25 °C. 0.0713 g, 0.176 mmol, 88% yield. This compound was purified by flash column chromatography on silica gel (KANTO Chemical Co., Inc. 37562-84, eluent: hexane–EtOAc = 4:1). Yellow solid. TLC, $R_f = 0.58$ (Hexane–EtOAc = 2:1); ¹H NMR (CDCl₃, 400 MHz) δ 7.36 (s, 1H), 7.33 (s, 1H), 3.63 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 188.2, 153.7, 140.2, 135.7, 130.5, 129.7, 127.3, 126.1, 126.0, 125.8, 114.1, 88.7, 42.4.

Cyclic Voltammetry

Cyclic Voltammograms (CVs) were recorded on Electrochemical Analyzer (BAS ALS Model 612F). A Pt electrode (diameter: 1.6 mm, BAS), a Ag/Ag+ (Ag wire in 0.01 M AgNO₃/0.1 M Bu₄NPF₆/CH₃CN), and a Pt wire electrode were used as working, reference, and counter electrodes, respectively. The working electrode was polished with 5 μ m diamond slurry and then with 0.5 μ m alumina slurry. After polishing, it was washed with distilled water and acetone. A CH₃CN or CH₃CN/H₂O (ν/ν =9/1) solution of a sample, including 10 mM of each sample and 0.1 M of Bu₄NPF₆, was prepared as an electrochemical solution. Using the electrodes and the solutions, beaker-typed three-electrode electrochemical cells were constructed and connected with the potentiostat to perform cyclic voltammetry.

Figure S2. Cyclic voltammograms of Bu₄NBr and **1a** under different conditions. (a–d) CV measurements in CH₃CN: (a) Bu₄NBr (red), (b) **1a** (green), (c) **1a** with Bu₄NBr (blue), and (d) background (black). (e–h) CV measurements in CH₃CN/H₂O (v/v = 9/1): (e) Bu₄NBr (red), (f) **1a** (green), (g) **1a** with Bu₄NBr (blue), and (h) background (black). Scan rate: 100 mV/s.

Figure S3. Comparison of CV curves for electron-deficient (1a) and electron-rich (S1 and S2) arenols.
CV measurements were performed in CH₃CN with a scan rate of 100 mV/s. Traces: (a) 1a (green),
(b) S1 (blue), (c) S2 (red), and (d) background.

References

- 1. Kato, T.; Sahara, N.; Akagawa, S.; Uyanik, M.; Ishihara, K. Org. Lett. 2024, 26, 7255-7260.
- 2. Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem. Int. Ed. 2013, 52, 9215.
- 3. Uyanik, M.; Yasui, T.; Ishihara, K. J. Org. Chem. 2017, 82, 11946.
- 4. Li, Z.; Zhang, Y.; Xia, H.; Mua, Y.; Liu, X. Chem. Commun., 2016, 52, 6613–6616.
- 5. Zhang, Z.; Sun, Q.; Xu, D.; Xia, C. Sun, W. Green Chem. 2016, 18, 5485.
- 6. Song, F.; Wang, C.; Falkowski, J. M.; Ma, L.; Lin, W. J. Am. Chem. Soc. 2010, 132, 15390.

1k, ¹³C NMR (CDCl₃, 100 MHz)

2a, ¹H NMR (CDCl₃, 400 MHz)

2a, ¹³C NMR (CDCl₃, 100 MHz)

2c, ¹³C NMR (CDCl₃, 100 MHz)

2d, ¹H NMR (CDCl₃, 400 MHz)

2d, ¹³C NMR (CDCl₃, 100 MHz)

2e, ¹³C NMR (CDCl₃, 100 MHz)

2f, ¹H NMR (CDCl₃, 400 MHz)

2g, ¹H NMR (CDCl₃, 400 MHz)

2g, ¹³C NMR (CDCl₃, 100 MHz)

2k, ¹H NMR (CDCl₃, 400 MHz)

2k, ¹³C NMR (CDCl₃, 100 MHz)

2I, ¹H NMR (CDCl₃, 400 MHz)

2I, ¹³C NMR (CDCl₃, 100 MHz)

3i, ¹H NMR (CDCl₃, 400 MHz)

