Supplementary Information

Hypoelectronic Titanaboranes: Icosahedral and Tetracapped Tetrahedral Clusters Comprising Bridging Hydrides

Subhash Bairagi, Debipada Chatterjee,[‡] Soumen Giri[‡] and Sundargopal Ghosh*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India, E-mail: sghosh@iitm.ac.in

^{*}These authors contributed equally to this work.

Table of contents

L

Experimental Details

Scheme S1	Synthesis of 1.	S 5
Scheme S2	Synthesis of 2 .	S6
Scheme S3	Synthesis of 3a and 3b .	S6

S7

I.1 UV-visible Studies

I.2 Supplementary Data

Figure S1	Molecular structure and labelling diagram of 1.	S8
Figure S2	Icosahedron core [Ti ₃ B ₉] of 1 .	S8
Figure S3	Molecular structure and labelling diagram of 2 .	S9
Figure S4	Tetracapped tetrahedron $[Ti_3B_3Te_2]$ core of 2 .	S9
Figure S5	Molecular structure and labelling diagram of 3b .	S10
Figure S6	$[Ti_2B_5]$ core of 3b .	S10

I.3 Spectroscopic Details

Figure S7	ESI-MS spectrum of 1.	S11
Figure S8	¹¹ B{ ¹ H} NMR spectrum of 1 .	S11
Figure S9	¹¹ B NMR spectrum of 1 .	S12
Figure S10	¹ H NMR spectrum of 1 .	S12
Figure S11	¹³ C{ ¹ H} NMR spectrum of 1 .	S13
Figure S12	IR spectrum of 1.	S13
Figure S13	ESI-MS spectrum of 2 .	S14
Figure S14	¹¹ B{ ¹ H} NMR spectrum of 2 .	S14
Figure S15	¹ H NMR spectrum of 2 .	S15
Figure S16	¹ H{ ¹¹ B} NMR spectrum of 2 .	S15
Figure S17	Stacked ¹ H (bottom) and ¹ H{ ¹¹ B} NMR (top) spectra of 2 .	S15
Figure S18	¹ H- ¹¹ B HSQC NMR spectrum of 2 .	S16
Figure S19	IR spectrum of 2 .	S16
Figure S20	ESI-MS spectrum of 3a .	S17
Figure S21	¹¹ B{ ¹ H} NMR spectrum of 3a .	S17
Figure S22	¹¹ B NMR spectrum of 3a .	S18
Figure S23	¹ H NMR spectrum of 3a .	S18
Figure S24	¹ H{ ¹¹ B} NMR spectrum of 3a .	S19
Figure S25	Stacked ¹ H (bottom) and ¹ H{ ¹¹ B} NMR (top) spectra of 3a .	S19
Figure S26	¹³ C{ ¹ H} NMR spectrum of 3a .	S19
Figure S27	⁷⁷ Se NMR spectrum of 3a .	S20
Figure S28	IR spectrum of 3a .	S20
Figure S29	ESI-MS spectrum of 3b .	S21

Figure S	30	¹¹ B{ ¹ H} NMR spectrum of 3b .	S21
Figure S	31	¹¹ B NMR spectrum of 3b .	S22
Figure S	32	¹ H NMR spectrum of 3b .	S22
Figure S	33	¹ H{ ¹¹ B} NMR spectrum of 3b .	S23
Figure S	34	Stacked ¹ H (bottom) and ¹ H 11 B} NMR (top) spectra of 3b .	S23
Figure S	35	¹³ C{ ¹ H} NMR spectrum of 3b .	S23
Figure S	36	⁷⁷ Se NMR spectrum of 3b .	S24
Figure S	37	IR spectrum of 3b .	S24
Figure S	38	Combined UV-vis spectra of 1 , 2 , 3a , and 3b in CH_2Cl_2 .	S25
1.4	X-ray An	alysis Details	S26
П	Computa	ational Details	S26
Table S1	L	Selected geometrical parameters and Wiberg bond indices (WBI) of 1 , 2 , 3a , and 3b .	S27
Table S2	2	Selected experimental and Calculated bond angles of 1, 2, 3a, and 3b.	S28
Table S3	3	Calculated natural charges (q) and natural valence population (Pop) of 1 , 2 , 3a , and 3b .	S28
Table S4	ţ	Calculated HOMO–LUMO energy gap of 1, 2, 3a, and 3b.	S29
Table S5	5	Calculated ¹¹ B chemical shifts for complexes 1 , 2 , 3a , and 3b .	S29
Figure S	39	Selected molecular orbitals of 1.	S30
Figure S	40	Selected NBO interactions of 1.	S30
Figure S	41	Contour-line diagram of the Laplacian of the electron density of ${f 1}$ in selected planes.	S31
Figure S	42	Selected molecular orbitals of 2.	S31
Figure S	43	Selected NBO interactions of 2 .	S32
Figure S	44	Contour-line diagram of the Laplacian of the electron density of 2 in selected planes.	S32
Figure S	45	Selected molecular orbitals of 3a .	S33
Figure S	46	Selected NBO interactions of 3a .	S33
Figure S	47	Contour-line diagram of the Laplacian of the electron density of 3a in selected planes.	S34
Figure S	48	(a) Selected NBO interaction of 3b . (b) Contour-line diagram of the Laplacian of the electron	
		density of 3b along B2-C1-C2 plane.	S34
Figure S	49	Absorption spectrum of 1 computed at TD-DFT-B3LYP/Def2-SVP level of theory.	S35
Table S6	5	TD-DFT calculated energies (excitation energy (eV), λ_{calc} (nm)), oscillator strength (ƒ), and main	
		composition of the first UV-vis electronic excitations for 1. Experimental absorption wavelengths	
		(λ_{exp} , nm) of 1 are given for comparison.	S35
Figure S	50	Selected molecular orbitals of 1 related to most intense electronic transitions.	S36
Figure S	51	Absorption spectrum of 2 computed at TD-DFT-B3LYP/Def2-SVP level of theory.	S36
Table S7	7	TD-DFT calculated energies (excitation energy (eV), λ_{calc} (nm)), oscillator strength (ƒ), and main	
		composition of the first UV-vis electronic excitations for 2. Experimental absorption wavelengths	
		(λ_{exp} , nm) of 2 are given for comparison.	S37
Figure S	52	Selected molecular orbitals of 2 related to most intense electronic transitions.	S38
Figure S	53	Absorption spectrum of 3a computed at TD-DFT-B3LYP/Def2-SVP level of theory.	S38

Table S8	TD-DFT calculated energies (excitation energy (eV), λ_{calc} (nm)), oscillator strength (f), and main		
	composition of the first UV-vis electronic excitations for 3a . Experimental absorption wavelengths		
	(λ_{exp}, nm) of 3a are given for comparison.	\$39	
Figure S54	Selected molecular orbitals of 3a related to most intense electronic transitions.	S40	
Figure S55	Absorption spectrum of 3b computed at TD-DFT-B3LYP/Def2-SVP level of theory.	S40	
Table S9	TD-DFT calculated energies (excitation energy (eV), λ_{calc} (nm)), oscillator strength (f), and main		
	composition of the first UV-vis electronic excitations for 3b . Experimental absorption wavelengths		
	(λ_{exp}, nm) of 3b are given for comparison.	S41	
Figure S56	Selected molecular orbitals of 3b related to most intense electronic transitions.	S42	
III Cartesia	n Coordinates of all Optimized Structures		
Figure S57	Optimized geometry of 1.	S43	
Figure S58	Optimized geometry of 2 .	S44	
Figure S59	Optimized geometry of 3a .	S45	
Figure S60	Optimized geometry of 3b .	S46	
IV Referen	ces	S48	

I Experimental Details

General Procedures and Instrumentation

All the manipulations were conducted under an Ar/N₂ atmosphere using standard Schlenk line techniques or in a glove box. Hexane, THF, and toluene solvents were distilled from purple solutions of benzophenone ketyl. Dichloromethane and CDCl₃ were distilled from calcium hydride prior to use. [Cp*TiCl₃]^[1] and Li[BH₃(EPh)]^[2,3] (E = Se and Te) were synthesized according to the literature methods, while LiBH₄ (2.0 M in THF) and [Ph₂E₂] (E = Se and Te) were used as received (Sigma Aldrich). Thin layer chromatography (TLC) was carried out on 250- μ m diameter aluminum-supported silica gel TLC plates (MERCK TLC Plates) to separate the reaction mixtures. NMR spectra were recorded on a Bruker Avance III 500 MHz spectrometer. The residual solvent protons (CDCl₃, δ = 7.26 ppm) and carbon (CDCl₃, δ = 77.1 ppm) were employed as a reference for the ¹H and ¹³C{¹H} NMR spectra, respectively. The ⁷⁷Se NMR chemical shifts are referenced with Se₂Ph₂ (δ = 463 ppm in CDCl₃). The ¹¹B decoupled ¹H spectrum was obtained with inverse gated decoupling (zgig) and power gated decoupling (zgpr) pulse sequences, respectively. ¹¹B{¹H} NMR spectra were processed with a backward linear prediction algorithm to eliminate the broad ¹¹B background signal of the NMR tube.^[4] All pulse sequences are available in a commercial Bruker spectrometer. Electrospray mass (ESI-MS) spectrometric data were obtained on a Qtof Micro YA263 HRMS and 6545 Qtof LC/MS instrument. Infrared (IR) spectra of liquid samples (prepared in dichloromethane) were recorded on a JASCO FT/IR-1400 spectrometer. UV-vis spectra were recorded in dichloromethane on a Thermo Scientific (Evolution 300) UV-vis spectrometer.

Synthesis of 1: In a flame-dried Schlenk tube, [(Cp*TiCl₃] (0.100 g, 0.35 mmol) was suspended in 10 mL dry toluene and it was charged with lithium borohydride solution 2.0 M in THF (0.6 mL, 1.2 mmol) dropwise at -78 °C and kept under constant stirring for 1 h. To this in situ generated intermediate, an excess amount of [BH₃·THF] (2.5 mL, 2.5 mmol) was added and kept at 90 °C for 48 h under stirring conditions. After the addition of [BH₃·THF], the mixture becomes light green. Further, during thermolysis, the reaction mixture slowly converted to brown from light green and, after 48 h, changed to dark brown. After the completion of the reaction, the solvent was removed under vacuum. The residue was extracted with hexane/dichloromethane mixture (70:30 v/v) through a frit using 3 cm celite. The filtrate was concentrated, and the residue was subjected to chromatographic workup on 250- μ m diameter aluminium-supported silica gel TLC plates (MERCK TLC Plates). Note that we have done the chromatographic workup using TLC plates inside beakers which were filled with Ar before and after filling with properly distilled eluting solvents. Elution with a hexane/dichloromethane (70:30 v/v) mixture yielded dark green **1** (0.010 g, 12%) along with previously reported open 16-vertex *oblato-hypho*-titanaborane cluster [(Cp*Ti)₂B₁₄H₁₈]^[5] (III) (0.019 g, 20%).

1: MS (ESI⁺): m/z calculated for $[C_{30}H_{53}B_9Cl_2Ti_3 + H]^+$: 726.2956, found: 726.3257; ¹¹B{¹H} NMR (160 MHz, CDCl_3, 22 °C): δ = 31.6 (br, 4B), 40.2 (br, 2B), 45.0 (br, 1B), 52.3 (br, 1B), 66.4 (br, 1B) ppm; ¹¹B NMR (160 MHz, CDCl_3, 22 °C): δ = 31.6 (d, ¹J_{B-H} = 125 Hz, 4B), 40.3 (d, ¹J_{B-H} = 127 Hz, 2B), 45.1 (d, ¹J_{B-H} = 103 Hz, 1B), 52.3 (br, 1B), 66.4 (br, 1B) ppm; ¹H NMR (500 MHz, CDCl_3, 22 °C): δ = 31.6 (d, ¹J_{B-H} = 125 Hz, 4B), 40.3 (d, ¹J_{B-H} = 127 Hz, 2B), 45.1 (d, ¹J_{B-H} = 103 Hz, 1B), 52.3 (br, 1B), 66.4 (br, 1B) ppm; ¹H NMR (500 MHz, CDCl_3, 22 °C): δ = 31.6 (d, ¹J_{B-H} = 127 Hz, 2B), 45.1 (d, ¹J_{B-H} = 103 Hz, 1B), 52.3 (br, 1B), 66.4 (br, 1B) ppm; ¹H NMR (500 MHz, CDCl_3, 22 °C): δ = 31.6 (d, ¹J_{B-H} = 125 Hz, 4B), 40.3 (d, ¹J_{B-H} = 127 Hz, 2B), 45.1 (d, ¹J_{B-H} = 103 Hz, 1B), 52.3 (br, 1B), 66.4 (br, 1B) ppm; ¹H NMR (500 MHz, CDCl_3, 22 °C): δ = 31.6 (d, ¹J_{B-H} = 103 Hz, 1B), 52.3 (br, 1B), 66.4 (br, 1B) ppm; ¹H NMR (500 MHz, CDCl_3, 22 °C): δ = 31.6 (d, ¹J_{B-H} = 103 Hz, 1B), 52.3 (br, 1B), 66.4 (br, 1B) ppm; ¹H NMR (500 MHz, CDCl_3, 22 °C): δ = 31.6 (d, ¹J_{B-H} = 103 Hz, 1B), 52.3 (br, 1B), 66.4 (br, 1B) ppm; ¹H NMR (500 MHz, CDCl_3, 22 °C): δ = 31.6 (d, ¹J_{B-H} = 103 Hz, 1B), 52.3 (br, 1B), 66.4 (br, 1B) ppm; ¹H NMR (500 MHz, CDCl_3, 22 °C): δ = 31.6 (d, ¹J_{B-H} = 103 Hz, 1B), 52.3 (br, 1B), 66.4 (br, 1B) ppm; ¹H NMR (500 Mz, CDCl_3, 22 °C): δ = 31.6 (d, ¹J_{B-H} = 103 Hz, 1B), 52.3 (br, 1B), 66.4 (br, 1B) ppm; ¹H NMR (500 Mz, CDCl_3, 22 °C): δ = 31.6 (d, ¹J_{B-H} = 102 Hz, 1B), 52.3 (br, 1B), 66.4 (br, 1B) ppm; ¹H NMR (500 Mz, CDCl_3, 22 °C): δ = 31.6 (d, ¹J_{B-H} = 103 Hz, 1B), 52.3 (br, 1B), 66.4 (br, 1B) ppm; ¹H NMR (500 Mz, CDCl_3, 22 °C): δ = 31.6 (d, ¹J_{B-H} = 103 Hz, 1B), 60.4 (br, 1B), 60.4 (br, 1B), 70 °C): δ = 31.6 (d, ¹J_{B-H} = 103 Hz, 1B), 70 °C): δ = 31.6 (d, ¹J_{B-H} = 103 Hz, 1B), 70 °C): δ = 31.6 (d, ¹J_{B-H} = 103 Hz, 1B), 70 °C): δ = 31.6 (d, ¹

CDCl₃, 22 °C): δ = -5.67 (br, 1H, Ti-*H*-B), 2.03 (s, 30H, 2Cp*), 2.05 (s, 15H, 1Cp*), 3.53 (br, B-Ht), 7.00 (br, B-Ht), 7.15 (br, B-Ht) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃, 22 °C): δ = 13.3 and 13.8 (C₅*Me*₅), 118.9 and 125.1 (*C*₅Me₅), ppm; IR (KBr, cm⁻¹): $\bar{\nu}$ = =2959, 2921, 2852, 2544 (B-H_t), 1737, 1652, 1462, 1378, 1262, 1094, 1019, 865, 804, 741, 706; UV-Vis (CH₂Cl₂): λ = 230,252, 455, 607 nm.

Synthesis of 2: In a flame-dried Schlenk tube, $[(Cp*TiCl_3] (0.100 \text{ g}, 0.35 \text{ mmol}) was suspended in 10 mL dry toluene and chilled to -78 °C. Then, a freshly prepared toluene solution of Li[BH₃TePh] (3 equivalents, 1.05 mmol, in 10 mL) was transferred to it through a cannula. The reaction mixture was allowed to come to room temperature over 1 hour under stirring and thermolyzed at 80 °C for 18 h. After 1 hour, the mixture becomes brown and, after 18 h, changes to dark brown. After the completion of the reaction, the solvent was removed under vacuum. The residue was extracted with hexane/dichloromethane mixture (80:20 v/v) through a frit using 3 cm celite. The filtrate was concentrated, and the residue was subjected to chromatographic workup on 250-<math>\mu$ m diameter aluminium-supported silica gel TLC plates (MERCK TLC Plates). Elution with a hexane/dichloromethane (80:20 v/v) mixture yielded yellow **2** (0.024 g, 25%) along with a few unidentified air and moisture-sensitive products in low yields.

Scheme S2. Synthesis of 2.

2: MS (ESI⁺): *m/z* calculated for $[C_{30}H_{51}B_{3}Te_{2}Ti_{3} + H]^{+}$: 845.0926, found: 845.1155; ¹¹B{¹H} NMR (160 MHz, CDCl₃, 22 °C): δ = -7.7 (br, 2B, *B*H₃), 54.0 (br, 1B, bare B) ppm; ¹H NMR (500 MHz, CDCl₃, 22 °C): δ = -2.79 (br, 4H, Ti-*H*-B), 2.04 (s, 15H, 1Cp⁺), 2.09 (s, 30H, 2Cp⁺), 2.36 (br, 2B, B-Ht) ppm; ¹H{¹¹B} NMR (500 MHz, CDCl₃, 22 °C): δ = -2.80 (br, 4H, Ti-*H*-B), 2.04 (s, 15H, 1Cp⁺), 2.09 (s, 30H, 2Cp⁺), 2.39 (br, 2B, B-Ht) ppm; ¹H{¹¹B} NMR (500 MHz, CDCl₃, 22 °C): δ = -2.80 (br, 4H, Ti-*H*-B), 2.04 (s, 15H, 1Cp⁺), 2.09 (s, 30H, 2Cp⁺), 2.39 (br, 2B, B-Ht) ppm; IR (KBr, cm⁻¹): \bar{v} = =2959, 2925, 2871, 2492 (B-H_t), 2083 (B-H_b), 1648, 1452, 1378, 1259, 1094, 1063, 1021, 801, 738, 697; UV-Vis (CH₂Cl₂): λ = 230, 264, 346 nm.

Synthesis of 3a and 3b: In a flame-dried Schlenk tube, [(Cp*TiCl₃] (0.100 g, 0.35 mmol) was suspended in 10 mL dry toluene and chilled to -78 °C. Then, a freshly prepared toluene solution of Li[BH₃SePh] (3 equivalents, 1.05 mmol, in 10 mL) was transferred to it through a cannula. The reaction mixture was allowed to come to room temperature over 1 hour under stirring and thermolyzed at 80 °C for 18 h. After 1 h, the mixture becomes brown and, after 18 h, changes to dark brown. After the completion of the reaction, the solvent was removed under vacuum. The residue was extracted with hexane/dichloromethane mixture (80:20 v/v) through a frit using 3 cm celite. The filtrate was concentrated, and the residue was subjected to chromatographic workup on 250- μ m diameter aluminium-supported silica gel TLC plates (MERCK TLC Plates). Elution with a hexane/dichloromethane (80:20 v/v) mixture yielded yellow **3a** (0.025 g, 22%) and yellow **3b** (0.022 g, 17%).

Scheme S3. Synthesis of 3a and 3b.

3a: MS (ESI⁺): *m/z* calculated for $[C_{26}H_{45}B_5Se_2Ti_2 - BH_2]^+$: 653.1080, found: 653.1082; ¹¹B{¹H} NMR (160 MHz, CDCl₃, 22 °C): δ = -2.2 (br, 2B, BH₃), 0.8 (br, 2B, BH₃), 51.3 (br, 1B, bare B) ppm; ¹¹B NMR (160 MHz, CDCl₃, 22 °C): δ = -2.4 (br, 2B, BH₃), 0.4 (br, 2B, BH₃), 51.3 (br, 1B, bare B) ppm; ¹H NMR (500 MHz, CDCl₃, 22 °C): δ = -2.34 (br, 1H, Ti-*H*-B), -1.73 (br, 2H, Ti-*H*-B), -0.77 (br, 1H, Ti-*H*-B), -0.54 (br, 2H, B-*H*-B), 2.01 (br, 2H, B-*H*t), 2.23 (s, 30H, 2Cp⁺), 2.94 (br, 2H, B-*H*t), 7.28-7.56 (m, 5H, Ph) ppm; ¹H{¹¹B} NMR (500 MHz, CDCl₃, 22 °C): δ = -2.35 (br, 1H, Ti-*H*-B), -1.75 (br, 2H, Ti-*H*-B), -0.79 (br, 1H, Ti-*H*-B), -0.54 (br, 2H, B-*H*t), 2.23 (s, 30H, 2Cp⁺), 2.72 (br, 2H, B-*H*t), 7.28-7.56 (m, 5H, Ph) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃, 22 °C): δ = 14.1 (C₅Me₅), 123.0 (C₅Me₅), 127.7-133.2 (C₆H₅) ppm; ⁷⁷Se NMR (95 MHz, CDCl₃, 22 °C): δ = 346.9 (μ -Se), 527.3 (μ -SePh) ppm; IR (KBr, cm⁻¹): $\bar{\nu}$ = =2961, 2921, 2852, 2503 (B-H_t), 2124 (B-H_b), 1645, 1473, 1432, 1128, 1092, 1065, 1019, 799, 731, 688; UV-Vis (CH₂Cl₂): λ = 230, 248, 276, 364 nm.

3b: MS (ESI⁺): *m/z* calculated for $[C_{32}H_{49}B_5Se_2Ti_2]^+$: 742.1651, found: 742.1716; ¹¹B{¹H} NMR (160 MHz, CDCl₃, 22 °C): δ = -0.3 (br, 1B, *B*H₃), 1.4 (br, 2B, *B*H₃), 5.2 (br, 1B, *B*H₂Ph), 50.6 (br, 1B, bare B) ppm; ¹¹B NMR (160 MHz, CDCl₃, 22 °C): δ = 1.3 (br, 3B, *B*H₃), 5.3 (br, 1B, *B*H₂Ph), 50.6 (br, 1B, bare B) ppm; ¹H NMR (500 MHz, CDCl₃, 22 °C): δ = -1.62 (br, 1H, Ti-*H*-B), -1.08 (br, 1H, Ti-*H*-B), -0.59 (br, 2H, Ti-*H*-B), -0.19 (br, 2H, B-*H*-B), 1.92 (br, 2H, B-H*t*), 2.14 (s, 15H, 1Cp^{*}), 2.23 (s, 15H, 1Cp^{*}), 3.20 (br, 2H, B-*Ht*), 7.06-7.59 (m, 10H, Ph) ppm; ¹H{¹¹B} NMR (500 MHz, CDCl₃, 22 °C): δ = -1.62 (br, 1H, Ti-*H*-B), -1.08 (br, 1H, Ti-*H*-B), -0.59 (br, 2H, Ti-*H*-B), -0.14 (br, 1H, B-*H*-B), 1.93 (br, 2H, B-*Ht*), 2.14 (s, 15H, 1Cp^{*}), 2.23 (s, 15H, 1Cp^{*}), 2.23 (s, 15H, 1Cp^{*}), 3.10 (br, 2H, B-*Ht*), 7.05-7.59 (m, 10H, Ph) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃, 22 °C): δ = 14.1 and 14.2 (2C₅*Me*₅), 122.9 and 123.0 (2C₅Me₅), 126.9-135.1 (2C₆H₅) ppm; ⁷⁷Se NMR (95 MHz, CDCl₃, 22 °C): δ = 293.7 (*μ*-*Se*), 540.5 (*μ*-*Se*Ph) ppm; IR (KBr, cm⁻¹): $\bar{\nu}$ = 2963, 2929, 2854, 2500 (B-H_t), 2088 (B-H_b), 1643, 1262, 1094, 1021, 867, 799, 692; UV-Vis (CH₂Cl₂): λ = 230, 250, 269, 317, 366 nm.

I.1 UV-visible Studies

In order to investigate the optical properties of these coloured metallaborane clusters **1**, **2**, **3a**, and **3b**, we have carried out UV-vis study in CH₂Cl₂ solution. The UV-vis absorption spectra of all the complexes were measured in the range of 200-800 nm in CH₂Cl₂ solution at 298 K (Figures S38). All of them display the most intense peaks at higher energy regions 230-276 nm due to the π - π * transition of Cp* ligands, characteristic bands for most Cp* based metal complexes.^[6] The absorptions with λ >300 nm exhibit mainly two to three absorption bands. These comparatively low energy bands, around 317-607 nm, have been assigned to the charge transfer bands.^[7-9] To reproduce the UV-vis spectrum and get some idea about the electronic transitions, Time-Dependent DFT formalism was used (Figures S49-S56, Tables S6-S9). The studies show that the absorption in the range of 317-607 nm may be assigned to the electronic transitions that correspond to electron density flow from the boron moieties or chalcogen atoms to the metal centers.

I.2 Supplementary Data

Figure S1. Molecular structure and labelling diagram of **1**. Side view (left); top view (right). Selected bond lengths (Å) and bond angles (°): Ti-Ti3 3.073(3), Ti1-B1 2.513(16), Ti1-B9 2.174(15), B2-B9 1.61(2), B7-Cl1 1.854(19), Ti1-Cl1 2.543(5), B8-H1 1.19(3), Ti2-H1 1.95(13), Ti1-Ti2-Ti3 58.01(7), Ti1-B9-Ti3 91.3(6).

Figure S2. Icosahedron core $[Ti_3B_9]$ of 1 with bridging ligands (left) and icosahedron core $[Ti_3B_9]$ of 1 (right).

Figure S3. Molecular structure and labelling diagram of **2** (left). Selected bond lengths (Å) and angles (°) in **2**: Ti-Ti3 3.073(3), Ti1-B1 2.513(16), Ti1-B9 2.174(15), B2-B9 1.61(2), B7-Cl1 1.854(19), Ti1-Cl1 2.543(5), B8-H1 1.19(3), Ti2-H1 1.95(13), Ti1-Ti2-Ti3 58.01(7), Ti1-B9-Ti3 91.3(6). Tetracapped tetrahedron [Ti₃B₃Te₂] core of **1** with bridging ligands (right).

Figure S4. Tetracapped tetrahedron [Ti₃B₃Te₂] core of 2. Side view (left); top view (right).

Figure S5. Molecular structure and labelling diagram of **3b**. Side view (left); top view (right). Selected bond lengths (Å) and bond angles (°): Ti1-Ti2 3.0281(7), Ti1-B3 2.271(4), B1-B2 1.784(5), Ti1-B3-Ti2 84.03(12).

Figure S6. $[Ti_3B_3Te_2]$ core of 3b with bridging ligands. Top view (left); side view (right).

Figure S9. ¹¹B NMR spectrum of **1** in CDCl₃.^[4] Note that the chemical shifts observed at δ = 31.6 and 40.3 ppm correspond to a set of four boron atoms (B1, B2, B3, and B4; Figure S1) and two boron atoms (B5 and B6; Figure S1), respectively. These boron atoms are bound to terminal hydrogen atoms. The resonance at δ = 45.1 ppm is assigned to the B8 atom, which is connected to bridging hydrogen atoms, resulting in a very weak doublet. No splitting is observed for the δ = 52.3 ppm signal, as the corresponding boron atom (B7) is bonded to a chlorine atom. Additionally, the chemical shift at δ = 66.4 ppm corresponds to the B9 boron atom appearing broadened, likely due to the quadrupole moment of the ¹¹B nuclei.

Figure S10. ¹H NMR spectrum of **1** in CDCl₃ (†Inseparable impurity, \$H₂O, *Grease, #Silicon grease).

Figure S11. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of 1 in CDCl₃ (*Grease).

Figure S12. IR spectrum of 1.

Figure S14. ¹¹B{¹H} NMR spectrum of **2** in CDCl₃.

Figure S15. ¹H NMR spectrum of 2 in CDCl₃ (\$H₂O, *Grease, #Silicon grease, †Inseparable impurity).

Figure S17. Stacked 1 H (bottom) and 1 H{ 11 B} NMR (top) spectra of 2 in CDCl₃.

Figure S18. ¹H-¹¹B HSQC NMR spectrum of **2** in CDCl₃.

Figure S19. IR spectrum of 2.

Figure S22. ¹¹B NMR spectrum of **3a** in CDCI₃. Note that the chemical shifts observed at δ = -2.4 and 0.4 ppm correspond to two sets of BH₃ boron atoms, which are bonded to the terminal and bridging hydrogen atoms (however, instead of splitting, broadened signals observed). The resonance at δ = 51.3 ppm is attributed to the bare boron atom and exhibits no splitting or broadening.

Figure S23. ¹H NMR spectrum of 3a in CDCl₃ (†Inseparable impurity, \$H₂O, *Grease, #Silicon grease).

Figure S24. ¹H{¹¹B} NMR spectrum of **3a** in CDCl₃ (†Inseparable impurity, \$H₂O, *Grease, #Silicon grease).

Figure S25. Stacked ${}^{1}H$ (bottom) and ${}^{1}H{}^{11}B$ NMR (top) spectra of **3a** in CDCl₃.

Figure S27. ⁷⁷Se NMR spectrum of **3a** in CDCl₃ (**‡** Peak at δ = 463 ppm is due to the presence of Se₂Ph₂ as external reference).

Figure S28. IR spectrum of 3a.

Figure S30. $^{11}B{}^{1}H{}$ NMR spectrum of **3b** in CDCl₃.

Figure S31. ¹¹B NMR spectrum of **3b** in CDCl₃. The chemical shift observed at $\delta = 1.3$ ppm corresponds to two sets of BH₃ boron atoms bonded to the terminal and bridging hydrogen atoms. These two sets of BH₃ signals represent two inequivalent boron atoms in a 1:2 ratio in ¹H{¹¹B} NMR spectrum and appear merged in ¹¹B NMR due to the broadening of the signals. The resonance at $\delta = 5.3$ ppm is assigned to the BH₂Ph boron atom, which is connected to bridging hydrogen atoms. This signal appears broadened, likely due to the quadrupole moment of the ¹¹B nuclei. Additionally, the resonance at $\delta = 50.6$ ppm is attributed to the bare boron atom, which exhibits no splitting or broadening.

Figure S32. ¹H NMR spectrum of **3b** in CDCl₃ (†Inseparable impurity, \$H₂O, *Grease, #Silicon grease).

Figure S33. ¹H{¹¹B} NMR spectrum of **3b** in CDCl₃ (†Inseparable impurity, \$H₂O, *Grease, #Silicon grease).

Figure S34. Stacked ${}^{1}H$ (bottom) and ${}^{1}H{}^{11}B$ NMR (top) spectra of **3b** in CDCl₃.

Figure S35. ¹³C{¹H} NMR spectrum of **3b** in CDCl₃ (*Grease).

Figure S36. ⁷⁷Se NMR spectrum of **3b** in CDCl₃ (‡ Peak at δ = 463 ppm is due to the presence of Se₂Ph₂ as external reference).

Figure S37. IR spectrum of 3b.

Figure S38. Combined UV-vis spectra of 1, 2, 3a, and 3b in CH_2Cl_2 .

I.4 X-ray Analysis Details

Suitable X-ray quality crystals of **1**, **2**, and **3b** were grown by slow diffusion of a hexane-dichloromethane (80:20 v/v) solution at 5 °C. Crystal data of **1** was obtained and integrated using a Bruker APEX3 SC-XRD with PHOTON II detector, with graphite monochromated MoK α (λ = 0.71073 Å) radiation at 302(2) K. Crystal data of **2** was obtained and integrated using a Bruker APEXII CCD diffractometer equipped with graphite monochromated MoK α (λ = 0.71073 Å) radiation at 296(2) K. And crystal data of **3b** was obtained and integrated using a Bruker Apex-III SC-XRD with PHOTON II detector, with graphite monochromated MoK α (λ = 0.71073 Å) radiation at 150(2) K. The structures were solved using SIR92^[10] and refined with SHELXT-2014/7.^[11] Using Olex2^[12], the molecular structures were drawn. Crystallographic data has been deposited with the Cambridge Crystallographic Data Center as supplementary publication no CCDC - 2353840 (**1**), 2321603 (**2**) and 2385700 (**3b**). The data can be obtained free of charge from The Cambridge Crystallographic Data Center via <u>www.ccdc.cam.ac.uk/data request/cif.</u>

Crystal data for **1**: $C_{30}H_{53}B_9Cl_2Ti_3$, M_r = 725.52, orthorhombic, space group $Pna2_1$, a = 17.2436(17) Å, b = 11.5096(10) Å, c = 18.5384(16) Å, $\alpha = 90^\circ$, $\beta = 90^\circ$, $\gamma = 90^\circ$, V = 3679.3(6) Å³, Z = 4, $\rho_{calcd} = 1.310$ g/cm³, $\mu = 0.802$ mm⁻¹, F(000) = 1512, $R_1 = 0.0594$, $wR_2 = 0.1413$, 3851 independent reflections [$2\theta \le 41.67^\circ$] and 416 parameters.

Crystal data for **2**: $C_{30}H_{51}B_{3}Te_{2}Ti_{3}$, M_{r} = 842.95, triclinic, space group *P*-1, a = 8.2544(3) Å, b = 11.6397(5) Å, c = 18.6492(8) Å, α = 91.086(3)°, β = 91.102(2)°, γ = 102.584(2)°, V = 1747.93(12) Å³, Z = 2, ρ_{calcd} = 1.602 g/cm³, μ = 2.322mm⁻¹, *F*(000) = 832, R_{1} = 0.0632, wR_{2} = 0.1660, 6035 independent reflections [20 ≤ 50.76°] and 529 parameters.

Crystal data for **3b**: $C_{32}H_{49}B_5Se_2Ti2$, M_{r} = 741.42, orthorhombic, space group *Pbca*, a = 15.9297(12) Å, b = 16.0271(12) Å, c = 29.237(2) Å, $\alpha = 90^\circ$, $\beta = 90^\circ$, $\gamma = 90^\circ$, V = 7464.4(9) Å³, Z = 8, $\rho_{calcd} = 1.319$ g/cm³, $\mu = 0.598$ mm⁻¹, *F(000)* = 3024, $R_1 = 0.0401$, $wR_2 = 0.0972$, 9346 independent reflections [$2\theta \le 56.86^\circ$] and 407 parameters.

II Computational Details

All molecules were fully optimized using the Gaussian 09^[13] program employing the BP86 functional^[14] in conjunction with a def2- SVP basis set from the EMSL Basis Set Exchange Library.^[15] The model compounds were fully optimized in gaseous state (no solvent effect) starting from the X-ray crystallographic coordinates. Note that during optimization of 1, Ti2···H1 distant was frozen and optimized. Note that the Ti-Ti bond becomes longer in clusters 1 and 2 in the optimized geometries as compared to the solid-state X-ray structures. Frequency calculations were performed at the same level of theory to verify the nature of the stationary states and the absence of any imaginary frequency to confirm that all structures represent minima on the potential energy hypersurface. Further, the gauge including atomic orbital (GIAO)^[16-18] method was employed to compute the ¹¹B chemical shifts. The NMR chemical shifts were calculated using the hybrid Becke-Lee-Yang-Parr (B3LYP) functional^[19] and the def2-SVP basis set on the BP86/def2-SVP optimized geometries. The ¹¹B NMR chemical shifts were calculated relative to B₂H₆ (B3LYP B shielding constant 84.05 ppm) and converted to the usual [BF₃.OEt₂] scale using the experimental δ (¹¹B) value of B₂H₆, 16.6 ppm.^[20] Natural bonding analyses were performed with the natural bond orbital (NBO) partitioning scheme^[21] as implemented in the Gaussian 09 suite of programs. Wiberg bond indexes (WBI)^[22] were obtained from a natural bond orbital analysis. In order to understand the nature of bonding in the synthesized molecules in greater detail, the topological properties of the resultant electron density, ρ , obtained from the wave functions of all the optimized structures were analyzed with the quantum theory of atoms in molecules (QTAIM).^[23] The QTAIM analysis was carried out utilizing the Multiwfn V.3.4 package^{[24],} whereas the wave functions were generated with Gaussian09 at the same level of theory as for geometry optimization. All the optimized structures and orbital graphics were generated using the Gaussview^[25], and Chemcraft^[26] visualization programs.

1				2			
	Expt.	Cal.	WBI		Expt.	Cal.	WBI
Ti1-Ti2	3.292	3.537	0.286	Ti1-Ti2	2.57	3.049	0.630
T1-Ti3	3.073	3.142	0.421	T1-Ti3	3.09	3.316	0.382
Ti2-Ti3	3.026	3.025	0.535	Ti2-Ti3	2.947	3.267	0.438
Ti1-B1	2.513	2.450	0.361	Ti1-B1	2.52	2.41	0.335
Ti1-B7	2.347	2.283	0.433	Ti1-B2	2.266	2.366	0.406
Ti1-B9	2.494	2.245	0.693	Ti1-Te1	2.558	2.730	0.843
Ti2-B7	2.386	2.359	0.402	Ti2-B1	2.57	2.358	0.402
Ti3-B4	2.529	2.597	0.369	Ti2-B2	2.289	2.232	0.461
B7-B8	1.66	1.662	0.686	Ti2-B3	2.485	2.422	0.330
B5-B6	1.74	1.755	0.559	Ti2-Te2	2.658	2.791	0.763
B8-H1	1.19	1.188	0.594	Ti3-B2	2.279	2.299	0.496
Ti2-H1	1.95	1.945	0.204	Ti3-Te1	2.630	2.733	0.983
B7-Cl1	1.854	1.987	1.643	B1-B2	1.57	1.753	0.753
Ti1-Cl1	2.543	2.686	0.437	B2-B3	1.718	1.739	0.772
Ti2-Cl2	2.407	2.468	0.616	B2-Te1	2.341	2.272	0.815
3a				3b			
3a	Expt.	Cal.	WBI	3b	Expt.	Cal.	WBI
3 a Ti1-Ti2	Expt.	Cal. 3.049	WBI 0.344	3b Ti1-Ti2	Expt. 3.028	Cal. 3.056	WBI 0.332
3a Ti1-Ti2 Ti1-B1	Expt. - -	Cal. 3.049 2.568	WBI 0.344 0.250	3b Ti1-Ti2 Ti1-B1	Expt. 3.028 2.545	Cal. 3.056 2.542	WBI 0.332 0.260
3a Ti1-Ti2 Ti1-B1 Ti1-B3	Expt. - -	Cal. 3.049 2.568 2.270	WBI 0.344 0.250 0.533	3b Ti1-Ti2 Ti1-B1 Ti1-B3	Expt. 3.028 2.545 2.271	Cal. 3.056 2.542 2.284	WBI 0.332 0.260 0.530
3a Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4	Expt. - - -	Cal. 3.049 2.568 2.270 2.551	WBI 0.344 0.250 0.533 0.255	3b Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4	Expt. 3.028 2.545 2.271 2.554	Cal. 3.056 2.542 2.284 2.548	WBI 0.332 0.260 0.530 0.256
3a Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2	Expt. - - - -	Cal. 3.049 2.568 2.270 2.551 2.546	WBI 0.344 0.250 0.533 0.255 0.260	3b Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2	Expt. 3.028 2.545 2.271 2.554 2.612	Cal. 3.056 2.542 2.284 2.548 2.645	WBI 0.332 0.260 0.530 0.256 0.223
3a Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3	Expt. - - - - -	Cal. 3.049 2.568 2.270 2.551 2.546 2.254	WBI 0.344 0.250 0.533 0.255 0.260 0.544	3b Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3	Expt. 3.028 2.545 2.271 2.554 2.612 2.254	Cal. 3.056 2.542 2.284 2.548 2.645 2.258	WBI 0.332 0.260 0.530 0.256 0.223 0.541
3a Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3 Ti2-B5	Expt. - - - - - -	Cal. 3.049 2.568 2.270 2.551 2.546 2.254 2.254 2.549	WBI 0.344 0.250 0.533 0.255 0.260 0.544 0.263	3b Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3 Ti2-B5	Expt. 3.028 2.545 2.271 2.554 2.612 2.254 2.254 2.542	Cal. 3.056 2.542 2.284 2.548 2.645 2.258 2.258	WBI 0.332 0.260 0.530 0.256 0.223 0.541 0.267
3a Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3 Ti2-B5 Ti1-Se1	Expt. - - - - - - - - -	Cal. 3.049 2.568 2.270 2.551 2.546 2.254 2.254 2.549 2.667	WBI 0.344 0.250 0.533 0.255 0.260 0.544 0.263 0.760	3b Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3 Ti2-B5 Ti1-Se1	Expt. 3.028 2.545 2.271 2.554 2.612 2.254 2.254 2.542 2.542 2.645	Cal. 3.056 2.542 2.284 2.548 2.645 2.258 2.532 2.655	WBI 0.332 0.260 0.530 0.256 0.223 0.541 0.267 0.768
3a Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3 Ti2-B5 Ti1-Se1 Ti1-Se2	Expt. - - - - - - - -	Cal. 3.049 2.568 2.270 2.551 2.546 2.254 2.549 2.667 2.485	WBI 0.344 0.250 0.533 0.255 0.260 0.544 0.263 0.760 1.173	3b Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3 Ti2-B5 Ti1-Se1 Ti1-Se2	Expt. 3.028 2.545 2.271 2.554 2.612 2.254 2.254 2.542 2.645 2.459	Cal. 3.056 2.542 2.284 2.548 2.645 2.258 2.532 2.655 2.486	WBI 0.332 0.260 0.530 0.256 0.223 0.541 0.267 0.768 1.169
3a Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3 Ti2-B5 Ti1-Se1 Ti1-Se2 B1-B2	Expt. - - - - - - - - - - - -	Cal. 3.049 2.568 2.270 2.551 2.546 2.254 2.549 2.667 2.485 1.782	WBI 0.344 0.250 0.533 0.255 0.260 0.544 0.263 0.760 1.173 0.558	3b Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3 Ti2-B5 Ti1-Se1 Ti1-Se2 B1-B2	Expt. 3.028 2.545 2.271 2.554 2.612 2.254 2.542 2.542 2.645 2.459 1.784	Cal. 3.056 2.542 2.284 2.548 2.645 2.258 2.532 2.655 2.486 1.790	WBI 0.332 0.260 0.530 0.256 0.223 0.541 0.267 0.768 1.169 0.552
3a Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3 Ti2-B5 Ti1-Se1 Ti1-Se2 B1-B2 B1-B3	Expt. - - - - - - - - - - - -	Cal. 3.049 2.568 2.270 2.551 2.546 2.254 2.549 2.667 2.485 1.782 1.714	WBI 0.344 0.250 0.533 0.255 0.260 0.544 0.263 0.760 1.173 0.558 0.643	3b Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3 Ti2-B5 Ti1-Se1 Ti1-Se2 B1-B2 B1-B3	Expt. 3.028 2.545 2.271 2.554 2.612 2.254 2.542 2.645 2.645 2.459 1.784 1.700	Cal. 3.056 2.542 2.284 2.548 2.645 2.258 2.532 2.655 2.486 1.790 1.713	WBI 0.332 0.260 0.530 0.256 0.223 0.541 0.267 0.768 1.169 0.552 0.636
3a Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3 Ti2-B5 Ti1-Se1 Ti1-Se2 B1-B2 B1-B3 B2-B3	Expt. - - - - - - - - - - - - - -	Cal. 3.049 2.568 2.270 2.551 2.546 2.254 2.549 2.667 2.485 1.782 1.714 1.711	WBI 0.344 0.250 0.533 0.255 0.260 0.544 0.263 0.760 1.173 0.558 0.643 0.647	3b Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3 Ti2-B5 Ti1-Se1 Ti1-Se2 B1-B2 B1-B2 B1-B3 B2-B3	Expt. 3.028 2.545 2.271 2.554 2.612 2.254 2.542 2.645 2.459 1.784 1.700 1.717	Cal. 3.056 2.542 2.284 2.548 2.645 2.258 2.532 2.655 2.486 1.790 1.713 1.731	WBI 0.332 0.260 0.530 0.256 0.223 0.541 0.267 0.768 1.169 0.552 0.636 0.636
3a Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3 Ti2-B5 Ti1-Se1 Ti1-Se2 B1-B2 B1-B3 B2-B3 B4-B5	Expt. - - - - - - - - - - - - -	Cal. 3.049 2.568 2.270 2.551 2.546 2.254 2.549 2.667 2.485 1.782 1.714 1.711 1.788	WBI 0.344 0.250 0.533 0.255 0.260 0.544 0.263 0.760 1.173 0.558 0.643 0.643 0.643	3b Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3 Ti2-B5 Ti1-Se1 Ti1-Se2 B1-B2 B1-B3 B2-B3 B4-B5	Expt. 3.028 2.545 2.271 2.554 2.612 2.612 2.542 2.645 2.459 1.784 1.700 1.717 1.787	Cal. 3.056 2.542 2.284 2.548 2.645 2.258 2.532 2.655 2.486 1.790 1.713 1.731 1.731	WBI 0.332 0.260 0.530 0.256 0.223 0.541 0.267 0.768 1.169 0.552 0.636 0.636 0.548
3a Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3 Ti1-Se1 Ti1-Se2 B1-B2 B1-B3 B2-B3 B4-B5	Expt. - - - - - - - - - - - - -	Cal. 3.049 2.568 2.270 2.551 2.546 2.254 2.549 2.667 2.485 1.782 1.714 1.711 1.788	WBI 0.344 0.250 0.533 0.255 0.260 0.544 0.263 0.760 1.173 0.558 0.643 0.647 0.5518	3b Ti1-Ti2 Ti1-B1 Ti1-B3 Ti1-B4 Ti2-B2 Ti2-B3 Ti2-B5 Ti1-Se1 Ti1-Se2 B1-B2 B1-B2 B1-B3 B2-B3 B4-B5 B2-C1	Expt. 3.028 2.545 2.271 2.554 2.612 2.642 2.645 2.459 1.784 1.700 1.717 1.787 1.587	Cal. 3.056 2.542 2.284 2.548 2.645 2.258 2.532 2.655 2.486 1.790 1.713 1.731 1.731 1.789 1.599	WBI 0.332 0.260 0.530 0.256 0.223 0.541 0.267 0.768 1.169 0.552 0.636 0.636 0.636 0.548 0.887

Table.S1. Selected geometrical parameters^[a] and Wiberg bond indices (WBI) of 1, 2, 3a, and 3b.

^[a] Note that the Ti-Ti bond becomes longer in clusters **1** and **2** in the optimized geometries as compared to the solid-state X-ray structures.

1			2		
	Expt.	Cal.		Expt.	Cal.
Ti1-Ti2-Ti3	58.01	56.56	Ti1-Ti2-Ti3	60.30	63.21
Ti2-Ti3-Ti1	63.34	69.97	Ti2-Ti3-Ti1	63.79	55.18
Ti3-Ti2-Ti2	56.65	53.46	Ti3-Ti2-Ti2	55.90	61.60
Ti1-B9-Ti3	91.3	89.27	Ti1-B2-Ti2	89.0	83.03
Ti1-Cl2-Ti3	78.01	76.72	Ti-B2-Ti3	85.7	90.57
Ti1-Cl1-B1	62.2	56.10	Ti2-B2-Ti3	80.3	92.27
Ti2-H1-Ti3	94.50	94.51	Ti-B1-Ti2	77.54	79.49
Ti2-H1-B8	89.35	84.79	Ti1-Te2-Ti2	77.78	66.67
Ti3-B3-B6	119.2	117.89	Ti1-Te1-Ti3	77.13	74.75
B3-B6-B5	113.7	112.21	Ti-B1-B2	62.25	62.11
			B1-B2-B3	112.5	119.64
За			3b		
	Expt.	Cal.		Expt.	Cal.
Ti1-B3-Ti2	-	84.74	Ti1-B3-Ti2	84.03	84.56
Ti1-B1-B2	-	104.13	Ti1-B1-B2	105.6	106.79
Ti1-Ti2-B2	-	75.93	Ti1-Ti2-B2	75.76	75.81
B1-B3-B2	-	62.69	B1-B3-B2	62.96	62.59
B1-B3-B5	-	156.01	B1-B3-B5	155.9	158.09
Ti-Se1Ti2	-	69.14	Ti-Se1Ti2	69.51	69.35
Ti1-Se2-Ti2	-	75.86	Ti1-Se2-Ti2	75.97	75.08

Table S2. Selected experimental and Calculated bond angles of 1, 2, 3a, and 3b.

Table S3. Calculated natural charges (q) and natural valence population (Pop) of 1, 2, 3a, and 3b.

1			2		
	q	Pop(val)		q	Pop(val)
Ti1	0.523	3.246	Ti1	0.099	3.909
Ti2	0.085	3.816	Ti2	0.159	3.855
Ti3	0.392	3.452	тіЗ	0.0878	3.924
B1	-0.366	3.330	B1	-0.356	3.337
B2	-0.276	3.237	B2	-0.289	3.248
В3	-0.219	3.185	В3	-0.363	3.344
B4	-0.258	3.226	Te1	0.298	5.698
B5	-0.178	3.143	Te2	0.057	5.939
B6	-0.233	3.198			
B7	-0.027	2.993			

B8	-0.161	3.123			
В9	-0.301	3.264			
Cl1	0.189	6.788			
CI2	0.136	6.834			
3a			3b		
	q	Pop(val)		q	Pop(val)
Ti1	0.048	3.961	Ti1	0.103	3.976
Ti2	0.056	3.954	Ti2	0.033	3.908
B1	-0.184	3.168	B1	-0.190	3.173
B2	-0.184	3.169	B2	0.081	2.894
В3	-0.340	3.300	В3	-0.344	3.307
B4	-0.175	3.159	B4	-0.176	3.160
B5	-0.178	3.162	B5	-0.186	3.171
Se1	0.216	5.762	Se1	0.219	5.760
Se2	-0.020	6.015	Se2	-0.021	6.015

Table S4. Calculated HOMO–LUMO energy gap of 1, 2, 3a, and 3b.

	1	2	3 a	3b
ΔE _{H-L} (eV)	1.63	1.70	1.773	1.783

Table S5. Calculated chemical shifts for complexes 1, 2, 3a, and 3b.

Compounds	¹¹ B NMR value (ppm)			
	Experimental	Theoretical		
1	31.6	11.1, 13.4, 16.6, 18.45		
	40.0	35.9, 37.2		
	45.0	52.4		
	52.3	67.5		
	66.4	84.5		
2	-7.7	-10.4, 6.9		
	54.0	62.7		
3a	-2.2	-10.2, -9.1		
	0.8	-7.0, -4.5		
	51.3	37.3		
3b	-0.3	-8.9		
	1.4	-5.9, -4.6		
	5.2	-0.5		
	50.6	35.8		

Figure S39. Selected molecular orbitals of 1 (isocontour values: ± 0.045 [e.bohr⁻³]^{1/2}).

Figure S40. Selected NBO interactions of 1 (isocontour values: $\pm 0.045 \ [e.bohr^{-3}]^{1/2}$).

Figure S41. Contour-line diagram of the Laplacian of the electron density of **1** in selected planes. The solid brown lines are bond paths, whereas blue dots indicate the bond-critical points (BCP). Solid red lines indicate the areas of charge concentration ($\nabla^2 \rho(r) < 0$), while dashed black lines show the areas of charge depletion ($\nabla^2 \rho(r) > 0$).

Figure S42. Selected molecular orbitals of 2 (isocontour values: ± 0.045 [e.bohr⁻³]^{1/2}).

Figure S43. Selected NBO interactions of 2 (isocontour values: $\pm 0.045 \ [e.bohr^{-3}]^{1/2}$).

Figure S44. Contour-line diagram of the Laplacian of the electron density of **2** in selected planes. The solid brown lines are bond paths, whereas blue dots indicate the bond-critical points (BCP). Solid red lines indicate the areas of charge concentration ($\nabla^2 \rho(r) < 0$), while dashed black lines show the areas of charge depletion ($\nabla^2 \rho(r) > 0$).

Figure S45. Selected molecular orbitals of **3a** (isocontour values: ±0.045 [e.bohr⁻³]^{1/2}). A comparison of the MO energies of **3a** (1.77 eV) and **3b** (1.78 eV) reveals comparable HOMO-LUMO gaps. Given the structural and bonding similarities between clusters **3a** and **3b**, this analysis focuses on the detailed bonding characteristics of cluster **3a**. The HOMO of **3a** exhibits overlap of d orbitals between the two titanium centers and d-p interactions between the titanium centers and the boride boron atom (B3), indicating strong bonding interactions between the titanium centers and significant metal-boride interactions (Fig. S45a). The WBI of 0.34 for the Ti1-Ti2 bond (Table S1) further corroborates the presence of metal-metal interaction. The LUMO of **3a** is primarily localized on the Ti1, Ti2, and Se2 centers (Figure S45h). HOMO-1 and HOMO-14 demonstrate d-p orbital interactions of Ti-S bonds (Figure S45b-c), which are also evident in the contour line map in the Ti1-Se1-Ti2 plane (Figure 47f). Additionally, HOMO-13, HOMO-14, HOMO-15, and HOMO-17 of **3a** illustrate metal-boron and boron-boron bonding interactions (Figure S45d-g).

Figure S46. Selected NBO interactions of **3a** (isocontour values: ± 0.045 [e.bohr⁻³]^{1/2}). The NBO analysis of compound **3a** corroborates the MO findings previously discussed. NBO analysis provides a localized description of electronic structure, offering complementary insights to the MO analysis.

Figure S47. Contour-line diagram of the Laplacian of the electron density of **3a** in selected planes. The solid brown lines are bond paths, whereas blue dots indicate the bond-critical points (BCP). Solid red lines indicate the areas of charge concentration ($\nabla^2 \rho(\mathbf{r}) < 0$), while dashed black lines show the areas of charge depletion ($\nabla^2 \rho(\mathbf{r}) > 0$). The contour line plot along the B1-B2-B3 plane shows a high amount of charge concentrations and the BCPs between B1-B3 and B2-B3 bonds specified strong bonding interactions of the boride boron with the peripheral boron atoms (Figure S47a). This is also supported by the WBI of those particular bonds. Furthermore, the Laplacian electron density plot of **3a** shows the bonding scenario of the pentaborane plane, which is coordinated symmetrically to both metal centers (Fig. S47c).

Figure S48. (a) Selected NBO interaction of **3b** (isocontour values: ± 0.045 [e.bohr⁻³]^{1/2}).(b) Contour-line diagram of the Laplacian of the electron density of **3b** along B2-C1-C2 plane. The solid brown lines are bond paths, whereas blue dots indicate the bond-critical points (BCP). Solid red lines indicate the areas of charge concentration ($\nabla^2 \rho(r) < 0$), while dashed black lines show the areas of charge depletion ($\nabla^2 \rho(r) > 0$). The NBO analysis depicts the 2c-2e B2-C1 interaction of B₅H₉Ph fragment in **3b**, which is also reflected in the contour line map in the B2-C1-C2 plane.

Figure S49. Absorption spectrum of 1 computed at TD-DFT-B3LYP/Def2-SVP level of theory (ε in LM⁻¹cm⁻¹).

No	Excitation Energy (a)()	Wavelength λ (nm)		Main electronic transition (% weight) ^[b]	
NO	Excitation Energy (ev)	Calc. (f) ^[a]	Expt.		
1	1.716	722 (0.012)		HOMO→LUMO+4 (77)	
2	2.044	606 (0.012)	607	HOMO-2→LUMO+2 (32)	
				HOMO→LUMO+5 (29)	
				HOMO-4→LUMO (13)	
3	2.417	513 (0.019)		HOMO-4→LUMO+2 (37)	
				HOMO-3→LUMO+2 (26)	
4	2.493	497 (0.011)		HOMO-8→LUMO (54)	
				HOMO-6→LUMO+1 (13)	
5	2.542	488 (0.013)	455	HOMO6→LUMO+1 (25)	
				HOMO-6→LUMO+2 (25)	
				HOMO-2→LUMO+4 (20)	
6	2.837	437 (0.012)		HOMO→LUMO+9 (23)	
				HOMO-5→LUMO+3 (21)	
				HOMO-1→LUMO+6 (17)	
				HOMO-9→LUMO+1 (11)	
7	2.925	424 (0.012)		HOMO-4→LUMO+4 (50)	
				HOMO-3→LUMO+4 (19)	

Table S6. TD-DFT calculated energies (excitation energy (eV), λ_{calc} (nm)), oscillator strength (*f*), and main composition of the first UV-vis electronic excitations for **1**. Experimental absorption wavelengths (λ_{exp} , nm) of **1** are given for comparison.

Figure S50. Selected molecular orbitals of 1 related to most intense electronic transitions [isocontour values: ± 0.045 (e/bohr³)^{1/2}].

Figure S51. Absorption spectrum of 2 computed at TD-DFT-B3LYP/Def2-SVP level of theory (ε in LM⁻¹cm⁻¹).

Table S7 . TD-DFT calculated energies (excitation energy (eV), λ_{calc} (nm)), oscillator strength (<i>f</i>), and main composition of the
first UV-vis electronic excitations for 2 . Experimental absorption wavelengths (λ_{exp} , nm) of 2 are given for comparison.

No	Excitation Energy (e)/)	Wavelength λ (n	m)	Main electronic transition (% weight) $[b]$
NO	Excitation Energy (ev)	Calc. (f) ^[a]	Expt.	
1	3.068	404 (0.026)		HOMO-7→LUMO+2 (22)
				HOMO-9→LUMO+1 (16)
2	3.246	382 (0.030)		HOMO-12→LUMO (25)
				HOMO-1→LUMO+7 (19)
3	3.391	366 (0.045)		HOMO-6→LUMO+3 (27)
				HOMO-10→LUMO+2 (18)
				HOMO-1→LUMO+8 (15)
4	3.416	363 (0.022)		HOMO-1→LUMO+9 (55)
				HOMO-3→LUMO+4 (19)
5	3.482	356 (0.027)		HOMO-2→LUMO+5 (25)
				HOMO-3→LUMO+4 (18)
6	3.542	350 (0.019)		HOMO-11→LUMO+2 (35)
				HOMO-8→LUMO+3 (13)
				HOMO-2→LUMO+5 (12)
				HOMO-1→LUMO+10 (12)
7	3.577	347 (0.016)		HOMO-2→LUMO+6 (81)
8	3.647	340 (0.022)		HOMO-12→LUMO+1 (25)
				HOMO-1→LUMO+10 (14)
				HOMO-9→LUMO+3 (11)
				HOMO-1→LUMO+11 (14)
9	3.697	335 (0.040)	346	HOMO-3→LUMO+6 (20)
				HOMO-3→LUMO+5 (11)
10	3.748	331 (0.019)		HOMO-6→LUMO+4 (25)
				HOMO→LUMO+14 (23)
				HOMO-10→LUMO+3 (19)

Figure S52. Selected molecular orbitals of 2 related to most intense electronic transitions [isocontour values: ± 0.045 (e/bohr³)^{1/2}].

Figure S53. Absorption spectrum of 3a computed at TD-DFT-B3LYP/Def2-SVP level of theory (ε in LM⁻¹cm⁻¹).

No		Wavelength λ (nr	m)	Main electronic transition (% weight) ^[b]
NO	Excitation Energy (ev) =	Calc. (f) ^[a]	Expt.	
1	2.784	445 (0.015)		HOMO→LUMO+2 (84)
2	2.874	431 (0.012)		HOMO-6→LUMO+1 (60)
				HOMO-6→LUMO (14)
3	3.203	387 (0.016)		HOMO→LUMO+5 (49)
				HOMO→LUMO+6 (15)
4	3.293	377 (0.016)		HOMO-2→LUMO+2 (64)
				HOMO-8→LUMO+1 (12)
5	3.305	375 (0.011)		HOMO-8→LUMO+1 (74)
				HOMO-2→LUMO+2 (12)
6	3.379	367 (0.025)	364	HOMO-3→LUMO+2 (63)
				HOMO-1→LUMO+3 (21)
7	3.411	363 (0.014)		HOMO-4→LUMO+2 (59)
				HOMO→LUMO+6 (21)
8	3.461	358 (0.014)		HOMO→LUMO+6 (18)
				HOMO-4→LUMO+2 (17)
				HOMO-10→LUMO+1 (15)
				HOMO-5→LUMO+2 (12)
9	3.558	348 (0.013)		HOMO-3→LUMO+3 (64)
10	3.571	347 (0.014)		HOMO→LUMO+7 (24)
				HOMO-5→LUMO+2 (18)
				HOMO-11→LUMO (17)

Table S8. TD-DFT calculated energies (excitation energy (eV), λ_{calc} (nm)), oscillator strength (*f*), and main composition of the first UV-vis electronic excitations for **3a**. Experimental absorption wavelengths (λ_{exp} , nm) of **3a** are given for comparison.

Figure S54. Selected molecular orbitals of **3a** related to most intense electronic transitions [isocontour values: ± 0.045 (e/bohr³)^{1/2}].

Figure S55. Absorption spectrum of 3b computed at TD-DFT-B3LYP/Def2-SVP level of theory (ε in LM⁻¹cm⁻¹).

		Wavelength λ (r	ım)	a.
No	Excitation Energy (eV)	Calc. (<i>f</i>) ^[a]	Expt.	 Main electronic transition (% weight)^[0]
1	2.767	448 (0.016)		HOMO→LUMO+2 (85)
2	2.849	435 (0.012)		HOMO-4→LUMO (21)
				HOMO-2→LUMO (16)
				HOMO-6→LUMO (13)
3	3.200	387 (0.012)		HOMO→LUMO+5 (38)
				HOMO-10→LUMO (11)
4	3.259	380 (0.019)		HOMO-2→LUMO+2 (74)
5	3.352	370 (0.018)		HOMO-3→LUMO+2 (73)
6	3.374	367 (0.017)		HOMO-1→LUMO+3 (80)
7	3.398	365 (0.015)	366	HOMO-4→LUMO+2 (61)
				HOMO→LUMO+6 (22)
8	3.440	360 (0.012)		HOMO-1→LUMO+4 (28)
				HOMO-4→LUMO+2 (14)
				HOMO-5→LUMO+2 (14)
				HOMO→LUMO+6 (13)
9	3.487	356 (0.014)		HOMO→LUMO+7 (54)
				HOMO-1→LUMO+4 (15)
10	3.509	353 (0.020)		HOMO-5→LUMO+2 (39)
				HOMO→LUMO+6 (11)

Table S9. TD-DFT calculated energies (excitation energy (eV), λ_{calc} (nm)), oscillator strength (*f*), and main composition of the first UV-vis electronic excitations for **3b**. Experimental absorption wavelengths (λ_{exp} , nm) of **3b** are given for comparison.

Figure S56. Selected molecular orbitals of **3b** related to most intense electronic transitions [isocontour values: ± 0.045 (e/bohr³)^{1/2}].

III Cartesian Coordinates of all Optimized Structures

Figure S57. Optimized geometry of 1.

Total energy = -4868.87421928 a.u.

Cartesian coordinates for the calculated structure ${\bf 1}$ (in Å)

С	3.476540000	-0.442368000	1.661539000	н	-1.347465000	-4.578216000	1.067327000
С	4.220380000	-0.165276000	0.474475000	н	-2.813521000	-4.720324000	2.051302000
С	4.192282000	-1.340544000	-0.347271000	C	-2.663372000	-4.081119000	-1.495165000
С	3.455108000	-2.348853000	0.350838000	Н	-3.540420000	-4.739975000	-1.614688000
С	2.995263000	-1.793415000	1.588347000	Н	-1.836884000	-4.703685000	-1.127371000
С	3.335496000	0.473550000	2.840159000	Н	-2.390428000	-3.719440000	-2.496718000
н	3.354864000	1.527511000	2.533119000	C	-4.363466000	-1.498631000	-2.237648000
н	4.165022000	0.321132000	3.552590000	Н	-3.775777000	-1.911659000	-3.068154000
н	2.399708000	0.300226000	3.390240000	Н	-4.476192000	-0.421944000	-2.421523000
С	5.066730000	1.042613000	0.218553000	Н	-5.370267000	-1.950796000	-2.286178000
н	4.781808000	1.884180000	0.862221000	C	-4.929227000	0.092629000	0.435324000
н	4.986619000	1.377828000	-0.824583000	н	-5.949736000	-0.322788000	0.513749000
н	6.126363000	0.808084000	0.421339000	н	-4.919853000	0.759766000	-0.435562000
С	4.978697000	-1.544681000	-1.607966000	Н	-4.761472000	0.699451000	1.334291000
н	6.010510000	-1.856792000	-1.367822000	C	-3.390429000	-1.378541000	2.842663000
н	5.032363000	-0.623298000	-2.201624000	н	-4.229375000	-1.901619000	3.333106000
н	4.537142000	-2.323163000	-2.244809000	н	-3.543297000	-0.302361000	2.992227000
С	3.311552000	-3.777648000	-0.090095000	Н	-2.473880000	-1.663469000	3.379081000
н	3.157669000	-3.863926000	-1.175478000	С	-1.577653000	2.891837000	1.421959000
н	2.475388000	-4.284277000	0.411464000	С	-2.022707000	3.312723000	0.132280000
н	4.226930000	-4.344771000	0.152266000	C	-0.929841000	3.958860000	-0.527961000
С	2.292695000	-2.541319000	2.685598000	C	0.189650000	3.965187000	0.367424000
н	3.020913000	-3.040659000	3.348339000	C	-0.203776000	3.287860000	1.560402000
н	1.625944000	-3.322723000	2.292641000	C	-2.416847000	2.356036000	2.543395000
н	1.687470000	-1.872981000	3.314089000	Н	-1.899904000	1.569283000	3.112278000
С	-2.737192000	-2.926980000	0.860893000	Н	-3.366717000	1.942949000	2.180663000
С	-2.988545000	-2.955004000	-0.556088000	Н	-2.663402000	3.160329000	3.258744000
С	-3.722126000	-1.775735000	-0.906881000	C	-3.422505000	3.278607000	-0.409060000
С	-3.938631000	-1.026058000	0.306449000	Н	-3.826954000	4.303174000	-0.474806000
С	-3.326025000	-1.740504000	1.387688000	Н	-4.095930000	2.702990000	0.235663000
С	-2.068110000	-4.003568000	1.665328000	н	-3.471810000	2.854944000	-1.423896000
н	-1.533335000	-3.593300000	2.533757000	C	-1.031824000	4.729462000	-1.810192000

S43

Н	-1.777639000	4.296879000	-2.490252000	
н	-0.073959000	4.753883000	-2.344682000	
Н	-1.333277000	5.771648000	-1.601002000	
С	1.446246000	4.754472000	0.167118000	
Н	2.225238000	4.471809000	0.886428000	
Н	1.236820000	5.829666000	0.306513000	
н	1.856182000	4.615840000	-0.842480000	
С	0.604252000	3.172119000	2.819579000	
Н	0.397262000	4.021595000	3.494200000	
Н	1.681957000	3.175830000	2.610629000	
Н	0.373242000	2.252847000	3.376946000	
В	1.614677000	-0.621653000	-2.610871000	
Н	2.207136000	-1.562933000	-3.076313000	
В	2.448814000	0.834450000	-2.066121000	
н	3.596015000	1.010797000	-2.392870000	
В	1.189100000	2.135865000	-2.091167000	
н	1.431319000	3.271207000	-2.412046000	

В	-0.313624000	1.440177000	-2.782191000
н	-1.050840000	2.172869000	-3.392331000
В	-0.004316000	-0.248106000	-3.334323000
н	-0.476197000	-0.868184000	-4.245971000
В	1.283237000	0.942510000	-3.419397000
н	1.698715000	1.254574000	-4.499626000
В	0.216103000	-0.897006000	-1.696430000
В	-1.081203000	0.109462000	-1.960081000
В	1.895528000	1.581509000	-0.603288000
н	2.606426000	2.317633000	0.036323000
Cl	0.225707000	-2.645325000	-0.750583000
Cl	-0.059471000	-0.168995000	1.471321000
Ti	1.897535000	-0.622775000	-0.176971000
Ti	-1.608734000	-1.093595000	-0.213014000
Ti	-0.292500000	1.630462000	-0.191800000
н	-1.882397000	0.557464000	-1.204823000

Figure S58. Optimized geometry of **2** Total energy = -4332.65686166 a.u.

Cartesian coordinates for the calculated structure 2 (in Å)

С	-1.714365000	3.038749000	1.300385000
С	-0.317777000	3.172484000	1.641286000
С	0.351439000	3.786402000	0.520815000
С	-0.628485000	4.027018000	-0.505838000
С	-1.903961000	3.571970000	-0.016218000
С	-2.798612000	2.591584000	2.241364000
Н	-2.457990000	1.770559000	2.904077000
Н	-3.695448000	2.235176000	1.696735000
Н	-3.125464000	3.431973000	2.895359000
С	0.282468000	2.978327000	3.008377000
н	1.334360000	2.632583000	2.957749000
Н	-0.278388000	2.233437000	3.606247000
н	0.277150000	3.936769000	3.576989000
С	1.771623000	4.287216000	0.533978000
н	1.834604000	5.268734000	1.057245000
Н	2.170709000	4.434512000	-0.489091000
н	2.454232000	3.591334000	1.062384000
С	-0.386913000	4.722337000	-1.818447000
Н	-1.052509000	4.340316000	-2.618819000
Н	0.656227000	4.588081000	-2.168534000
Н	-0.569919000	5.817345000	-1.731402000

-3.225185000	3.736493000	-0.718030000
-3.717053000	4.686125000	-0.408957000
-3.925929000	2.911210000	-0.482399000
-3.109740000	3.769160000	-1.819467000
-2.708094000	-2.894849000	0.516150000
-2.861973000	-3.110646000	-0.902727000
-3.661865000	-2.039901000	-1.430584000
-4.034546000	-1.181554000	-0.328503000
-3.459252000	-1.715534000	0.867550000
-2.058269000	-3.844052000	1.487448000
-2.791314000	-4.589858000	1.872152000
-1.636332000	-3.311362000	2.363128000
-1.232661000	-4.416119000	1.017701000
-2.432854000	-4.340536000	-1.660370000
-1.517275000	-4.796641000	-1.233828000
-2.227271000	-4.123230000	-2.727166000
-3.232407000	-5.114470000	-1.627789000
-4.145850000	-1.918726000	-2.851058000
-3.400441000	-2.302366000	-3.576596000
-4.358763000	-0.866631000	-3.127341000
-5.084439000	-2.497742000	-3.005755000
	-3.225185000 -3.717053000 -3.925929000 -3.109740000 -2.708094000 -2.861973000 -3.661865000 -4.034546000 -3.459252000 -2.058269000 -2.791314000 -1.636332000 -1.232661000 -2.432854000 -3.232407000 -3.232407000 -4.145850000 -3.400441000 -4.358763000 -5.084439000	-3.225185000 3.736493000 -3.717053000 4.686125000 -3.925929000 2.911210000 -3.109740000 3.769160000 -2.708094000 -2.894849000 -2.708094000 -2.894849000 -2.861973000 -3.110646000 -3.661865000 -2.039901000 -4.034546000 -1.181554000 -3.459252000 -1.715534000 -2.058269000 -3.844052000 -2.058269000 -3.811362000 -2.058269000 -3.311362000 -1.232661000 -4.416119000 -2.432854000 -4.340536000 -1.517275000 -4.796641000 -2.227271000 -4.123230000 -3.232407000 -5.114470000 -3.400441000 -2.302366000 -4.358763000 -0.866631000 -4.358763000 -0.866631000

Н	5.292855000	-2.486743000	-2.062566000
С	2.722329000	-4.264986000	-0.401005000
Н	1.770128000	-4.652009000	0.014815000
н	3.528355000	-4.960446000	-0.075545000
Н	2.655474000	-4.331343000	-1.504746000
С	2.138446000	-3.122801000	2.516621000
Н	2.912931000	-3.711741000	3.058579000
Н	1.371869000	-3.840157000	2.161609000
Н	1.650249000	-2.454889000	3.254003000
Те	1.841049000	1.334267000	-1.695503000
Те	-0.244263000	-0.338782000	1.648536000
В	0.276390000	-1.802374000	-1.982345000
Н	1.198035000	-2.374407000	-1.314187000
Н	-0.744818000	-2.455446000	-1.564660000
Н	0.428611000	-2.233122000	-3.120812000
В	-1.413947000	0.691723000	-2.178401000
Н	-1.504536000	1.875856000	-1.700862000
Н	-2.463796000	0.055317000	-1.843986000
Н	-1.578699000	0.894792000	-3.378261000
Ti	-0.424531000	1.670714000	-0.209778000
Ti	-1.624813000	-1.097290000	-0.656001000
Ti	1.609284000	-0.948791000	-0.210921000
В	0.076734000	-0.097829000	-1.699728000

С	-4.986647000	-0.020175000	-0.417081000
Н	-4.847535000	0.690975000	0.421187000
н	-6.042875000	-0.370612000	-0.377782000
Н	-4.867331000	0.546773000	-1.362349000
С	-3.743846000	-1.255619000	2.270293000
Н	-4.593565000	-1.834243000	2.698994000
н	-4.020976000	-0.184510000	2.310669000
н	-2.874058000	-1.398942000	2.942652000
С	3.335082000	-1.037257000	1.470480000
С	3.956878000	-0.738141000	0.206668000
С	3.744870000	-1.860669000	-0.671459000
С	3.016482000	-2.862947000	0.064610000
С	2.757352000	-2.351181000	1.382903000
С	3.428264000	-0.190040000	2.710143000
Н	4.371409000	-0.401877000	3.263588000
н	2.584896000	-0.377615000	3.403922000
н	3.427308000	0.892598000	2.471026000
С	4.873499000	0.427539000	-0.053790000
н	4.532843000	1.352847000	0.452958000
н	4.964806000	0.652704000	-1.134647000
н	5.897029000	0.203027000	0.324278000
С	4.286048000	-2.010629000	-2.067892000
н	4.385455000	-1.030199000	-2.575344000
н	3.626810000	-2.639490000	-2.699549000

Figure S59. Optimized geometry of **3a**. Total energy = -7643.59331474 a.u.

Cartesian coordinates for the calculated structure ${\bf 3a}$ (in Å)

С	3.818880000	-1.229890000	0.782802000	С	-4.249092000	-0.656452000	2.516422000
С	3.797189000	0.192121000	0.588503000	н	-3.953469000	0.278414000	3.030772000
С	3.390606000	0.451452000	-0.767896000	н	-3.826246000	-1.498915000	3.098666000
С	3.183337000	-0.817203000	-1.418249000	н	-5.358060000	-0.733505000	2.577518000
С	3.439849000	-1.856326000	-0.461644000	С	-0.013396000	3.036965000	-0.262706000
С	4.328053000	-1.930054000	2.013653000	С	0.844781000	3.589576000	0.711263000
н	5.440041000	-1.981673000	1.996531000	н	1.569487000	2.951444000	1.235691000
н	3.950270000	-2.967713000	2.089767000	С	0.788929000	4.962120000	1.018325000
н	4.036698000	-1.405039000	2.944875000	н	1.467327000	5.372758000	1.783791000
С	-3.794245000	-0.678226000	1.081474000	С	-0.120450000	5.805044000	0.357721000
С	-3.603636000	-1.858430000	0.279320000	н	-0.162868000	6.878209000	0.602038000
С	-3.284534000	-1.444306000	-1.058282000	С	-0.968319000	5.266227000	-0.626372000
С	-3.307409000	-0.004555000	-1.092022000	н	-1.677310000	5.916823000	-1.163758000
С	-3.625212000	0.469943000	0.226344000	С	-0.910767000	3.896841000	-0.937532000

Н	-3.080733000	1.898343000	-2.113718000
Н	-4.121554000	0.713591000	-2.956968000
Н	-2.339845000	0.516868000	-2.972849000
С	-3.890066000	1.901993000	0.607778000
н	-3.191263000	2.604375000	0.112032000
Н	-3.797617000	2.061065000	1.699744000
Н	-4.922997000	2.198001000	0.317194000
В	-0.852373000	-2.253448000	2.277714000
В	0.027058000	-0.803484000	2.045255000
В	0.929909000	-2.243592000	2.270210000
В	0.932641000	0.558002000	2.530131000
В	-0.855532000	0.579942000	2.529707000
Se	-0.003717000	-1.873824000	-1.145535000
Se	0.018827000	1.163156000	-0.886750000
Ti	-1.509085000	-0.661915000	0.401387000
Ti	1.539891000	-0.638598000	0.360242000
Н	-1.475552000	-2.453676000	1.195886000
н	1.549554000	-2.446710000	1.186566000
н	0.038687000	-3.250413000	2.102104000
н	1.579377000	-2.510448000	3.261313000
н	-1.499585000	0.680695000	3.555900000
н	1.595209000	0.648786000	3.546326000
Н	1.589108000	0.931963000	1.510582000
Н	-1.499301000	0.970863000	1.508840000
Н	0.048365000	1.583629000	2.550295000
Н	-1.500110000	-2.526851000	3.269782000

н	-1.558967000	3.490927000	-1.730878000
С	4.297672000	1.211504000	1.576072000
Н	3.875117000	2.218153000	1.386929000
Н	5.404773000	1.304561000	1.507169000
Н	4.054901000	0.936711000	2.621337000
С	3.410807000	1.785619000	-1.461567000
Н	3.220697000	2.625553000	-0.765326000
Н	2.649037000	1.844303000	-2.264178000
Н	4.405206000	1.962541000	-1.930626000
С	2.895362000	-1.001190000	-2.881595000
Н	2.186521000	-0.237358000	-3.259779000
Н	2.457174000	-1.995498000	-3.094288000
Н	3.833276000	-0.911101000	-3.475330000
С	3.454865000	-3.332437000	-0.753801000
Н	4.428148000	-3.634589000	-1.201556000
Н	2.655181000	-3.616961000	-1.466632000
Н	3.313507000	-3.937772000	0.163431000
С	-3.869770000	-3.274506000	0.714622000
Н	-3.715326000	-3.412116000	1.802314000
Н	-3.220432000	-4.001453000	0.187069000
Н	-4.924344000	-3.552373000	0.491619000
С	-3.174932000	-2.339261000	-2.260751000
Н	-4.171903000	-2.472165000	-2.739281000
Н	-2.795486000	-3.345894000	-1.996119000
Н	-2.489119000	-1.921102000	-3.024010000
С	-3.199430000	0.822043000	-2.342550000

Figure S60. Optimized geometry of 3b.

Total energy = -7874.48302201 a.u.

Cartesian coordinates for the calculated structure ${\bf 3b}$ (in Å)

С	-3.797294000	-1.397733000	1.181910000	C	-5.149041000	-1.455812000	3.241600000
С	-4.977953000	-1.712616000	0.461187000	н	-5.206124000	-1.359508000	4.338259000
Н	-4.926388000	-1.841231000	-0.633407000	C	-3.914966000	-1.285643000	2.588970000
С	-6.215842000	-1.888197000	1.104529000	н	-3.017577000	-1.060405000	3.185898000
Н	-7.112947000	-2.136064000	0.513723000	C	2.056303000	-3.595868000	0.363230000
С	-6.306464000	-1.753665000	2.501230000	C	2.935820000	-2.641643000	0.975415000
н	-7.274288000	-1.888065000	3.010977000	С	3.480649000	-1.806218000	-0.063059000

С	2.948076000	-2.260527000	-1.321859000
С	2.062058000	-3.359377000	-1.061354000
С	1.401527000	-4.751906000	1.069543000
н	2.121357000	-5.594219000	1.178317000
Н	0.523832000	-5.136927000	0.515734000
н	1.055228000	-4.480726000	2.086370000
С	-2.817929000	2.282824000	-0.307530000
С	-2.946977000	1.620872000	-1.580325000
С	-1.822018000	1.987643000	-2.393085000
С	-1.008957000	2.901605000	-1.634909000
С	-1.621379000	3.084932000	-0.347995000
С	-3.837519000	2.277190000	0.799954000
Н	-3.372818000	2.441133000	1.791860000
Н	-4.392228000	1.320232000	0.853106000
Н	-4.584102000	3.088771000	0.646310000
С	2.466734000	2.167786000	1.135615000
С	2.863537000	1.645076000	2.384673000
н	2.704553000	0.582676000	2.615606000
С	3.472755000	2.473049000	3.346232000
н	3.773232000	2.044229000	4.316092000
С	3.698650000	3.833343000	3.077081000
н	4.173602000	4.478751000	3.832762000
С	3.321591000	4.359513000	1.828714000
н	3.504733000	5.421241000	1.596521000
С	2.717149000	3.533245000	0.865741000
Н	2.451628000	3.949557000	-0.119168000
С	3.352510000	-2.646398000	2.421582000
Н	3.729093000	-1.657600000	2.750480000
Н	4.174024000	-3.379472000	2.585067000
Н	2.520307000	-2.928693000	3.095952000
С	4.590539000	-0.803746000	0.093624000
Н	4.605137000	-0.343809000	1.100775000
Н	4.510292000	0.019477000	-0.643950000
н	5.578187000	-1.294626000	-0.060286000
С	3.369175000	-1.751072000	-2.671396000
Н	3.506275000	-0.650894000	-2.669537000
Н	2.624577000	-1.992196000	-3.454460000
н	4.338373000	-2.209000000	-2.973369000

С	1.384531000	-4.206918000	-2.103908000
н	2.078089000	-4.989016000	-2.486509000
н	1.050896000	-3.601276000	-2.970170000
н	0.493684000	-4.727417000	-1.699786000
С	-4.143976000	0.848061000	-2.062706000
н	-4.737387000	0.437966000	-1.223969000
н	-3.859692000	0.005715000	-2.725193000
н	-4.815991000	1.513933000	-2.649447000
С	-1.642876000	1.670573000	-3.850963000
Н	-2.109521000	2.461788000	-4.481076000
н	-2.112440000	0.705752000	-4.126111000
н	-0.572593000	1.606153000	-4.130784000
С	0.153951000	3.670160000	-2.195848000
н	0.704328000	4.215899000	-1.406027000
Н	-0.205746000	4.425658000	-2.930255000
н	0.878516000	3.013999000	-2.719160000
С	-1.184521000	4.068662000	0.704884000
н	-0.081640000	4.129498000	0.792694000
н	-1.581879000	3.804672000	1.704217000
н	-1.556545000	5.089227000	0.461598000
В	-2.392920000	-1.265947000	0.428120000
В	-0.841582000	-0.870791000	1.089065000
В	-1.124532000	-2.506762000	0.664161000
В	0.320548000	-0.794635000	2.340387000
В	-0.838629000	0.539309000	2.056063000
Se	0.053236000	-0.713896000	-2.149124000
Se	1.702352000	1.121469000	-0.356787000
Ti	-0.987509000	0.764127000	-0.461618000
Ti	1.082953000	-1.437033000	-0.004486000
н	-2.422469000	-0.621898000	-0.668619000
н	-0.302819000	-2.792649000	-0.255239000
н	-2.169062000	-2.470370000	-0.175912000
н	-1.304289000	-3.413837000	1.451538000
н	-1.684784000	0.856938000	2.868678000
н	0.326116000	-1.469364000	3.352929000
н	1.461039000	-0.781861000	1.786444000
н	-0.537354000	1.506576000	1.290041000
Н	0.322372000	0.498671000	2.742099000

References

- 1 G. H. Llinás, M. Mena, F. Palacios, P. Royo and R. Serrano, J. Organomet. Chem., 1988, 340, 37.
- 2 R. Ramalakshmi, K. Saha, D. K. Roy, B. Varghese, A. K. Phukan and S. Ghosh, Chem. Eur. J., 2015, 21, 17191.
- 3 M. T. Mock, R. G. Potter, D. M. Camaioni, J. Li, W. G. Dougherty, W. S. Kassel, B. Twamley and D. L. DuBois, J. Am. Chem. Soc., 2009, **131**, 14454.
- 4 (*a*) J. J. Led and H. Gesmar, *Chem. Rev.*, 1991, **91**, 1413; (*b*) L. Yang, R. Simionescu, A. Lough and H. Yan, *Dyes Pigm.*, 2011, **91**, 264; (*c*) R. Weiss and R. N. Grimes, *J. Am. Chem. Soc.*, 1978, **100**, 1401.
- 5 S. Kar, S. Bairagi, J.-F. Halet and S. Ghosh, *Chem. Commun.*, 2023, **59**, 11676.
- 6 P. Govindaswamy, Y. A. Mozharivskyj, M. R. Kollipara, *Polyhedron* **2005**, *24*, 1710.
- 7 P. Govindaswamy, Y. A. Mozharivskyj, M. R. Kollipara, *Polyhedron* 2005, 24, 1710.
- a) C. E. Rao, S. K. Barik, K. Yuvaraj, K. Bakthavachalam, T. Roisnel, V. Dorcet, J.-F. Halet, Ghosh, *Eur. J. Inorg. Chem.* 2016, 4913; b) A. Haridas, S. Kar, B. Raghavendra, T. Roisnel, V. Dorcet, S. Ghosh, *Organometallics* 2020, *39*, 58.
- 9 S. Bairagi, S. Giri, G. Joshi, E. D. Jemmis and S. Ghosh, Angew. Chem. Int. Ed., 2024, e202417170.
- 10 A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camalli, *J. Appl. Crystallogr.*, 1994, **27**, 435.
- 11 G. M. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3.
- 12 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09, Revision C.01*, Gaussian, Inc., Wallingford, CT, 2010.
- 14 (a) H. L. Schmider, A. D. Becke, J. Chem. Phys. 1998, **108**, 9624; (b) J. P. Perdew, Phys. Rev. B: Condens. Matter Mater. Phys. 1986, **33**, 8822.
- 15 EMSL Basis Set Exchange Library. <u>https://bse.pnl.gov/bse/portal</u>
- 16 F. London, J. Phys. Radium., 1937, **8**, 397.
- 17 R. Ditchfield, *Mol. Phys.*, 1974, **27**, 789.
- 18 K. Wolinski, J. F. Hinton and P. Pulay, J. Am. Chem. Soc., 1990, **112**, 8251.
- (a) A. D. Becke, *Phys. Rev. A.*, 1988, **38**, 3098; (b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B.*, 1988, **37**, 785;
 (c) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648.
- 20 T. P. Onak, H. L. Landesman, R. E. Williams and I. Shapiro, J. Phys. Chem., 1959, 63, 1533.
- (a) E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold, *NBO Program 3.1*, W. T. Madison, 1988; (b)
 A. E. Reed, F. Weinhold and L. A. Curtiss, *Chem. Rev.*, 1988, **88**, 899; (c) F. Weinhold and R. Landis, *Valency and bonding: A natural bond orbital donor-acceptor perspective;* Cambridge University Press: Cambridge, U.K, 2005.
- 22 K. Wiberg, *Tetrahedron*, 1968, **24**, 1083.
- (a) R. F. W. Bader, Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, U. K., 1990; (b)
 R. F. W. Bader, J. Phys. Chem. A., 1998, **102**, 7314; (c) R. F. W. Bader, Chem. Rev., 1991, **91**, 893.
- 24 T. Lu, F. Chen, J. Comput. Chem., 2012, **33**, 580.
- 25 I. I. Dennington, R. T. Keith, J. Millam, K. Eppinnett, W. L. Hovell and R. Gilliland, *GaussView, Version 3.09*; Semichem Inc.: Shawnee Mission, KS, 2003.
- 26 G. A. Zhurko, <u>http://www.chemcraftprog.com</u>.