Supporting Information

Potassium–Telluroether Interactions: Structural Characterisation and Computational Analysis

Novan A. G. Gray,^a James F. Britten^b and David J. H. Emslie^{*a}

^{*a*} Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada

^b McMaster Analytical X-ray Diffraction Facility, McMaster University, Hamilton, Ontario, L8S 4M1, Canada

Table of Contents

General Details	
Synthesis of 3-Te , 4-Te , 5-Te , 3-Se and 4-Se	S3–S6
X-ray Structure of 2-Se ·hexane	S7
¹ H, ¹³ C{ ¹ H}, ⁷⁷ Se{ ¹ H} and ¹²⁵ Te{ ¹ H} NMR Spectra	
Computational Data for 2-Te* and 3-Se*	
SHAPE Parameters for 2-Te, 2-Se, 3-Se and 5-Te	S28–S29
References	S30

General Details. An argon-filled MBraun UNIIab glove box equipped with a –30 °C freezer was employed for the manipulation and storage of all oxygen- and moisture- sensitive compounds. Air-sensitive reactions were performed on a double-manifold high-vacuum line equipped with an Edwards RV 12 vacuum pump using standard techniques. H[ASe₂^{Tripp2}], KCH₂Ph,¹ H[ATe₂^{Tripp2}], [K(ASe₂^{Tripp2})(dme)₂] (**1-Se**) and [K(ATe₂^{Tripp2})(dme)₂] (**1-Te**) were synthesized following previously reported procedure.² Benzene and pentane were purchased from Sigma Aldrich. Hexanes, toluene and THF were purchased from Caledon, *o*-difluorobenzene was purchased from Oakwood, and deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc.

Hexanes, pentane, THF, and toluene were initially dried and distilled at atmospheric pressure from sodium/benzophenone (Hexanes and THF) and sodium (toluene). *o*-difluorobenzene and benzene were dried by stirring over 4 Å molecular sieves for 1 week, degassing, and distilling under reduced pressure. All solvents were stored over an appropriate drying agent (THF, toluene, benzene, THF- d_8 , C₆D₆ = Na/Ph₂CO; hexanes, pentane = Na/Ph₂CO/tetraglyme) and introduced to reactions or air-free solvent storage flasks via vacuum transfer with condensation at -78 °C or inside of an argon-filled glovebox. Argon gas was purchased from Air Liquide.

¹H, ¹³C{¹H}, ⁷⁷Se{¹H], and ¹²⁵Te{¹H} NMR spectra of all air-sensitive samples were acquired at room temperature in J-Young tubes on either a Bruker AV-600 or AV-500 MHz spectrometer. ¹H and ¹³C{¹H} spectra were referenced relative to the residual protio signals of the solvent (C₆D₆) or the solvent carbon resonances, respectively (C₆D₆: ¹H = 7.16 ppm; ¹³C = 128.06 ppm). ⁷⁷Se{¹H}, and ¹²⁵Te{¹H} spectra were referenced by indirect referencing from a ¹H NMR spectrum.³ Peak assignments in the spectra of all new compounds were made with the aid of DEPT-q, COSY, HSQC, and HMBC experiments. All ¹³C{¹H} signals are singlets unless otherwise specified.

X-ray crystallographic analyses were performed with suitable crystals coated in paratone oil on a Bruker Dual Source D8 Venture diffractometer using the I μ S 3.0 Mo source at 70 W with a HELIOS Mo focusing optic (ELM33) in the McMaster Analytical X-ray (MAX) Diffraction Facility. Raw data was processed using XPREP (as part of the APEX v4 software) and solved by intrinsic (SHELXT)⁴ methods. Structure refinement was performed with SHELXL⁵ in OLEX2.⁶ Images were rendered using Ortep3 and POV-Ray. Combustion elemental analyses were carried out at McMaster University.

DFT Details. Geometry optimization calculations were conducted with ADF within the AMS DFT package (SCM, version 2022.103 or 2023.102).⁷ Calculations were performed in the gas phase within the generalized gradient approximation using the 1996 Perdew–Burke–Ernzerhof exchange and correlation functional (PBE),⁸ using the scalar zeroth-order regular approximation (ZORA)⁹⁻¹³ for relativistic effects, and Grimme's DFT-D3-BJ dispersion correction.^{14,15} These calculations were conducted using all-electron triple- ζ basis sets with two polarization functions (TZ2P), and fine integration grids (Becke^{16,17} very good quality) with default convergence criteria for energy and gradients. Analytical frequency calculations¹⁸⁻²⁰ were performed to ensure that each geometry optimization led to an energy minimum. Quantum theory of atoms in molecules (QTAIM)²¹ properties were obtained using the QTAIM keyword⁷ with an analysis level of Full,²²⁻²⁹ and NBO³⁰ analysis was carried out using NBO 6.0 within the AMS DFT package. DFT, NBO and QTAIM data for **1-Te*** has been published elsewhere.²

Potassium 4,5-bis(2,4,6-triisopropylphenyltellurido)-2,7,9,9-tetramethylacridanide \cdot 2 THF [K(ATe₂^{Tripp2})(THF)₂] (**3-Te**)

Method A: H[ATe₂^{Tripp2}] (42.5 mg, 0.0474 mmol) and KCH₂Ph (7.4 mg, 0.057 mmol) was dissolved in ~2 ml of THF in a pre-weighed 25 ml round-bottom flask and stirred under argon for 15 minutes, the solution was then evaporated to dryness *in vacuo* and dried for 10 minutes leaving an orange residue. 50.8 mg (0.0471 mmol) of [K(ATe₂^{Tripp2})(THF)₂] (**3-Te**) was obtained in nearly quantitative yield (99 %).

Method B: $[K(ATe_2^{Tripp2})(dme)_2]$ (1-Te) (42.9 mg, 0.0385 mmol) was dissolved in ~4 ml of THF and then subsequently dried *in vacuo* to yield an orange residue. The material was redissolved in ~4 ml of THF and evaporated to dryness, and then once more for a total of three cycles of dissolutions and evaporations. The residue was dried for 10 minutes then brought into a glovebox and collected. 30.5 mg (0.0283 mmol) of $[K(ATe_2^{Tripp2})(THF)_2]$ (3-Te) was obtained as a yellow solid in 73 % yield. ¹H NMR (C₆D₆, 600 MHz): δ 7.34 (s, 4H, ArCH), 7.04 (s, 2H, AcridanCH), 6.67 (s, 2H, AcridanCH), 4.18-4.12 (sept, J_{H-H} 6.83 Hz, 4H, *o*-CHMe₂), 3.56-3.54 (m, 8H, OCH₂), 2.93-2.87 (sept, J_{H-H} 6.95 Hz, 2H, *p*-CHMe₂), 2.07 (s, 6H, CMe), 1.70 (s, 6H, CMe₂), 1.42-1.40

(m, 8H, CH₂), 1.38-1.37 (d, J_{H-H} 6.88 Hz, 24H, *p*-CH*Me*₂), 1.29-1.28 (d, J_{H-H} 6.98 Hz, 12H, *o*-CH*Me*₂). ¹³C{¹H} NMR (C₆D₆, 150 MHz): δ 156.14 (*o*-ArylC), 150.29 (*p*-ArylC), 147.15 (AcridanCMe), 129.86 (AcridanCH), ~128 (AcridanC), 125.58 (AcridanCH), 125.36 (AcridanCTe), 122.50 (ArylCTe), 121.59 (ArylCH), 112.04 (AcridanCN), 67.83 (OCH₂), 40.05 (*o*-CHMe₂), 37.06 (CMe₂), 35.68 (CMe₂), 34.68 (*p*-CHMe₂), 25.81 (CH₂), 25.41 (*o*-CH*Me*₂), 24.30 (*p*-CH*Me*₂), 21.06 (CMe). ¹²⁵Te{¹H} NMR (C₆D₆, 189 MHz): δ 231.57 (s). Anal. Calcd. for Method B. C₅₅H₇₈NTe₂O₂K: C, 61.19; H, 7.28; N, 1.30%. Found: C, 61.20; H, 7.39; N 1.37%.

Potassium 4,5-bis(2,4,6-triisopropylphenyltellurido)-2,7,9,9-tetramethylacridanide \cdot THF [K(ATe₂^{Tripp2})(THF)] (**4-Te**)

[K(ATe₂^{Tripp2})(THF)₂] (**3-Te**) (50.8 mg, 0.0471 mmol) was charged to a 25 ml round bottom flask and dried *in vacuo* for 60 minutes. The solid was collected in the glovebox and 24.1 mg (0.0239 mmol) of a yellow [K(ATe₂^{Tripp2})(THF)] (**4-Te**) was obtained in 51% yield. ¹**H NMR** (C₆D₆, 600 MHz): δ 7.34 (s, 4H, ArCH), 7.04 (s, 2H, AcridanCH), 6.67 (s, 2H, AcridanCH), 4.18-4.12 (sept, J_{H-H} 6.83 Hz, 4H, *o*-CHMe₂), 3.55-3.53 (m, 4H, OCH₂), 2.92-2.86 (sept, J_{H-H} 6.95 Hz, 2H, *p*-CHMe₂), 2.07 (s, 6H, CMe), 1.70 (s, 6H, CMe₂), 1.42-1.40 (m, 4H, CH₂), 1.38-1.37 (d, J_{H-H} 6.88 Hz, 24H, *p*-CHMe₂), 1.29-1.28 (d, J_{H-H} 6.98 Hz, 12H, *o*-CHMe₂). ¹³C{¹H} NMR (C₆D₆, 150 MHz): δ 156.14 (*o*-ArylC), 150.30 (*p*-ArylC), 147.14 (AcridanCMe), 129.87 (AcridanCH), ~128 (AcridanC), 125.59 (AcridanCH), 125.38 (AcridanCTe), 122.49 (ArylCTe), 121.60 (ArylCH), 112.04 (AcridanCN), 67.83 (OCH₂), 40.05 (*o*-CHMe₂), 37.06 (CMe₂), 35.71 (CMe₂), 34.68 (*p*-CHMe₂), 25.80 (CH₂), 25.41 (*o*-CHMe₂), 24.30 (*p*-CHMe₂), 21.06 (CMe). ¹²⁵Te{¹H} NMR (C₆D₆, 189 MHz): δ 231.57 (s). Anal. Calcd. C₅₁H₇₀NTe₂OK: C, 60.80; H, 7.00; N, 1.39%. Found: C, 60.28; H, 6.51; N 1.46%.

Potassium 4,5-bis(2,4,6-triisopropylphenyltellurido)-2,7,9,9-tetramethylacridanide $[K(ATe_2^{Tripp2})]_x$ (5-Te)

 $[K(ATe_2^{Tripp2})(THF)]$ (4-Te) (19.0 mg, 0.0189 mmol) was dissolved in ~1 ml of benzene and then evaporated *in vacuo* to yield an orange residue. The material was then redissolved in ~1 ml of benzene and once again evaporated to dryness. The solid was dried for 2 hours then brought

into a glovebox and collected. 12.4 mg (0.0133 mmol) of $[K(ATe_2^{Tripp2})]_x$ (5-Te) was collected as an orange solid in 70 % yield. X-ray quality crystals of 5-Te were grown from *o*difluorobenzene/pentane solution of 4-Te cooled to -30 °C over 1 month. ¹H NMR (C₆D₆, 600 MHz): δ 7.34 (s, 4H, ArCH), 7.04 (s, 2H, AcridanCH), 6.67 (s, 2H, AcridanCH), 4.18-4.12 (sept, J_{H-H} 6.89 Hz, 4H, *o*-CHMe₂), 2.93-2.86 (sept, J_{H-H} 6.92 Hz, 2H, *p*-CHMe₂), 2.07 (s, 6H, CMe), 1.70 (s, 6H, CMe₂), 1.38-1.37 (d, J_{H-H} 6.20 Hz, 24H, *p*-CHMe₂), 1.29-1.28 (d, J_{H-H} 6.93 Hz, 12H, *o*-CHMe₂). ¹³C{¹H} NMR (C₆D₆, 150 MHz): δ 156.15 (*o*-ArylC), 150.30 (*p*-ArylC), 147.14 (AcridanCMe), 129.89 (AcridanCH), ~128 (AcridanC), 125.61 (AcridanCH), 125.42 (AcridanCTe), 122.48 (ArylCTe), 121.60 (ArylCH), 112.02 (AcridanCN), 40.06 (*o*-CHMe₂), 37.06 (CMe₂), 35.68 (CMe₂), 34.68 (*p*-CHMe₂), 25.42 (*o*-CHMe₂), 24.30 (*p*-CHMe₂), 21.06 (CMe). ¹²⁵Te{¹H} NMR (C₆D₆, 189 MHz): δ 231.17 (s). Anal. Calcd. C₄₇H₆₂NTe₂K: C, 60.36; H, 6.68; N, 1.50%. Found: C, 60.74; H, 6.70; N 1.54%.

Potassium 4,5-bis(2,4,6-triisopropylphenylselenido)-2,7,9,9-tetramethylacridanide \cdot 2 THF [K(ASe₂^{Tripp2})(THF)₂] (**3-Se**)

H[ASe₂^{Tripp2}] (28.6 mg, 0.0358 mmol) and KCH₂Ph (5.1 mg, 0.039 mmol) was dissolved in ~3 ml THF and stirred under argon for 15 minutes, the solution was then evaporated to dryness in *vacuo* and dried for 10 minutes leaving a yellow residue. The solid was collected in the glovebox and 12 mg (0.012 mmol) of a compound of [K(ASe₂^{Tripp2})(THF)₂] (**3-Se**) was obtained in 34% yield. X-ray quality crystals of 3-Se (intergrown with 2-Se hexane) and 2-Se (intergrown with 3-Se) were grown from THF/hexanes solution of 1-Se cooled to -30 °C over 2 days. ¹H NMR (C₆D₆, 600 MHz): δ 7.32 (s, 4H, ArCH), 7.08 (s, 2H, AcridanCH), 6.42 (s, 2H, AcridanCH), 3.98-3.93 (sept, J_{H-H} 6.87 Hz, 4H, o-CHMe₂), 3.54-3.52 (m, 8H, OCH₂), 2.90-2.83 (sept, J_{H-H} 6.95 Hz, 2H, p-CHMe₂), 2.11 (s, 6H, CMe), 1.76 (s, 6H, CMe₂), 1.41-1.39 (m, 8H, CH₂), 1.30-1.29 (d, J_{H-H} 6.71 Hz, 24H, o-CHMe₂), 1.27-1.26 (d, $J_{\text{H-H}}$ 6.88 Hz, 12H, p-CHMe₂). ¹³C{¹H} NMR (C₆D₆, 150 MHz): δ 154.27 (o-ArylC), 150.20 (p-ArylC), 146.12 (AcridanCSe), ~128 (AcridanC), ~128 (ArylCSe), ~128 (AcridanC), 124.87 (AcridanCH), 124.40 (AcridanCH), 123.34 (AcridanCMe), 122.23 (AcridanCN), 122.23 (ArylCH), 67.83 (OCH₂), 37.35 (CMe₂), 34.73 (p-CHMe₂), 34.71 (o-CHMe₂), 34.18 (CMe₂), 25.78 (CH₂), 24.92 (*o*-CHMe₂), 24.23 (*p*-CHMe₂), 21.32 (CMe). ⁷⁷Se{¹H} NMR (C₆D₆, 114 MHz): δ 202.40 (s). Anal. Calcd. C₅₅H₇₈NSe₂O₂K: C, 67.25; H, 8.00; N, 1.43%. Found: C, 67.90; H, 7.86; N 1.81%.

Potassium 4,5-bis(2,4,6-triisopropylphenylselenido)-2,7,9,9-tetramethylacridanide \cdot THF [K(ASe₂^{Tripp2})(THF)] (**4-Se**)

[K(ASe₂^{Tripp2})(THF)₂] (**3-Se**) (6 mg, 0.061 mmol) was dried *in vacuo* in a pre-weighed flask on a vacuum line for 1 hour. The flask was brought back into the glovebox and 5.6 mg (0.061 mmol) of [K(ASe₂^{Tripp2})(THF)] (**4-Se**) was obtained in quantitative yield. ¹**H** NMR (C₆D₆, 600 MHz): δ 7.32 (s, 4H, ArCH), 7.08 (s, 2H, AcridanCH), 6.43 (s, 2H, AcridanCH), 3.96-3.91 (sept, *J*_{H-H} 7.00 Hz, 4H, *o*-CHMe₂), 3.57-3.55 (m, 4H, OCH₂), 2.90-2.83 (sept, *J*_{H-H} 7.12 Hz, 2H, *p*-CHMe₂), 2.11 (s, 6H, CMe), 1.77 (s, 6H, CMe₂), 1.42-1.40 (m, 4H, CH₂), 1.30-1.29 (d, *J*_{H-H} 6.71 Hz, 24H, *o*-CHMe₂), 1.27-1.26 (d, *J*_{H-H} 6.88 Hz, 12H, *p*-CHMe₂). ¹³C{¹H} NMR (C₆D₆, 150 MHz): δ 154.24 (*o*-ArylC), 150.22 (*p*-ArylC), 146.13 (AcridanCSe), ~128 (AcridanC), ~128 (ArylCSe), 124.89 (AcridanCH), 124.42 (AcridanCH), 123.37 (AcridanCMe), 122.24 (AcridanCN), 122.24 (ArylCH), 67.83 (OCH₂), 37.35 (CMe₂), 34.73 (*p*-CHMe₂), 34.71 (*o*-CHMe₂), 34.61 (CMe₂), 25.80 (CH₂), 24.92 (*o*-CHMe₂), 24.23 (*p*-CHMe₂), 21.31 (CMe). ⁷⁷Se{¹H} NMR (C₆D₆, 114 MHz): δ 202.13 (s). Anal. Calcd. C₅₁H₇₀NSe₂OK: C, 67.30; H, 7.75; N, 1.54%. Found: C, 67.72; H, 7.60; N 1.82%.

<u>X-ray Crystal Structure of [K(ASe₂^{Tripp2})(THF)₃]·hexane</u> (2-Se·hexane)

Figure S1. X-ray crystal structure of $[K(ASe_2^{Tripp2})(THF)_3]$ hexane (**2-Se** hexane) (**2-Se** hexane; with diffuse scattering along the *c*-axis suggesting intergrowth of **2-Se** hexane {major} with **3-Se** {minor}). H atoms and hexane solvent molecule are omitted for clarity. Ellipsoids are drawn at 50% probability.

NMR Spectroscopy

Figure S2. ¹H NMR spectrum of $[K(ATe_2^{Tripp2})(THF)_2]$ (**3-Te**) in C₆D₆ (298 K).

Figure S3. ${}^{13}C{}^{1}H$ NMR spectrum of [K(ATe₂^{Tripp2})(THF)₂] (3-Te) in C₆D₆ (298 K).

Figure S4. ¹²⁵Te{¹H} NMR spectrum of $[K(ATe_2^{Tripp2})(THF)_2]$ (**3-Te**) in C₆D₆ (298 K).

Figure S5. ¹H NMR spectrum of [K(ATe₂^{Tripp2})(THF)] (**4-Te**) in C₆D₆ (298 K).

Figure S6. ¹³C{¹H} NMR spectrum of $[K(ATe_2^{Tripp2})(THF)]$ (**4-Te**) in C₆D₆ (298 K).

Figure S7. ¹²⁵Te{¹H} NMR spectrum of $[K(ATe_2^{Tripp2})(THF)]$ (**4-Te**) in C₆D₆ (298 K).

Figure S8. ¹H NMR spectrum of $[K(ATe_2^{Tripp2})]_x$ (**5-Te**) in C₆D₆ (298 K).

Figure S9. ${}^{13}C{}^{1}H$ NMR spectrum of $[K(ATe_2^{Tripp2})]_x$ (**5-Te**) in C₆D₆ (298 K).

Figure S10. ¹²⁵Te{¹H} NMR spectrum of $[K(ATe_2^{Tripp2})]_x$ (**5-Te**) in C₆D₆ (298 K).

Figure S11. ¹H NMR spectrum of [K(ASe₂^{Tripp2})(THF)₂] (**3-Se**) in C₆D₆ (298 K).

Figure S12. ¹³C{¹H} NMR spectrum of $[K(ASe_2^{Tripp2})(THF)_2]$ (**3-Se**) in C₆D₆ (298 K).

Figure S13. ⁷⁷Se{¹H} NMR spectrum of $[K(ASe_2^{Tripp2})(THF)_2]$ (**3-Se**) in C₆D₆ (298 K).

Figure S14. ¹H NMR spectrum of $[K(ASe_2^{Tripp2})(THF)]$ (4-Se) in C₆D₆ (298 K).

Figure S15. ¹³C{¹H} NMR spectrum of $[K(ASe_2^{Tripp2})(THF)]$ (**4-Se**) in C₆D₆ (298 K).

Figure S16. ⁷⁷Se{¹H} NMR spectrum of $[K(ASe_2^{Tripp2})(THF)]$ (**4-Se**) in C₆D₆ (298 K).

Figure S17. ¹H NMR spectrum of $[K(ASe_2^{Tripp2})(THF)_2]$ (**1-Se**) and pro-ligand in C₆D₆ (298 K) generated from repeated (three) dissolutions of $[K(ASe_2^{Tripp2})(dme)_2]$ (**1-Se**) in THF and evaporation of the solvent.

Figure S18. ¹H NMR spectrum of $[K(ASe_2^{Tripp2})]_x$ and pro-ligand in C_6D_6 (298 K) generated from repeated (two) dissolutions of $[K(ASe_2^{Tripp2})(THF)]$ (**4-Se**) in benzene and evaporation of the solvent.

Computational Data

Figure S19. Overlay of the X-ray crystal structures (red) $[K(ATe_2^{Tripp2})(THF)_3]$ (2-Te) and $[K(ASe_2^{Tripp2})(THF)_3]$ (2-Se) and their respective DFT models (green) $[K(ATe_2^{Dipp2})(THF)_3]$ 2-Te* and $[K(ASe_2^{Dipp2})(THF)_3]$ 2-Se*.

Figure S20. Representative E (Se or Te) NLMOs in calculated complexes **2-Te*** and **2-Se***. Isosurfaces are set to 0.03.

Table S1. Selected bond distances for the calculated structures **2-Te*** and **2-Se***. Values in un-bolded black font correspond to the calculated distances. X-ray structure metrics are reported in bold with curly brackets.

DFT Complex	K–E distances (Å) (E = Se. Te)	K–N distances (Å)	K–O distances (Å)
	(2 00) (2)		
[K(ATe ₂ ^{Dipp2})(THF) ₃]	3.582 <i>,</i> 3.640	2.840	2.714, 2.736, 2.755
(2-Te*)	{3.496(2), 3.639(2)}	{2.824(4)}	{2.584(5), 2.691(5), 2.693(5)}
[K(ASe ₂ ^{Dipp2})(THF) ₃] (2-Se*)	3.426, 3.429 {3.397(4), 3.472(4)}	2.818 {2.82(1)}	2.747, 2.783, 2.805 {2.67(1), 2.68(1), 2.79(1)}

Table S2. Selected QTAIM, NBO and Mayer bond order data for the K–E interactions (E = Se, Te) in **2-Te*** and **2-Se***. The E lone pair NLMOs are denoted as "LP-1" and "LP-2" (see Figure S20). NLMOs have been normalized to include only metal and chalcogen contributions.

DFT Complex	K–E Mayer Bond Orders	δ К-Е	<i>H</i> _b К–Е (au)	% K in E NLMO, "LP-1" (normalized)	% K in E NLMO, "LP-2" (normalized)
[K(ATe ₂ ^{Dipp2})(THF) ₃] (2-Te*)	0.08, 0.10	0.0678, 0.0736	0.00010, 0.0010	0.51%, 0.53%	0.73%, 0.71%
[K(ASe _{2^{Dipp2})(THF)₃] (2-Se*)}	0.07, 0.08	0.0673 0.0671	0.0013, 0.0013	0.24%, 0.19%	0.69%, 0.68%

Table S3. Potassium and chalcogen (Se or Te) atomic orbital compositions in the E lone pair NLMO's (denoted as "LP-1" and "LP-2"; see Figure S20) for **2-Te*** and **2-Se***.

DFT Complex	E atomic orbital	E atomic orbital	M atomic orbital	M atomic orbital
	composition in	composition in	composition in	composition in
	"LP-1" (%)	"LP-2" (%)	"LP-1" (%)	"LP-2" (%)
[K(ATe ₂ ^{Dipp2})(THF) ₃]	s (0.37-0.67),	s (78.21-78.38),	s (79.80-83.18),	s (99.21-99.24),
(2-Te*)	p (99.28-99.58),	p (21.60-21.77),	p (2.06-2.07),	p (0.14-0.18),
	d (0.04),	d (0.01),	d (14.64-18.03),	d (0.54-0.60),
	<i>f</i> (0.01)	f (0.00)	<i>f</i> (0.11)	<i>f</i> (0.05)
[K(ASe ₂ ^{Dipp2})(THF) ₃]	s (0.07-0.13),	s (74.54-74.56),	s (59.00-66.19),	s (98.13-98.55),
(2-Se*)	p (99.81-99.86),	p (25.41-25.43),	p (2.71-3.54),	p (0.26-0.32),
	d (0.05-0.06),	d (0.02),	d (30.79-37.12),	d (1.13-1.48),
	f (0.01)	f (0.00)	f (0.30-0.34)	f (0.07-0.08)

Table S4. Selected QTAIM, NBO and Mayer bond order data for the K–X interactions (X = N or O) in **2-Te***, **2-Te***_{constr} and **2-Se***. The K–N and K–O NLMOs have been normalized to include only metal and donor atom contributions.

DFT Complex	K–N	K–O	δ Κ–Ν	δ Κ–Ο	H _b K–N	H _b K–O	% K in	% K in
	Mayer	Mayer			(au)	(au)	K–N	K–O
	Bond	Bond					NLMO	NLMO
	Orders	Orders					(normal	(normal
							ized)	ized)
[K(ATe ₂ ^{Dipp2})(THF) ₃]	<0.05	0.05,	0.0973	0.0923,	0.0021	0.0031,	0.13%	0.23%,
(2-Te*)		0.05,		0.0944,		0.0033,		0.23%,
		<0.05		0.0954		0.0035		0.24%
[K(ASe ₂ ^{Dipp2})(THF) ₃]	<0.05	0.05,	0.102	0.0908,	0.0021	0.0033,	0.19%	0.41%,
(2-Se*)		<0.05 <i>,</i>		0.0860,		0.0031,		0.22%,
		<0.05		0.0816		0.0030		0.25%,

SHAPE Parameters

Table S5. Continuous shape measures (CSMs) of the 6-coordinate potassium coordination polyhedra in the X-ray crystal structures of **2-Te** and **2-Se**. The values in red indicate the closest polyhedron according to the CSM's, while the values in blue indicate the second closest polyhedron according to the CSMs.

Polyhedron	Symmetry	CSM of 6-coordinate potassium coordination polyhedra		
		2-Те	2-Se	
hexagon (HP-6)	D _{6h}	25.288	23.176	
pentagonal pyramid (PPY-6)	<i>C</i> _{5v}	23.401	20.586	
octahedron (OC-6)	O _h	7.268	7.889	
trigonal prism (TPR-6)	D _{3h}	13.249	12.028	
Johnson pentagonal pyramid (JPPY-6)	<i>C</i> _{5v}	25.701	22.818	

Table S6. Continuous shape measures (CSMs) of the 5-coordinate potassium coordination polyhedra in the X-ray crystal structures of **5-Te** and **3-Se**. The values in red indicate the closest polyhedron according to the CSM's, while the values in blue indicate the second closest polyhedron according to the CSMs.

Polyhedron	Symmetry	CSM of 5-coordinate potassium coordination polyhedral**		
		5-Te	3-Se	
pentagon (PP-5)	D _{5h}	32.143	29.840	
vacant octahedron (vOC-5)	C _{4v}	15.913	9.469	
trigonal bipyramid (TBPY-5)	D _{3h}	15.736*	10.892	
spherical square pyramid (SPY-5)	C _{4v}	16.818	9.218	
Johnson trigonal bipyramid (JTBPY-5)	D _{3h}	17.581	14.277	

* The coordination geometry in **5-Te** is not a strong match to any regular polyhedron.

** The coordination geometries of **5-Te** and **3-Se** match with multiple different polyhedra to a similar extent.

Figure S21. Closest fits, according to the SHAPE program, for the coordination geometry around potassium in the X-ray structures of $[K(ATe_2^{Tripp2})(THF)_3]$ (**2-Te**; top left), $[K(ATe_2^{Tripp2})(THF)_3]$ (**5-Te**; top right), $[K(ASe_2^{Tripp2})(THF)_3]$ (**2-Se**; bottom left) and $[K(ASe_2^{Tripp2})(THF)_2]$ (**3-Se**; bottom right). Idealized polyhedra which most closely match the geometry of each structure have been superimposed (**2-Te** and **2-Se**; octahedron, **5-Te**; trigonal bipyramid, **3-Se**; spherical square pyramid). Atoms in the coordination environment are represented by spheres; potassium (grey), nitrogen (blue), oxygen (red), selenium (orange), tellurium (burgundy).

References:

- 1 P. J. Bailey, R. A. Coxall, C. M. Dick, S. Fabre, L. C. Henderson, C. Herber, S. T. Liddle, D. Loroño-González, A. Parkin and S. Parsons, *Chem. Eur. J.*, 2003, **9**, 4820.
- 2 N. A. G. Gray, I. Vargas-Baca and D. J. H. Emslie, *Inorg. Chem.*, 2023, **62**, 16974.
- 3 R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow and P. Granger, 2001, **73**, 1795.
- 4 G. M. Sheldrick, *Acta Crystallogr., Sect. A: Found. Adv.*, **2015**, *71*, 3–8.
- 5 G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3–8.
- 6 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. K. A. Howard, H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339–341.
- (a) ADF 2020, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com; (b) C. F. Guerra, J. G. Snijders, G. te Velde and E. J. Baerends, *Theor. Chem. Acc.*, **1998**, *99* (6), 391-403; (c) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. Van Gisbergen, J. G. Snijders and T. Ziegler, *J. Comput. Chem.*, **2001**, 22 (9), 931-967
- J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865.
- 9 E. v. Lenthe, E. J. Baerends and J. G. Snijders, J. Chem. Phys., 1993, **99**, 4597.
- 10 E. van Lenthe, E. J. Baerends and J. G. Snijders, J. Chem. Phys., 1994, 101, 9783.
- 11 E. van Lenthe, A. Ehlers and E.-J. Baerends, J. Chem. Phys., 1999, 110, 8943.
- 12 E. van Lenthe, J. G. Snijders and E. J. Baerends, J. Chem. Phys., 1996, **105**, 6505.
- 13 E. van Lenthe, R. van Leeuwen, E. J. Baerends and J. G. Snijders, *Int. J. Quantum Chem.*, 1996, **57**, 281.
- 14 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 15 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, **32**, 1456.
- 16 A. D. Becke, J. Chem. Phys., 1988, 88, 2547.
- 17 M. Franchini, P. H. T. Philipsen and L. Visscher, J. Comput. Chem., 2013, 34, 1819.
- 18 A. Bérces, R. M. Dickson, L. Fan, H. Jacobsen, D. Swerhone and T. Ziegler, *Comput. Phys. Commun.*, 1997, **100**, 247.
- 19 H. Jacobsen, A. Bérces, D. P. Swerhone and T. Ziegler, *Comput. Phys. Commun.*, 1997, **100**, 263.
- 20 S. K. Wolff, Int. J. Quantum Chem., 2005, 104, 645.
- 21 R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Clarendon Press, Oxford, 1990.
- 22 J. I. Rodríguez, R. F. W. Bader, P. W. Ayers, C. Michel, A. W. Götz and C. Bo, *Chem. Phys. Lett.*, 2009, **472**, 149.
- 23 J. I. Rodríguez, A. M. Köster, P. W. Ayers, A. Santos-Valle, A. Vela and G. Merino, *J. Comput. Chem.*, 2009, **30**, 1082.
- 24 J. I. Rodríguez, J. Comput. Chem., 2013, 34, 681.
- 25 P. W. Ayers and S. Jenkins, *Comput. Theor. Chem.*, 2015, **1053**, 112.
- 26 V. Tognetti and L. Joubert, *Phys. Chem. Chem. Phys.*, 2014, 16, 14539.
- 27 Y. A. Abramov, Acta Crystallogr., Sect. A: Found. Crystallogr., 1997, A53, 264-272.
- 28 X. Fradera, M. A. Austen and R. F. W. Bader, J. Phys. Chem. A, 1999, 103, 304.
- J. Poater, M. Solà, M. Duran and X. Fradera, *Theor. Chem. Acc.*, 2002, **107**, 362.
- 30 NBO 6.0: E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013.