Electronic Supporting Information

Brønsted Acid Mediated Mono- and Di-substitution of Quinoxalines with Indoles: A Pathway to Indolocarbazole-Quinoxaline Scaffolds

Mangesh Biramya Valvi,^a Gaurav Badhani,^a Karan Prakash More,^a and Subbarayappa Adimurthy^{*a}

^aAcademy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364 002. Gujarat, INDIA. Fax: 91–278-2567562; E-mail: <u>adimurthy@csmcri.res.in</u>

Table of content

1. General information	S 3
2. Optimization of reaction conditions	S4
3. Experimental procedure	S10
4. Spectroscopic data	S 13
5. Mechanistic studies	S 38
6. X-ray Structure and Data	S41
7. ¹ H NMR, ¹³ C NMR and ¹⁹ F spectra for spectroscopic data	S44
8. References and notes	S101

1. General Information:

All reactions were performed in an oven-dried glassware using a clean seal reaction tube, ¹H, and ¹³C were recorded on a JEOL, RESONANCE ECZ600R (500 MHz, 600MHz) and BRUKER AVANCE III HD (200MHz), and Chemical shifts (δ) are reported in ppm, coupling constants (J) were given in Hz. using the residual solvent peak in CDCl₃ (H: δ = 7.26 and C: δ = 77.16 ppm), DMSO-d6 (H: δ =2.50, and 3.33 ppm and C: δ 49.25 ppm) and Tetramethyl silane (TMS) (for ¹H, δ = 0), as the internal standard. IR spectra were recorded on a Perkin Elmer, G-FTIR. HRMS ESI (*m/z*) were recorded on a LC Waters, MS Micromass. X-ray diffraction data were recorded on a Bruker Kappa Apex-II CCD diffractometer at 296 K. Melting points of solid compounds were measured by a Thermo Scientific MEL TEMP instrument. the reaction was carried inside a wooden box. Progress of the reactions was monitored by thin-layer chromatography (TLC). All products were purified through column chromatography using silica gel 100–200 mesh size using hexane/ethyl acetate as an eluent, unless otherwise indicated.

All chemical reagents, substrates, and catalysts were purchased from commercial suppliers (like TCI, Sigma Aldrich, Spectrochem, BLD Pharma etc.), and were used without further purification. The starting substrates **1bb**, **1bc**, **1bd**, **1ae**, **1af**, and **1ag** were prepared according to the literature procedure^{1,2}.

2. Optimization of reaction conditions for mono-substitution of quinoxaline and indole: Table S1: Screening of Acid

$\left(\sum_{\substack{N\\la}}^{N}\right) +$	$\begin{array}{c} & Acid \\ \hline \\ CH_3CN \\ 2a \end{array} \end{array} \xrightarrow{N}_{H} 70 \ ^{\circ}C, 24 \text{ h.} \end{array}$	NH N Jaa
Entry	Variations of Acid (equiv.)	Yield (%) ^a
1	$H_2SO_4(1.2)$	42
2	$Et_2O(BF_3)$ (1.2)	trace
3	FeCl ₃ (1.2)	trace
4	p-TSA (1.2)	47
5	HBr (1.2)	53
6	HCl (1.2)	65
7	CH ₃ COOH (1.2)	nr
8	HCl (0.3)	36
9	HCl (0.5)	40
10	HCl (1.0)	39
11	HCl (1.5)	47
12	HCl (2.0)	48

^a Reaction Condition: 0.3 mmol of **1a** (1.0 equiv), 0.3 mmol of **2a** (1.0 equiv), Acid in Acetonitrile (1mL) at 70 °C for 24 h, isolated yield.

Table S2: Screening of Solvent

Entry	Variations of Solvent (1mL)	Yield (%) ^a
1	DMF	24
2	DCE	nr
3	CH ₃ CN	65
4	Toluene	nr
5	1,4 Dioxane	10
6	Ethyl Acetate	nr
7	Methanol	15
8	Acetone	nr

^a Reaction Condition: 0.3 mmol of **1a** (1.0 equiv.), 0.3 mmol of **2a** (1.0 equiv.), Hydrochloric acid (1.2 equiv.) in Solvent at 70 °C for 24 h, isolated yield.

1	00	24	trace
2	rt	24	49
3	50	24	50
4	70	24	65
5	100	24	59
6	120	24	57
7	70	12	45
8	70	35	50
9	80	24	64

^a Reaction Condition: 0.3 mmol of **1a** (1.0 equiv.), 0.3 mmol of **2a** (1.0 equiv.), and Hydrochloric acid (1.2 equiv.) in the acetonitrile (1mL) temp. and time, isolated yield.

2a. Optimization of reaction conditions for di-substitution of quinoxaline and indole:

Table S4: Screening of Acid

Entry	Acid (equiv.)	Yield ^a
1	HBr (2.0)	30
2	H ₂ SO ₄ (2.0)	53
3	CH ₃ COOH (2.0)	nr
4	Et ₂ O(BF ₃) (2.0)	nr
5	FeCl ₃ (2.0)	nr
6	HCl (2.0)	66
7	HCl (1.2)	42
8	HCl (1.5)	48
9	HCl (3.0)	46

^a Reactions condition: 0.3 mmol of **1a** (1.0 equiv.), 0.6 mmol of **2a** (2.0 equiv.), and Acid in the acetonitrile (2mL) at 15 °C for 24 h, isolated yield.

Entry	Solvent (2mL)	Yield ^a
1	THF	35
2	CH ₃ CN	66
3	THF: CH ₃ CN (1:1)	25
4	H ₂ O	nr
5	Acetone	nr
6	Toluene	nr
7	DCE	nr

^a Reactions condition: 0.3 mmol of **1a** (1.0 equiv.), 0.6 mmol of **2a** (2.0 equiv.), and Hydrochloric Acid (2.0 equiv.) in the solvent at 15 °C for 24 h, isolated yield.

Table S6: Screening of Temp. and Time

le S6: Screenin	g of Temp. and Time		\rangle	
$ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \bigg{)} \\ \end{array} } \\ \bigg{)} \\ \end{array} } \\ \bigg{)} \\ \bigg{)} \\ \end{array} \\ \bigg{)} \\				
Entry	Temp (°C)	Time (h)	Yield ^a	
1	-20	24	11	
2	00	24	47	
3	10	24	48	
4	15	24	66	
5	18	24	66	
6	20	24	41	
7	rt	24	31	
8	50	24	nr	
9	00	12	14	

10	18	48	70
11	15	36	67

^a Reactions condition: 0.3 mmol of **1a** (1.0 equiv.), 0.6 mmol of **2a** (2.0 equiv.) and Hydrochloric Acid (2.0 equiv.) in Acetonitrile (2mL) at Temp. °C for Time h, Isolated yield

Table S7: Optimization of reaction conditions for Indolocarbazole-quinoxalines:

4aa 5aa

Entry	Oxidant	Solvent	Temp.	Time	Yield ^a
	(2.0 equiv.)	(1mL)	(°C)	(h.)	(%)
1	DDQ	Benzene	80	6	70
2 ^b	DDQ	Benzene	80	12	53
3	DDQ (1.0 equiv.)	Benzene	80	12	40
4	DDQ	Benzene	80	4	47
5	DDQ	Benzene	80	8	71
6	DDQ	Benzene	80	12	86
7	DDQ	Benzene	80	16	71
8	DDQ	Benzene	rt	12	trace
9	DDQ	Benzene	110	12	72
10	DDQ	Toluene	80	12	65
11	DDQ	DCE	80	12	40
12	DDQ	CH ₃ CN	80	12	nr
13	DDQ	1.4-Dioxane	80	12	nr
14	DDQ	Toluene	110	12	60

16	DDQ	Xylene	80	12	38
17	DDQ	Benzene: H ₂ O (4:1)	80	12	62
18	DDQ	Ethanol	80	12	trace
19	DDQ	Trifluorobenzene	100	12	25
20	I_2	Benzene	80	12	trace
21	PIDA	Benzene	80	12	trace
22	TBPB	Benzene	80	12	nr
23	DDQ	o-DCB	80	12	37
24	DDQ	Chlorobenzene	80	12	34

^a Reaction condition: 0.1 mmol of **4aa**, 0.2 mmol of oxidative, and p-TSA (50 mol%) in 1 mL solvent. Isolated yield. ^b Reaction were performed without additive (*p*-TSA).

3. Experimental procedure:

3a. General reaction procedure for the synthesis of 3aa-3bc

The reaction was performed 0.3 mmol quinoxaline (1.0 equiv.), and 0.3 mmol indole (1.0 equiv.), added into the clean oven dried reaction tube with cap, acetonitrile was used as a solvent, then 25.1 μ l of HCl (35%) (1.2 equiv.) was added dropwise at room temperature and the reaction mixture stirred in an oil bath at 70 °C up to 24 h. After cooling and quenching the reaction with water (10mL), the reaction mixture was extracted with ethyl acetate (10-15 mL three times) and the combined organic layer were dried over anhydrous Na₂SO₄. The organic solvent was removed under reduced pressure, the crude product leftover was purified by column chromatography using silica gel having 100-200 mesh size.

3b. General reaction procedure for the synthesis of 3bd-3bk

The reaction was performed 0.3 mmol quinoxalinone (1.0 equiv.), and 0.3 mmol indole (1.0 equiv.), added into the clean oven dried reaction tube with cap, acetonitrile was used as a solvent, then 25.1 μ l of HCl (35%) (1.2 equiv.) was added dropwise at room temperature and the reaction mixture stirred in an oil bath at 70 °C up to 24 h. After cooling and quenching the reaction with water (10mL), the reaction mixture was extracted with ethyl acetate (10-15 mL three times) and the combined organic layer were dried over anhydrous Na₂SO₄. The organic solvent was removed under reduced pressure, the crude product leftover was purified by column chromatography using silica gel having 100-200 mesh size.

3c. General reaction procedure for the synthesis of 4aa- 4aj

The reaction was performed with 0.3 mmol of quinoxaline (1.0 equiv.) and 0.6 mmol of indole (2.0 equiv.) was added in a clean reaction tube, with 2.0 mL of acetonitrile, the reaction mixture was cooled to 15 -18 °C, then 42 μ l of HCl (35%) (2.0 equiv. w.r.t. quinoxaline) was added dropwise into the reaction mixture, and the reaction mixture was stirred at same temperature for 24 h. After quenching with water (10mL), the reaction mixture was extracted with ethyl acetate (15 mL three times), and the combined organic layer was dried over anhydrous Na₂SO₄. After the removal of solvent under reduced pressure, the crude product leftover was purified by column chromatography using silica gel with 100-200 mesh size.

3d. General reaction procedure for the synthesis of 5aa-5ad

The reaction was performed with 0.1 mmol of **4aa** and 0.2 mmol DDQ (2.0 equiv.) and the catalytic amount 8.61 mg of *p*-TSA (50 mol %) were added in to a sealed tube containing 1.0 mL of benzene, then the reaction mixture was stirred at 80 °C for 12 h on carousel reactor. After cooling the reaction was quenched with water (10 mL), and reaction mixture was extracted with ethyl acetate (15 mL three times) and the combined organic layer was dried over anhydrous Na₂SO₄. After recovery of solvent under reduced pressure, the crude product leftover was purified by column chromatography using silica gel having 100-200 mesh size.

3e. Large-Scale-Reaction

Synthesis of 2-(1H-indol-3-yl) quinoxaline (3aa)

The reaction was performed at 1.30 g of **1a** (10 mmol) and 1.18 g of **2a** (10 mmol) added into the clean 100 mL round bottom flask, acetonitrile was used as a solvent (10 mL), then 840 μ l of HCl (35%) was added dropwise at room temperature and the reaction mixture was stirred in an oil bath at 70 °C up to 24 h. After cooling the reaction, it was quenched with water (40 mL), the reaction mixture was extracted with ethyl acetate (70 mL three times) and the combined organic layer was dried over anhydrous Na₂SO₄. Removal of the solvent under reduced pressure, the crude product leftover was purified by column chromatography (hexane: ethyl acetate= 7.5:2.5) using silica gel (100-200 mesh size) and the desired product was obtained (1.15 g) in 47% yield.

Fig S1: (A) Photograph of reaction mixture before addition of HCl (B) Photograph of reaction mixture after addition of HCl (C) Photograph of reaction setup at gram scale for 3aa (D) Photograph of reaction setup at gram scale for 4aa.

Synthesis of 2-(1H-indol-3-yl) quinoxaline (4aa)

The reaction was performed at 1.30 g (10 mmol) of **1a** and 2.34 g (20 mmol) of **2a** was added in to a 25 mL reaction tube containing 15 ml of acetonitrile, the reaction mixture was cooled to 15 -18 °C and then 1.40 mL of HCl (35%) (2.0 equiv., w.r.t. quinoxaline) was added dropwise into the reaction mixture. The reaction mixture was stirred at same temperature for 48 h in reaction tube, and the reaction was quenched with water (40 mL), and it was extracted with ethyl acetate (70 mL three times) and the combined organic layer was dried over anhydrous Na₂SO₄. After the recovery of the solvent under reduced pressure, the crude product leftover was purified by column chromatography (hexane: ethyl acetate= 7.0:3.0) using silica gel (having 100-200 mesh size). The desired product was obtained 49% yield (1.78 gm) (w.r.t. quinoxaline).

4. Spectroscopic data:

Synthesis of 2-(1H-indol-3-yl) quinoxaline (3aa)

Prepared according to the general procedure (3a) mentioned above in 65% yield (47.8mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp= 184-186 °C.

¹**H NMR** (**600 MHz**, **CDCl**₃) δ 11.07 (s, 1H), 9.35 (s, 1H), 8.78 (d, *J* = 8.4 Hz, 1H), 8.56 (s, 1H), 8.19 (dd, *J* = 24.3, 8.4 Hz, 2H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.93 – 7.90 (m, 1H), 7.87 (t, *J* = 7.5 Hz, 1H), 7.65 (t, *J* = 8.0 Hz, 1H), 7.17 (t, *J* = 7.7 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 195.8, 159.8, 149.6, 145.0, 143.1, 140.8, 140.4, 135.8, 135.2, 132.3, 131.2, 130.4, 129.5, 122.9, 122.0, 121.2.

IR (cm⁻¹): *V*max; 3173, 3015,1617, 1550, 1121, 737.

HRMS (ESI): calcd for C₁₆H₁₁N₃ [M+H] ⁻: 246.1031; found: 246.1032.

Synthesis of 3-(quinoxalin-2-yl)-1H-indol-4-ol (3ab)

Prepared according to the general procedure (3a) mentioned above in 78% yield (61.1mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp=270-272 °C.

¹**H** NMR (600 MHz, DMSO-d₆) δ 13.48 (s, 1H), 12.00 (s, 1H), 9.61 (s, 1H), 8.62 (d, *J* = 3.0 Hz, 1H), 8.00 (d, *J* = 8.1 Hz, 1H), 7.79 (dd, *J* = 5.0, 1.8 Hz, 2H), 7.67 (ddd, *J* = 8.1, 5.7, 2.6 Hz, 1H), 7.04 (t, *J* = 7.8 Hz, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 6.45 (d, *J* = 7.8 Hz, 1H).

¹³C NMR (151 MHz, DMSO-d₆) δ 152.81, 149.3, 145.9, 140.1, 139.9, 139.1, 131.6, 130.2, 129.4, 128.7, 126.3, 125.8, 115.0, 114.1, 106.7, 103.4.

IR (cm⁻¹): *V*max; 3305, 3131, 3059, 1632, 1588, 1257, 1155, 1124, 897.

HRMS (ESI): calcd for C₁₆H₁₁N₃O: 262.0980 [M+H] ⁺; found: 262.0980

Synthesis of 2-(4-bromo-1H-indol-3-yl) quinoxaline (3ac)

Prepared according to the general procedure (3a) mentioned above in 42% yield (40.8 mg), eluent (30% EtOAc/hexane) to afford a yellowish brown solid, mp=216-218 °C.

¹**H** NMR (600 MHz, DMSO-d₆) δ 12.10 (s, 1H), 9.18 (s, 1H), 8.12 – 8.09 (m, 2H), 7.98 (d, J = 2.8 Hz, 1H), 7.87 – 7.81 (m, 2H), 7.60 (d, J = 8.1 Hz, 1H), 7.37 (d, J = 7.5 Hz, 1H), 7.16 (t, J = 7.8 Hz, 1H).

¹³C NMR (151 MHz, DMSO-d₆) δ 150.3, 148.5, 141.9, 140.5, 138.3, 130.6, 130.3, 129.6, 129.3, 129.3, 125.1, 124.6, 123.6, 114.8, 113.3, 112.5.

IR (cm⁻¹): *V*max; 3139, 3029, 1617, 1530, 1238, 1104, 725, 608.

HRMS (**ESI**): calcd for C₁₆H₁₀BrN₃ [M+Na] ⁺:345.9956; found:345.9951.

Synthesis of 2-(5-methoxy-1H-indol-3-yl) quinoxaline (3ad)

Prepared according to the general procedure (3a) mentioned above in 83% yield (68.5mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp= 192-194 °C.

¹**H** NMR (600 MHz, CDCl₃) δ 9.20 (s, 1H), 8.70 (s, 1H), 8.35 (d, *J* = 2.6 Hz, 1H), 8.12 (dd, *J* = 8.0, 1.6 Hz, 1H), 8.05 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.95 (d, *J* = 2.9 Hz, 1H), 7.76 – 7.72 (m, 1H), 7.67 – 7.63 (m, 1H), 7.34 (d, *J* = 8.9 Hz, 1H), 6.99 (dd, *J* = 8.8, 2.5 Hz, 1H), 3.98 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 155.6, 150.4, 143.6, 142.5, 140.1, 131.8, 129.8, 128.9, 128.0, 128.0, 126.2, 126.0, 114.6, 113.7, 112.0, 104.1, 55.7.

IR (cm⁻¹): *V*max; 3052, 1610, 1550, 1455, 1337, 1225, 1122, 737.

HRMS (ESI): calcd for C₁₇H₁₃N₃O [M+Na] ⁺:276.1137; found: 276.1118.

Synthesis of 2-(5-methyl-1H-indol-3-yl) quinoxaline (3ae)

Prepared according to the general procedure (3a) mentioned above in 82% yield (63.7mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp=118-120 °C.

¹**H** NMR (600 MHz, CDCl₃) δ 9.23 (s, 1H), 8.56 (s, 1H), 8.53 (s, 1H), 8.16 (dd, *J* = 8.3, 1.4 Hz, 1H), 8.04 (dd, *J* = 8.4, 1.4 Hz, 1H), 7.96 (d, *J* = 2.7 Hz, 1H), 7.73 (t, *J* = 6.8 Hz, 1H), 7.67 – 7.63 (m, 1H), 7.35 (d, *J* = 8.2 Hz, 1H), 7.15 (dd, *J* = 8.5, 1.7 Hz, 1H), 2.55 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 150.6, 144.0, 142.8, 140.3, 135.3, 131.3, 130.0, 129.1, 129.0, 128.1, 128.1, 125.9, 125.2, 121.9, 114.6, 111.2, 21.8.

IR (cm⁻¹): *V*max; 3122, 3023, 1612, 1548, 1439, 1234, 1138, 750.

HRMS (ESI): calcd for C₁₇H₁₃N₃ [M+H] ⁻:258.1031; found: 258.1043.

Synthesis of 2-(5-chloro-1H-indol-3-yl) quinoxaline (3af)

Prepared according to the general procedure (3a) mentioned above in 59% yield (49.5 mg), eluent (30% EtOAc/hexane) to afford a yellow solid, mp= 218-220 °C.

¹**H NMR (600 MHz, DMSO-d**₆) δ 12.10 (s, 1H), 9.50 (s, 1H), 8.81 (d, J = 2.2 Hz, 1H), 8.70 (d, J = 2.9 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 8.02 (d, J = 8.1 Hz, 1H), 7.81 (t, J = 7.7 Hz, 1H), 7.71 (t, J = 7.6 Hz, 1H), 7.55 (d, J = 8.6 Hz, 1H), 7.28 (d, J = 8.5 Hz, 1H).

¹³C NMR (151 MHz, DMSO-d₆) δ 150.2, 144.2, 141.5, 139.3, 135.4, 130.2, 129.9, 128.6, 128.3, 127.8, 126.4, 125.3, 122.5, 121.2, 113.4, 112.3.

IR (cm⁻¹): *V*max; 3157, 3044, 1621, 1549, 1230, 1132, 741, 704.

The chemical compounds have been described.³

Synthesis of 2-(5-bromo-1H-indol-3-yl) quinoxaline (3ag)

Prepared according to the general procedure (3a) mentioned above in 68% yield (72.0 mg), eluent (30% EtOAc/hexane) to afford a yellow solid, mp= 240-242 °C.

¹**H NMR (600 MHz, DMSO-d**₆) δ 12.13 (s, 1H), 9.52 (s, 1H), 8.98 (d, J = 2.2 Hz, 1H), 8.70 (d, J = 2.2 Hz, 1H), 8.11 (dd, J = 8.4, 1.3 Hz, 1H), 8.04 (dd, J = 8.2, 1.5 Hz, 1H), 7.83 – 7.80 (m, 1H), 7.73 – 7.70 (m, 1H), 7.53 (d, J = 8.6 Hz, 1H), 7.41 (dd, J = 8.6, 2.2 Hz, 1H).

¹³C NMR (151 MHz, DMSO-d₆) δ 150.87, 144.93, 142.22, 140.08, 136.41, 130.77, 130.63, 129.29, 129.01, 128.52, 127.79, 125.78, 124.93, 114.60, 114.16, 112.99.

IR (cm⁻¹): *V*max; 3143, 3031, 1619, 1548, 1229, 1123, 744;

HRMS (ESI): calcd for C₁₆H₁₀BrN₃ [M+H] ⁺:324.0136; found: 324.0129.

Synthesis of 2-(5-nitro-1H-indol-3-yl) quinoxaline (3ah)

Prepared according to the general procedure (3a) mentioned above in 38% yield (33.1 mg), eluent (30% EtOAc/hexane) to afford a yellow solid, mp= 262-264 °C.

¹**H** NMR (600 MHz, DMSO-d₆) δ 12.47 (s, 1H), 9.63 (d, J = 2.4 Hz, 1H), 9.47 (s, 1H), 8.79 (d, J = 2.6 Hz, 1H), 8.08 (dd, J = 8.9, 2.4 Hz, 1H), 8.03 (d, J = 8.2 Hz, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.78 (s, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.64 (d, J = 8.9 Hz, 1H).

¹³C NMR (151 MHz, DMSO-d₆) δ 150.2, 144.8, 142.6, 142.0, 140.7, 140.3, 132.7, 130.9, 129.3, 129.1, 129.0, 125.3, 119.6, 118.5, 115.2, 113.2.

IR (cm⁻¹): *V*max; 3160, 3060, 1618, 1579, 1548, 1240, 1140, 743.

HRMS (ESI): calcd for C₁₆H₁₀N₃O₂ [M+Na] ⁺; 313.0701; found: 313.0711

Synthesis of 2-(6-methoxy-1H-indol-3-yl) quinoxaline (3ai)

Prepared according to the general procedure (3a) mentioned above in 69% yield (66.9mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp= 190-192 °C.

¹**H** NMR (600 MHz, CDCl₃) δ 9.19 (s, 1H), 8.68 (d, J = 8.9 Hz, 1H), 8.61 (s, 1H), 8.13 (d, J = 8.5 Hz, 1H), 8.04 (d, J = 8.1 Hz, 1H), 7.87 (d, J = 2.7 Hz, 1H), 7.76 – 7.71 (m, 1H), 7.67 – 7.63 (m, 1H), 7.00 (dd, J = 8.8, 2.3 Hz, 1H), 6.91 (d, J = 2.3 Hz, 1H), 3.88 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 157.3, 150.2, 143.7, 142.6, 140.1, 137.7, 129.8, 128.9, 128.8, 128.0, 124.4, 123.2, 119.8, 115.0, 111.4, 94.7, 55.5.

IR (cm⁻¹): *V*max;3181, 3068, 1628, 1550, 1453, 1250, 1151, 1125, 757.

HRMS (ESI): calcd for C₁₇H₁₃N₃O [M+H] ⁺:276.1137; found: 276.1122.

Synthesis of 2-(6-fluoro-1H-indol-3-yl) quinoxaline (3aj)

Prepared according to the general procedure (3a) mentioned above in 71% yield (56.1mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp= 216-218 °C.

¹**H NMR (600 MHz, DMSO-d**₆) δ 11.96 (s, 1H), 9.50 (s, 1H), 8.80 (dd, *J* = 8.8, 5.7 Hz, 1H), 8.63 (d, *J* = 3.0 Hz, 1H), 8.09 (d, *J* = 8.1 Hz, 1H), 8.02 (d, *J* = 8.1 Hz, 1H), 7.80 (t, *J* = 7.6 Hz, 1H), 7.70 (t, *J* = 7.7 Hz, 1H), 7.32 (dd, *J* = 9.8, 2.5 Hz, 1H), 7.13 – 7.08 (m, 1H).

¹³C NMR (151 MHz, DMSO-d₆) δ 160.7, 159.1, 151.0, 144.9, 142.2, 140.0, 137.7, 130.6, 130.1, 129.2, 128.9, 128.4, 124.0, 124.0, 122.8, 113.5, 109.8, 109.6, 98.7, 98.5.

¹⁹F NMR (471 MHz, DMSO-d₆): -119.89.

IR (cm⁻¹): *V*max; 3153, 3038, 1614, 1551, 1230, 1172, 11023, 755.

HRMS: (ESI) calcd for C₁₆H₁₀FN₃ [M+H] ⁺:264.0937; found: 264.0936.

Synthesis of 2-(6-chloro-1H-indol-3-yl) quinoxaline (3ak)

Prepared according to the general procedure (3a) mentioned above in 54% yield (45.3 mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp= 236-238 °C.

¹**H** NMR (600 MHz, DMSO-d₆) δ 12.02 (s, 1H), 9.50 (s, 1H), 8.79 (d, *J* = 8.5 Hz, 1H), 8.66 (d, *J* = 2.8 Hz, 1H), 8.09 (d, *J* = 8.0 Hz, 1H), 8.02 (d, *J* = 8.2 Hz, 1H), 7.81 (dd, *J* = 8.3, 6.7 Hz, 1H), 7.72 (d, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 2.0 Hz, 1H), 7.27 (dd, *J* = 8.4, 2.0 Hz, 1H).

¹³C NMR (151 MHz, DMSO-d₆) δ 150.8, 144.9, 142.2, 140.0, 138.1, 130.6, 130.4, 129.2, 129.0, 128.5, 127.8, 124.8, 124.1, 121.7, 113.5, 112.2.

IR (cm⁻¹): *V*max; 3151, 3043, 1609, 1549, 1265, 1125, 753, 710.

HRMS (ESI): calcd for C₁₆H₁₀ClN₃ [M+Na] ⁺:302.0461; found: 302.0458.

Synthesis of 2-(7-fluoro-1H-indol-3-yl) quinoxaline (3al)

Prepared according to the general procedure (3a) mentioned above in 54% yield (42.6mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp= 236-238 °C.

¹**H** NMR (600 MHz, DMSO-d₆) δ 12.40 (s, 1H), 9.54 (s, 1H), 8.70 (d, *J* = 3.0 Hz, 1H), 8.62 (d, *J* = 8.0 Hz, 1H), 8.10 (d, *J* = 8.2 Hz, 1H), 8.02 (d, *J* = 8.2 Hz, 1H), 7.81 (t, *J* = 7.6 Hz, 1H), 7.72 (d, *J* = 7.7 Hz, 1H), 7.22 (td, *J* = 7.9, 4.8 Hz, 1H), 7.11 (dd, *J* = 11.4, 7.7 Hz, 1H).

¹³C NMR (151 MHz, DMSO-d₆) δ 161.3, 161.1, 159.5, 154.8, 153.0, 151.0, 140.5, 140.4, 139.7, 139.5, 139.1, 138.9, 138.6, 132.0, 132.0, 129.6, 125.6, 118.3, 118.2.

¹⁹F NMR (471 MHz, DMSO-d₆): -132.97.

IR (cm⁻¹): *V*max; 3058, 3021, 1639, 1547, 1227, 1181, 1130, 757.

HRMS: (ESI) calcd for C₁₆H₁₀FN₃ [M+H] ⁺:264.0937; found: 264.0939.

Synthesis of 2-(7-chloro-1H-indol-3-yl) quinoxaline (3am)

Prepared according to the general procedure (3a) mentioned above in 40% yield (33.5 mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp= 270-272 °C.

¹**H** NMR (600 MHz, DMSO-d₆) δ 12.26 (s, 1H), 9.56 (s, 1H), 8.79 (d, *J* = 7.9 Hz, 1H), 8.71 (d, *J* = 2.9 Hz, 1H), 8.11 (d, *J* = 8.2 Hz, 1H), 8.03 (d, *J* = 8.5 Hz, 1H), 7.81 (t, *J* = 7.5 Hz, 1H), 7.72 (t, *J* = 7.7 Hz, 1H), 7.35 (d, *J* = 7.5 Hz, 1H), 7.26 (t, *J* = 7.8 Hz, 1H).

¹³C NMR (151 MHz, DMSO-d₆) δ 150.8, 145.1, 142.2, 140.1, 134.5, 130.6, 130.5, 129.3, 129.0, 128.6, 128.0, 122.7, 122.4, 121.9, 116.8, 114.5.

IR (cm⁻¹): *V*max; 3166, 3061, 1621, 1563, 1260, 1118, 748, 702.

HRMS (ESI): calcd for C₁₆H₁₀ClN₃ [M+H] ⁺:280.0642; found: 280.0635.

Synthesis of 2-(7-bromo-1H-indol-3-yl) quinoxaline (3an)

Prepared according to the general procedure (3a) mentioned above in 50% yield (48.6mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp= 260-262 °C.

¹**H** NMR (600 MHz, DMSO-d₆) δ 12.12 (s, 1H), 9.57 (s, 1H), 8.84 (d, *J* = 7.9 Hz, 1H), 8.70 (d, *J* = 2.9 Hz, 1H), 8.11 (d, *J* = 7.6 Hz, 1H), 8.03 (d, *J* = 8.5 Hz, 1H), 7.86 – 7.78 (m, 1H), 7.76 – 7.68 (m, 1H), 7.49 (d, *J* = 7.5 Hz, 1H), 7.21 (t, *J* = 7.8 Hz, 1H).

¹³C NMR (151 MHz, DMSO-d₆) δ 150.8, 145.1, 142.2, 140.1, 136.0, 130.6, 130.5, 129.3, 129.0, 128.6, 127.8, 125.8, 122.8, 122.3, 114.5, 105.1.

IR (cm⁻¹): *V*max; 3204, 3041, 1608, 1524, 1238, 1147, 745, 650.

HRMS (ESI): calcd for C₁₆H₁₀BrN₃ [M+H] ⁺:324.0136; found:324.0133.

Synthesis of 2-(2-(naphthalen-2-yl)-1H-indol-3-yl) quinoxaline (3ao)

Prepared according to the general procedure (3a) mentioned above in 60% yield (66.8mg), eluent (20% EtOAc/hexane) to afford a yellow solid, mp=168-170 °C.

¹**H** NMR (500 MHz, DMSO-d₆) δ 12.18 (s, 1H), 8.54 (s, 1H), 8.37 (d, *J* = 7.9 Hz, 1H), 8.27 (d, *J* = 1.8 Hz, 1H), 8.14 (dd, *J* = 8.5, 1.4 Hz, 1H), 8.05 – 7.95 (m, 4H), 7.84 (ddd, *J* = 8.4, 7.0, 1.5 Hz, 1H), 7.75 (ddd, *J* = 8.3, 7.0, 1.4 Hz, 1H), 7.67 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.63 – 7.55 (m, 3H), 7.33 – 7.29 (m, 1H), 7.26 – 7.22 (m, 1H).

¹³C NMR (126 MHz, DMSO-d₆) δ 151.5, 146.4, 142.6, 139.7, 139.7, 137.1, 133.4, 133.2, 130.6, 130.1, 129.1, 129.1, 129.0, 128.7, 128.7, 128.2, 128.0, 127.4, 127.3, 127.3, 123.4, 121.4, 121.2, 112.2, 110.7.

IR (cm⁻¹): *V*max; 3146, 3017, 1616, 1544, 1132, 739.

HRMS (ESI): calcd for C₂₆H₁₇N₃ [M+Na] ⁺: 394.1320; found: 394.1340.

Synthesis of 2-(2-methyl-1H-indol-3-yl) quinoxaline (3ap)

Prepared according to the general procedure (3a) mentioned above in 67% yield (52.1mg), eluent (20-25% EtOAc/hexane) to afford a yellow solid, mp= 142-144 °C.

¹**H** NMR (600 MHz, CDCl₃) δ 9.23 (s, 1H), 8.90 (s, 1H), 8.14 – 8.09 (m, 3H), 7.73 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.67 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H), 7.29 (d, J = 7.4 Hz, 1H), 7.24 – 7.18 (m, 2H), 2.67 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 151.0, 145.5, 142.7, 139.9, 137.0, 135.3, 129.8, 128.8, 128.7, 128.3, 126.9, 122.2, 121.0, 119.3, 110.8, 110.6, 13.5.

IR (cm⁻¹): *V*max; 3154, 3051, 1620, 1578, 1431, 1274, 1126, 731.

HRMS (ESI): calcd for C₁₇H₁₃N₃ [M+Na] ⁺:282.1007; found: 282.1012.

Synthesis of 2-(2-phenyl-1H-indol-3-yl) quinoxaline (3aq)

Prepared according to the general procedure (3a) mentioned above in 49% yield (47.2mg), eluent (20-25% EtOAc/hexane) to afford a yellow solid, mp= 218-220 °C.

¹**H** NMR (600 MHz, DMSO-d₆) δ 12.04 (s, 1H), 8.51 (s, 1H), 8.33 (d, *J* = 8.0 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.98 (d, *J* = 8.1 Hz, 1H), 7.84 (t, *J* = 7.5 Hz, 1H), 7.75 (t, *J* = 7.6 Hz, 1H), 7.63 - 7.61 (m, 2H), 7.54 - 7.51 (m, 4H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H).

¹³C NMR (151 MHz, DMSO-d₆) δ 151.6, 146.5, 142.6, 139.8, 139.7, 137.0, 132.7, 130.6, 129.7, 129.6, 129.5, 129.2, 129.1, 128.0, 123.4, 121.4, 121.2, 112.2, 110.4.

IR (cm⁻¹): *V*max; 3232, 3050, 1649, 1546, 1237, 1103, 749.

HRMS (ESI): calcd for C₂₂H₁₅N₃[M+H] ⁺:322.1344; found: 322.1349.

Synthesis of 1-methyl-3-(quinoxalin-2-yl)-1H-indole-5-carboxylic acid (3ar)

Prepared according to the general procedure (3a) mentioned above in 36% yield (32.7mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp= 246-248 °C.

¹**H** NMR (600 MHz, DMSO-d₆) δ 12.26 (s, 1H), 9.54 (s, 1H), 9.51 (d, J = 1.7 Hz, 1H), 8.75 (d, J = 2.8 Hz, 1H), 8.08 (dd, J = 8.4, 1.4 Hz, 1H), 8.05 (dd, J = 8.4, 1.4 Hz, 1H), 7.90 (dd, J = 8.3, 1.9 Hz, 1H), 7.85 (td, J = 7.4, 1.6 Hz, 1H), 7.76 – 7.73 (m, 1H), 7.62 (d, J = 8.6 Hz, 1H), 3.94 (s, 3H).

¹³C NMR (151 MHz, DMSO-d₆) δ 167.7, 150.8, 145.0, 142.2, 140.2, 140.1, 131.1, 130.7, 129.3, 128.9, 128.7, 125.6, 125.4, 124.1, 122.9, 114.4, 112.6, 52.4.

IR (cm⁻¹): *V*max;3278, 3057, 1690, 1624, 1551, 1458, 1231, 1163, 1124, 743.

HRMS (ESI): calcd for C₁₈H₁₃N₃O₂ [M+Na] ⁺:326.0905; found: 326.0906.

Synthesis of 2-(1-ethyl-2-methyl-1H-indol-3-yl) quinoxaline (3as)

Prepared according to the general procedure (3a) mentioned above in 67% yield (57.7 mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp= 138-140 °C.

¹**H NMR (600 MHz, CDCl₃)** δ 9.24 (s, 1H), 8.11 (dd, *J* = 11.5, 8.5 Hz, 2H), 8.04 (d, *J* = 7.9 Hz, 1H), 7.74 (t, *J* = 7.7 Hz, 1H), 7.69 (t, *J* = 7.7 Hz, 1H), 7.39 (d, *J* = 8.1 Hz, 1H), 7.28 – 7.22 (m, 2H), 4.26 (q, *J* = 7.2 Hz, 2H), 2.79 (s, 3H), 1.43 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 151.3, 146.3, 142.9, 140.2, 137.8, 136.0, 129.9, 129.2, 129.0, 128.4, 126.7, 122.0, 121.1, 119.2, 110.9, 109.4, 38.1, 15.1, 11.6.

IR (cm⁻¹): *V*max; 3043, 1613, 1538, 1418, 1232, 1153, 736.

HRMS (ESI): calcd for C₁₉H₁₇N₃ [M+Na] ⁺:310.1320; found:310.1321

Synthesis of 2-(4-(benzyloxy)-1H-indol-3-yl) quinoxaline (3at)

Prepared according to the general procedure (3a) mentioned above in 76% yield (80.0mg), eluent (20% EtOAc/hexane) to afford a yellow solid, mp=154-156 °C.

¹**H NMR (200 MHz, CDCl**₃) δ 10.02 (s, 1H), 9.37 (s, 1H), 8.11 – 8.00 (m, 2H), 7.70 – 7.55 (m, 3H), 7.13 (d, J = 2.9 Hz, 6H), 6.94 (d, J = 8.2 Hz, 1H), 6.64 (d, J = 7.7 Hz, 1H), 5.14 (s, 2H).

¹³C NMR (50 MHz, CDCl₃) δ 153.1, 150.8, 148.3, 141.9, 140.4, 138.7, 136.7, 129.8, 128.9, 128.6, 128.5, 128.3, 127.7, 127.5, 127.2, 126.4, 123.6, 115.7, 115.1, 105.6, 102.7, 70.4.

IR (cm⁻¹): *V*max; 3096, 3048, 1634, 1542, 1470, 1232, 1141, 730.

HRMS (ESI): calcd for C₂₃H₁₇N₃O [M+ Na] +:374.1269; found:374.1277

Synthesis of 2-(7-(benzyloxy)-1H-indol-3-yl) quinoxaline (3au)

Prepared according to the general procedure (3a) mentioned above in 68% yield (71.6 mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp= 184-186 °C.

¹**H NMR (600 MHz, CDCl₃)** δ 9.23 (s, 1H), 8.95 (s, 1H), 8.33 (d, *J* = 8.1 Hz, 1H), 8.14 – 8.11 (m, 1H), 8.04 (dd, *J* = 8.6, 1.5 Hz, 1H), 7.94 (d, *J* = 2.8 Hz, 1H), 7.72 (td, *J* = 7.4, 1.4 Hz, 1H), 7.65 – 7.61 (m, 1H), 7.50 – 7.47 (m, 2H), 7.42 – 7.35 (m, 3H), 7.26 – 7.24 (m, 1H), 6.85 (d, *J* = 7.6 Hz, 1H), 5.23 (s, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 150.4, 145.4, 143.9, 142.8, 140.4, 136.8, 129.9, 129.1, 129.0, 128.7, 128.7, 128.3, 128.2, 128.0, 127.8, 127.1, 125.2, 122.3, 115.6, 115.1, 104.6, 70.5.

IR (cm⁻¹): *V*max; 3141, 3057, 1624, 1549, 1448, 1237, 1190, 1135, 721.

HRMS (ESI): calcd for C₂₃H₁₇N₃O [M+H] ⁺:352.1450; found:352.1456.

Synthesis of 2-(1-methyl-1H-indol-3-yl) quinoxaline (3av)

Prepared according to the general procedure (3a) mentioned above in 62% yield (48.2mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp=74-76 °C.

¹**H NMR (600 MHz, CDCl**₃) δ 9.17 (s, 1H), 8.80 – 8.76 (m, 1H), 8.11 (dd, *J* = 8.3, 1.4 Hz, 1H), 8.05 – 8.01 (m, 1H), 7.79 (s, 1H), 7.72 (ddd, *J* = 8.5, 6.9, 1.5 Hz, 1H), 7.65 – 7.61 (m, 1H), 7.36 (d, *J* = 3.4 Hz, 3H), 3.84 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 150.4, 143.8, 142.8, 140.2, 137.9, 130.2, 129.9, 129.0, 127.9, 126.4, 123.1, 122.6, 121.6, 113.4, 109.7, 33.4.

IR (cm⁻¹): *V*max; 3052, 1610, 1550, 1455, 1337, 1225, 1122, 737.

HRMS (ESI) calcd for C₁₇H₁₃N₃ [M+H] ⁺:322.1344; found: 322.1349.

Synthesis of 2-(1-butyl-1H-indol-3-yl) quinoxaline (3aw)

Prepared according to the general procedure (3a) mentioned above in 50% yield (45.2mg), eluent (15-20% EtOAc/hexane) to afford a yellow solid, mp= 88-90 °C.

¹**H** NMR (600 MHz, DMSO-d₆) δ 9.45 (s, 1H), 8.83 (d, J = 7.5 Hz, 1H), 8.67 (s, 1H), 8.08 (dd, J = 8.7, 1.5 Hz, 1H), 8.01 (dd, J = 8.2, 1.5 Hz, 1H), 7.81 – 7.78 (m, 1H), 7.71 – 7.67 (m, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.32 – 7.27 (m, 2H), 4.30 (t, J = 7.1 Hz, 2H), 1.88 – 1.84 (m, 2H), 1.36 – 1.31 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, DMSO-d₆) δ 151.0, 144.9, 142.4, 139.9, 137.5, 132.3, 130.5, 129.2, 128.9, 128.3, 126.5, 123.2, 123.1, 121.6, 112.5, 111.0, 46.3, 32.2, 20.0, 14.0.

IR (cm⁻¹): *V*max; 3057, 1613, 1546, 1455, 1217, 1199, 733

HRMS (ESI): calcd for C₂₀H₁₉N₃ [M+H] ⁺:302.1657; found: 302.1663.

Prepared according to the general procedure (3a) mentioned above in 43% yield (38.4mg), eluent (20% EtOAc/hexane) to afford a yellow solid, mp=104-106 °C.

¹**H** NMR (600 MHz, DMSO-d₆) δ 9.42 (s, 1H), 8.82 (d, *J* = 7.7 Hz, 1H), 8.71 (s, 1H), 8.11 (d, *J* = 8.2 Hz, 1H), 8.03 (d, *J* = 8.3 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.77 – 7.70 (m, 2H), 7.34 (dt, *J* = 18.6, 7.1 Hz, 2H), 4.65 (t, *J* = 6.6 Hz, 2H), 3.21 (t, *J* = 6.7 Hz, 2H).

¹³C NMR (151 MHz, DMSO-d₆) δ 150.7, 144.7, 142.3, 140.0, 137.3, 132.1, 130.7, 129.3, 129.0, 128.6, 126.5, 123.5, 123.1, 122.0, 119.2, 113.3, 111.1, 42.3, 19.0.

IR (cm⁻¹): Vmax; 3054, 2247, 1614, 1506, 1458, 1395, 1250, 1096, 695.

HRMS (ESI): calcd for C₁₉H₁₄N₄ [M+Na] ⁺:321.1116; found: 321.1111.

Synthesis of 2-(1-phenyl-1H-indol-3-yl) quinoxaline (3ay)

Prepared according to the general procedure (3a) mentioned above in 39% yield (37.6mg), eluent (20% EtOAc/hexane) to afford a yellow solid, mp= 88-90 °C.

¹**H** NMR (600 MHz, DMSO-d₆) δ 9.60 (s, 1H), 8.96 (d, J = 3.5 Hz, 2H), 8.15 (dd, J = 8.4, 1.5 Hz, 1H), 8.06 – 8.03 (m, 1H), 7.85 – 7.82 (m, 1H), 7.78 – 7.72 (m, 3H), 7.70 – 7.66 (m, 2H), 7.63 (dd, J = 6.5, 2.3 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.40 – 7.36 (m, 2H).

¹³C NMR (151 MHz, DMSO-d₆) δ 150.6, 145.2, 142.2, 140.2, 138.8, 137.0, 132.1, 130.7, 130.5, 129.3, 129.1, 128.8, 128.0, 127.2, 125.0, 124.4, 123.5, 122.6, 114.8, 111.4.

IR (cm⁻¹): *V*max; 3044, 1595, 1539, 1215, 1141, 739.

HRMS (ESI): calcd for C₂₂H₁₅N₃ [M+Na] ⁺:344.1164; found: 344.1176

Synthesis of 2-(1H-indol-3-yl)-8-methylquinoxaline (3az)

Prepared according to the general procedure (3a) mentioned above in 44% yield (34.2mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp=152-154 °C.

¹**H** NMR (600 MHz, DMSO-d₆) δ 11.90 (s, 1H), 9.50 (s, 1H), 8.80 (dd, *J* = 6.0, 3.3 Hz, 1H), 8.63 (d, *J* = 2.9 Hz, 1H), 7.84 (d, *J* = 8.2 Hz, 1H), 7.66 (d, *J* = 7.0 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.54 (dd, *J* = 6.0, 3.1 Hz, 1H), 7.27 (dd, *J* = 6.0, 3.0 Hz, 2H), 2.86 (s, 3H).

¹³C NMR (151 MHz, DMSO-d₆) δ 150.2, 144.5, 141.2, 139.9, 137.7, 136.6, 130.3, 129.3, 127.8, 127.1, 126.0, 123.2, 122.7, 121.5, 113.8, 112.5, 17.8.

IR (cm⁻¹): Vmax; 3130, 3053, 1617, 1547, 1446, 1239, 1139, 736

HRMS (ESI): calcd for calcd for C₁₇H₁₃N₃ [M+H] ⁺:260.1188; found:260.1202

Synthesis of 3-(1H-indol-3-yl) quinoxalin-5-ol (3ba)

Prepared according to the general procedure (3a) mentioned above in 42% yield (33.0mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp=270-272 °C.

¹**H** NMR (200 MHz, DMSO-d₆) δ 11.91 (s, 1H), 10.17 (s, 1H), 9.39 (s, 1H), 8.82 – 8.75 (m, 1H), 8.63 (d, J = 2.9 Hz, 1H), 7.65 – 7.49 (m, 3H), 7.30 – 7.22 (m, 2H), 7.03 (dd, J = 7.5, 1.6 Hz, 1H).

¹³C NMR (50 MHz, DMSO-d₆) δ 154.1, 151.4, 143.3, 142.2, 137.6, 131.0, 130.7, 129.3, 126.0, 123.1, 122.7, 121.3, 118.8, 113.3, 112.4, 111.2.

IR (cm⁻¹): *V*max; 3340, 3137, 3022, 1627, 1555, 1207, 1167, 1104, 697.

HRMS (ESI): calcd for C₁₆H₁₁N₃ [M+Na] ⁺:284.0800; found: 284.0812.

Synthesis of 2-(1H-indol-3-yl)-6-methylquinoxaline (3bb)

Prepared according to the general procedure (3a) mentioned above in 71% yield (55.2mg), eluent (25% EtOAc/hexane) to afford a brownish yellow solid mp=154-156 °C.

¹**H NMR (600 MHz, DMSO-d**₆) δ 11.10 (s, 1H), 8.64 (s, 1H), 8.07 – 8.01 (m, 1H), 7.79 (d, J = 2.9 Hz, 1H), 7.18 – 7.03 (m, 2H), 6.76 (dd, J = 5.4, 3.1 Hz, 1H), 6.69 (dd, J = 8.4, 2.1 Hz, 1H), 6.49 – 6.45 (m, 2H), 1.74 (s, 3H).

¹³C NMR (151 MHz, DMSO-d₆) δ 151.3, 144.0, 142.4, 140.4, 138.3, 137.6, 132.4, 130.2, 129.1, 128.7, 127.9, 126.1, 123.1, 121.3, 113.5, 112.5, 21.7.

IR (cm⁻¹): *V*max; 3187, 3074, 1598, 1548, 1482, 1233, 1109, 742.

The chemical compounds have been described.³

Synthesis of 6-fluoro-2-(1H-indol-3-yl) quinoxaline (3bc)

Prepared according to the general procedure (3a) mentioned above in 71% yield (56.1mg), eluent (25% EtOAc/hexane) to afford a yellow solid, mp= 164-166 °C.

¹**H NMR (600 MHz, DMSO-d₆)** δ 11.96 – 11.89 (m, 1H), 9.44 (s, 1H), 8.77 – 8.75 (m, 1H), 8.60 (d, *J* = 2.9 Hz, 1H), 8.00 (dd, *J* = 9.1, 5.9 Hz, 1H), 7.78 (dd, *J* = 9.7, 2.6 Hz, 1H), 7.54 – 7.48 (m, 2H), 7.24 – 7.19 (m, 2H).

¹³C NMR (151 MHz, DMSO-d₆) δ 163.6, 162.0, 152.1, 144.5, 143.4, 143.3, 137.7, 137.1, 131.6, 131.5, 130.1, 126.0, 123.3, 122.9, 121.5, 117.8, 117.6, 113.2, 112.6, 112.4.

¹⁹F NMR (471 MHz DMSO-d₆): -109.62.

IR (cm⁻¹): 3167 3047, 1615, 1543, 1243, 1168, 1143, 737.

HRMS (ESI): calcd for C₁₆H₁₀N₃F [M+H] ⁺:264.0937; found: 264.0947.

Synthesis of 3-(1H-indol-3-yl) quinoxalin-2(1H)-one (3bd)

Prepared according to the general procedure (3b) mentioned above in 57% yield (44.6mg), eluent (20-25% EtOAc/hexane) to afford an orange solid, mp=300-302 °C.

¹**H** NMR (200 MHz, DMSO-d₆) δ 12.42 (s, 1H), 11.80 (s, 1H), 8.96 (d, *J* = 2.9 Hz, 1H), 8.90 (dd, *J* = 6.4, 3.0 Hz, 1H), 7.88 (d, *J* = 7.7 Hz, 1H), 7.56 – 7.40 (m, 2H), 7.37 – 7.22 (m, 4H).

¹³C NMR (50 MHz, DMSO-d₆) δ 154.8, 152.4, 136.7, 133.5, 133.1, 130.6, 128.4, 128.0, 126.6, 123.7, 123.4, 123.0, 121.4, 115.4, 112.3, 111.7.

IR (cm⁻¹): Vmax; 3130, 3053, 1617, 1547, 1446, 1239, 1139, 736

The chemical compounds have been described.⁴

Synthesis of 3-(1H-indol-3-yl)-1-methylquinoxalin-2(1H)-one (3be)

Prepared according to the general procedure (3b) mentioned above in 75% yield (61.9mg), eluent (20% EtOAc/hexane) to afford an orange solid, mp=250-252 °C.

¹**H** NMR (200 MHz, DMSO-d₆) δ 10.97 (s, 1H), 8.09 (dd, J = 9.6, 3.2 Hz, 2H), 7.08 (d, J = 7.6 Hz, 1H), 6.70 (dd, J = 6.5, 3.0 Hz, 3H), 6.56 (dd, J = 7.7, 4.3 Hz, 1H), 6.43 (dd, J = 6.1, 3.2 Hz, 2H), 2.89 (s, 3H).

¹³C NMR (50 MHz, DMSO-d₆) δ 154.1, 151.0, 136.7, 133.6, 133.4, 131.9, 128.8, 128.7, 126.7, 123.8, 123.4, 123.0, 121.4, 114.8, 112.3, 111.8, 29.5.

IR (cm⁻¹): Vmax; 3254, 3032, 1736, 1625, 1532, 1429, 1175, 741.

HRMS (ESI) calcd for C₁₇H₁₃N₃O [M+Na] ⁺:298.0956; found: 298.0969.

Synthesis of 1-ethyl-3-(1H-indol-3-yl) quinoxalin-2(1H)-one (3bf)

Prepared according to the general procedure (3b) mentioned above in 73% yield (63.3mg), eluent (20% EtOAc/hexane) to afford a brownish solid, mp=188-190 °C.

¹**H NMR (200 MHz, DMSO-d**₆) δ 11.82 (s, 1H), 8.94 (dd, *J* = 11.8, 3.1 Hz, 2H), 7.94 (d, *J* = 7.8 Hz, 1H), 7.53 (d, *J* = 6.3 Hz, 3H), 7.42 – 7.33 (m, 1H), 7.26 (dd, *J* = 6.1, 3.2 Hz, 2H), 4.37 (q, *J* = 6.9 Hz, 2H), 1.30 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (50 MHz, DMSO-d₆) δ 153.6, 151.1, 136.7, 133.7, 133.6, 130.7, 129.1, 128.8, 126.8, 123.8, 123.4, 123.0, 121.4, 114.5, 112.3, 111.8, 37.34, 12.8.

IR (cm⁻¹): *v*max; 3242, 3028, 1633, 1575, 1453, 1431, 1216, 1113, 737.

The chemical compounds have been described.⁵

Synthesis of 1-benzyl-3-(1H-indol-3-yl) quinoxalin-2(1H)-one (3bg)

Prepared according to the general procedure (3b) mentioned above in 80% yield (84.3mg), eluent (20% EtOAc/hexane) to afford a brownish solid, mp=194-196 °C.

¹**H NMR (200 MHz, CDCl**₃) δ 9.08 – 9.01 (m, 1H), 8.96 (d, J = 2.9 Hz, 1H), 8.70 (s, 1H), 8.05 – 7.97 (m, 1H), 7.40 – 7.30 (m, 5H), 7.30 – 7.21 (m, 6H), 5.59 (s, 2H).

¹³C NMR (50 MHz, CDCl₃) δ 154.6, 151.0, 136.1, 135.5, 134.0, 132.4, 131.0, 129.5, 128.9, 128.4, 127.5, 126.6, 123.7, 123.4, 123.2, 121.8, 114.2, 112.9, 111.2, 46.0.

IR (cm⁻¹): *V*max; 3108, 3047, 1682, 1627, 1533, 1237, 1129, 743

The chemical compounds have been described.⁴

Synthesis of 3-(5-methoxy-1H-indol-3-yl)-1-methylquinoxalin-2(1H)-one (3bh)

Prepared according to the general procedure (3b) mentioned above in 60% yield (55.0mg), eluent (20% EtOAc/hexane) to afford an orange solid, mp=264-266 °C.

¹**H NMR (200 MHz, DMSO-d**₆) δ 11.67 (s, 1H), 8.89 (d, *J* = 3.0 Hz, 1H), 8.48 (d, *J* = 2.6 Hz, 1H), 7.90 (d, *J* = 7.7 Hz, 1H), 7.53 (d, *J* = 3.9 Hz, 2H), 7.42 (d, *J* = 8.7 Hz, 2H), 6.90 (dd, *J* = 8.8, 2.6 Hz, 1H), 3.89 (s, 3H), 3.73 (s, 3H).

¹³C NMR (50 MHz, DMSO-d₆) δ 155.3, 154.1, 151.1, 133.9, 133.4, 131.8, 131.6, 128.7, 128.6, 127.4, 123.9, 114.8, 112.9, 112.5, 111.6, 105.5, 55.7, 29.5.

IR (cm⁻¹): *V*max; 3149, 2935, 1641, 1527, 1411, 1196, 1137, 741.

The chemical compounds have been described.⁵

Synthesis of 1-methyl-3-(5-(trifluoromethyl)-1H-indol-3-yl) quinoxalin-2(1H)-one (3bi)

Prepared according to the general procedure (3b) mentioned above in 79% yield (81.3mg), eluent (20% EtOAc/hexane) to afford a brownish solid, mp=288-290 °C.

¹**H** NMR (200 MHz, DMSO-d₆) δ 12.15 (s, 1H), 9.23 (s, 1H), 9.03 (s, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.72 (d, *J* = 8.5 Hz, 1H), 7.54 (d, *J* = 5.5 Hz, 3H), 7.44 - 7.35 (m, 1H), 3.71 (s, 3H).

¹³C NMR (50 MHz, DMSO-d₆) δ 153.9, 150.6, 138.3, 135.3, 133.0, 132.0, 129.1, 128.8, 126.1, 123.9, 123.6, 122.2, 120.7, 119.4, 114.9, 113.1, 112.3, 29.5.

¹⁹F NMR (471 MHz, DMSO-d₆) δ -58.67.

IR (cm⁻¹): *V*max; 3204, 3066, 1712, 1602, 1560, 1454, 1196, 1087, 741.

HRMS (ESI): calcd for C₁₈H₁₂F₃N₃O₂ [M+Na] ⁺:366.0830; found: 366.0854.

Synthesis of 3-(7-(benzyloxy)-1H-indol-3-yl)-1-methylquinoxalin-2(1H)-one (3bj)

Prepared according to the general procedure (3b) mentioned above in 51% yield (58.3mg), eluent (20% EtOAc/hexane) to afford an orange solid, mp= 228-230 °C.

¹**H** NMR (200 MHz, DMSO-d₆) δ 11.84 (s, 1H), 8.76 (d, *J* = 3.0 Hz, 1H), 8.41 (d, *J* = 8.0 Hz, 1H), 7.80 (dd, *J* = 7.7, 1.0 Hz, 1H), 7.55 - 7.47 (m, 2H), 7.43 - 7.24 (m, 6H), 7.06 (t, *J* = 7.9 Hz, 1H), 6.82 (d, *J* = 8.0 Hz, 1H), 5.20 (s, 2H), 3.61 (s, 3H).

¹³C NMR (50 MHz, DMSO-d₆) δ 154.1, 151.0, 145.6, 137.6, 133.4, 133.0, 131.9, 128.8, 128.8, 128.7, 128.5, 128.3, 128.1, 126.9, 123.8, 122.0, 116.4, 114.8, 112.4, 105.1, 69.8, 29.5.

IR (cm⁻¹): *V*max; 3199, 3043, 1625, 1603, 1247, 1179, 1096, 727.

HRMS (ESI): calcd for C₂₄H₁₉N₃O₂ [M+Na] ⁺:404.1375; found: 404.1383.

Synthesis of 1-methyl-3-(2-(naphthalen-2-yl)-1H-indol-3-yl) quinoxalin-2(1H)-one (3bk)

Prepared according to the general procedure (3b) mentioned above in 53% yield (63.8mg), eluent (20% EtOAc/hexane) to afford an orange solid, mp=168-170 °C.

¹**H NMR (200 MHz, DMSO-d**₆) δ 11.92 (s, 1H), 8.09 (s, 1H), 7.85 – 7.63 (m, 5H), 7.54 – 7.40 (m, 6H), 7.33 – 7.24 (m, 1H), 7.17 – 6.98 (m, 2H), 3.47 (s, 3H).

¹³C NMR (50 MHz, DMSO-d₆) δ 154.2, 153.8, 139.7, 136.6, 133.5, 133.3, 133.2, 132.8, 131.3, 130.2, 129.4, 129.1, 128.5, 128.0, 128.0, 127.0, 126.8, 126.7, 123.8, 122.7, 120.9, 120.5, 120.2 115.0, 111.9, 110.0, 29.7.

IR (cm⁻¹): *V*max; 3245, 3022, 1738, 1644, 1577, 1446, 1145, 740.

The chemical compounds have been described.⁴

Synthesis of 5,6,10c,11,16,16a-hexahydrodiindolo[3,2-a:2',3'-c] phenazine (4aa)

Prepared according to the general procedure (3c) mentioned above in 66% yield (72.0mg), eluent (25-30% EtOAc/hexane) to afford off white solid, mp= 193-195 °C.

¹**H NMR (600 MHz, DMSO-d**₆) δ 10.72 (s, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.2 Hz, 2H), 7.04 (d, *J* = 2.3 Hz, 2H), 6.97 (t, *J* = 7.5 Hz, 2H), 6.83 (t, *J* = 7.4 Hz, 2H), 6.56 (dd, *J* = 5.8, 3.4 Hz, 2H), 6.40 (dd, *J* = 5.7, 3.4 Hz, 2H), 5.60 (s, 2H), 4.82 (s, 2H).

¹³C NMR (151 MHz, DMSO-d₆) δ 135.7, 134.0, 126.0, 122.9, 120.3, 118.7, 117.8, 116.3, 115.3, 112.5, 110.9, 52.9.

IR (cm⁻¹): *V*max; 3394, 3165, 3018, 1503, 1366, 1230, 1094, 736.

HRMS (ESI): calcd for C₂₄H₁₈N₄ [M+Na]⁺: 387.1586; found: 387.1584.

Synthesis of 3,3'-(1,2,3,4-tetrahydroquinoxaline-2,3-diyl) bis(1H-indol-4-ol) (4ab)

Prepared according to the general procedure (3c) mentioned above in 34% yield (40.4mg), eluent (25-30% EtOAc/hexane) to afford a bluish grey solid, mp= 220-222 °C.

¹**H NMR (600 MHz, DMSO-d**₆) **\delta** 10.60 (s, 2H), 10.50 (s, 2H), 6.88 (t, *J* = 7.8 Hz, 2H), 6.81 (dd, *J* = 5.8, 3.4 Hz, 2H), 6.76 (d, *J* = 8.1 Hz, 2H), 6.74 – 6.69 (m, 4H), 6.37 – 6.32 (m, 4H), 4.65 (s, 2H).

¹³C NMR (151 MHz, DMSO-d₆) δ 150.1, 137.9, 132.8, 121.7, 121.7, 119.5, 116.0, 115.1, 103.3, 102.3, 53.7.

IR (cm⁻¹): *V*max; 3264, 3120, 3076, 2920, 1578, 1243, 1159, 1085, 746.

HRMS (ESI): calcd for C₂₄H₂₀N₄O₂ [M+Na]⁺: 419.1484; found: 419.1479.

Synthesis of 2,3-bis(4-methoxy-1H-indol-3-yl)-1,2,3,4-tetrahydroquinoxaline (4ac)

Prepared according to the general procedure (3c) mentioned above in 60% yield (76.4mg), eluent (25-30% EtOAc/hexane) to afford an off white solid, mp= 126-128 °C.

¹**H NMR (600 MHz, DMSO-d₆) δ** 10.58 (s, 2H), 7.11 (d, *J* = 8.6 Hz, 2H), 7.02 (d, *J* = 2.7 Hz, 2H), 6.76 (d, *J* = 2.6 Hz, 2H), 6.62 – 6.53 (m, 4H), 6.40 (s, 2H), 5.57 (s, 2H), 4.71 (s, 2H), 3.50 (s, 6H).

¹³C NMR (151 MHz, DMSO-d₆) δ 152.9, 134.7, 131.5, 127.2, 124.1, 116.9, 115.7, 113.1, 112.1, 111.2, 101.0, 55.2, 54.0.

IR (cm⁻¹): *V*max; 3358, 3179, 3066, 1503, 1485, 1384, 1277, 1195, 1120, 720.

HRMS (ESI): calcd for C₂₆H₂₄N₄O₂ [M+Na]⁺:447.1797; found 447.1798.

Synthesis of 2,3-bis(4-bromo-1H-indol-3-yl)-1,2,3,4-tetrahydroquinoxaline (4ad)

Prepared according to the general procedure (3c) mentioned above in 50% yield (78.3mg), eluent (25-30% EtOAc/hexane) to afford a brownish yellow solid, mp=202-204 °C.

¹H NMR (600 MHz, DMSO-d₆) δ 10.98 (d, J = 2.5 Hz, 2H), 7.37 (s, 2H), 7.22 (d, J = 8.6 Hz, 2H), 7.07 (dt, J = 5.5, 2.5 Hz, 4H), 6.58 (s, 2H), 6.43 (s, 2H), 5.73 (s, 2H), 4.66 (s, 2H).
¹³C NMR (151 MHz, DMSO-d₆) δ 135.3, 134.7, 128.7, 125.5, 123.6, 121.8, 117.4, 115.6, 113.8, 113.5, 111.4, 54.1.

IR (cm⁻¹): *V*max; 3244, 3181, 3020, 1608, 1503, 1366, 1229, 1100, 739, 624.

HRMS (ESI): calcd for C₂₄H₁₈Br₂N₄ [M+K] ⁺: 558.9535; found 558.9531

Synthesis of 2,3-bis(6-chloro-1H-indol-3-yl)-1,2,3,4-tetrahydroquinoxaline (4ae)

Prepared according to the general procedure (3c) mentioned above in 57% yield (74.1 mg), eluent (25-30% EtOAc/hexane) to afford a brownish yellow solid, mp= 202-204 $^{\circ}$ C.

¹**H** NMR (500 MHz, DMSO-d₆) δ 10.90 (s, 2H), 7.35 – 7.25 (m, 4H), 7.07 (d, *J* = 2.5 Hz, 2H), 6.82 (dd, *J* = 8.4, 2.0 Hz, 2H), 6.56 (dd, *J* = 5.7, 3.3 Hz, 2H), 6.41 (dd, *J* = 5.8, 3.4 Hz, 2H), 5.70 (s, 2H), 4.72 (s, 2H).

¹³C NMR (126 MHz, DMSO-d₆) δ 135.79, 133.63, 124.69, 124.54, 123.84, 119.71, 117.88, 116.21, 115.03, 112.37, 110.26, 52.86.

IR (cm⁻¹): Vmax; 3345, 3120, 3010, 1548, 1265, 1148, 752, 698

HRMS (ESI): calcd for C₂₄H₁₈Cl₂N₄ [M+Na]⁺:433.0987; found 433.0969.

Synthesis of 2,3-bis(7-methyl-1H-indol-3-yl)-1,2,3,4-tetrahydroquinoxaline (4af)

Prepared according to the general procedure (3c) mentioned above in 69% yield (81.2mg), eluent (25-30% EtOAc/hexane) to afford a brownish yellow solid, mp=196-198 °C.

¹**H NMR** (**500 MHz**, **DMSO-d**₆) δ 10.63 (s, 2H), 7.27 – 7.23 (m, 2H), 6.97 (d, J = 2.6 Hz, 2H), 6.71 (d, J = 6.0 Hz, 4H), 6.48 (dd, J = 5.7, 3.4 Hz, 2H), 6.33 (dd, J = 5.7, 3.4 Hz, 2H), 5.47 (s, 2H), 4.78 (s, 2H), 2.30 (s, 6H).

¹³C NMR (126 MHz, DMSO-d₆) δ 136.0, 134.7, 126.5, 123.5, 121.6, 120.7, 118.9, 117.2, 117.0, 116.5, 113.2, 53.4, 17.2.

IR (cm⁻¹): Vmax; 3287, 3104, 3026, 1525, 1430, 1241, 1150, 710

HRMS (ESI): calcd for C₂₆H₂₄N₄ [M+Na] ⁺: 415.1899; found 415.1912.

Synthesis of 2,3-bis(1H-benzo[f]indol-3-yl)-1,2,3,4-tetrahydroquinoxaline (4ag)

Prepared according to the general procedure (3c) mentioned above in 43% yield (59.9mg), eluent (25-30% EtOAc/hexane) to afford a brownish yellow solid, mp=230-232 °C.

¹**H NMR (600 MHz, DMSO-d**₆) δ 10.81 (s, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 6.95 (d, *J* = 8.1 Hz, 2H), 6.67 (d, *J* = 8.7 Hz, 2H), 6.58 (t, *J* = 7.6 Hz, 2H), 6.47 (t, *J* = 7.5 Hz, 2H), 6.38 (d, *J* = 8.6

Hz, 2H), 6.26 (d, *J* = 2.5 Hz, 2H), 5.79 – 5.75 (m, 2H), 5.59 (dd, *J* = 5.8, 3.5 Hz, 2H), 4.90 (s, 2H), 4.05 (s, 2H).

¹³C NMR (151 MHz, DMSO-d₆) δ 134.9, 130.9, 130.0, 128.6, 125.4, 123.7, 122.8, 122.5, 122.0, 120.9, 120.3, 119.3, 117.9, 117.2, 113.5, 54.5.

IR (cm⁻¹): *V*max; 3325, 3148, 3034, 1592, 1217, 1116, 739.

HRMS (ESI): calcd for C₃₂H₂₄N₄ [M+Na]⁺: 487.1899 found 487.1924.

Synthesis of 2,3-di(1H-indol-3-yl)-5-methyl-1,2,3,4-tetrahydroquinoxaline (4ah)

Prepared according to the general procedure (3c) mentioned above in 30% yield (34.0mg), eluent (25-30% EtOAc/hexane) to afford an off white solid, mp= 188-190 °C.

¹**H NMR** (**600 MHz**, **DMSO-d**₆) δ 10.72 (d, J = 8.3 Hz, 2H), 7.42 (dd, J = 17.8, 8.0 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 7.03 (dd, J = 8.7, 2.5 Hz, 2H), 6.96 (td, J = 7.5, 3.7 Hz, 2H), 6.83 (dt, J = 11.2, 7.3 Hz, 2H), 6.46 (d, J = 7.4 Hz, 1H), 6.35 (dt, J = 15.2, 7.4 Hz, 2H), 5.60 (s, 1H), 4.91 (d, J = 6.4 Hz, 1H), 4.77 (d, J = 7.1 Hz, 1H), 4.53 (s, 1H), 2.02 (s, 3H).

¹³C NMR (151 MHz, DMSO-d₆) δ 135.6, 133.7, 131.0, 129.2, 128.3, 127.4, 125.9, 125.9, 122.8, 122.7, 120.2, 119.9, 118.6, 118.4, 118.1, 117.7, 116.2, 115.6, 115.3, 110.9, 110.9, 110.8, 53.3, 52.3, 16.7.

IR (cm⁻¹): *V*max; 3396, 3175, 3052, 1605, 1426, 1259, 1168, 735.

HRMS (ESI): calcd for C₂₅H₂₂N₄ [M+Na] ⁺: 417.1482; found 417.1475.

Synthesis of 2,3-bis(5-methoxy-1H-indol-3-yl)-5-methyl-1,2,3,4-tetrahydroquinoxaline (4ai)

Prepared according to the general procedure (3c) mentioned above in 43% yield (56.5mg), eluent (25-30% EtOAc/hexane) to afford a white solid, mp= 130-132 $^{\circ}$ C.

¹**H NMR (600 MHz, CDCl₃)** δ 7.79 (s, 2H), 7.14 – 7.09 (m, 2H), 6.88 (d, *J* = 4.6 Hz, 3H), 6.82 (s, 1H), 6.75 (td, *J* = 9.3, 2.5 Hz, 2H), 6.61 (d, *J* = 6.7 Hz, 2H), 6.55 (dd, *J* = 6.9, 2.4 Hz, 1H), 4.92 (d, *J* = 7.9 Hz, 1H), 4.85 (d, *J* = 7.9 Hz, 1H), 3.57 (s, 3H), 3.54 (s, 2H), 2.16 (d, *J* = 11.6 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 153.9, 131.9, 131.3, 127.0, 123.4, 123.3, 120.2, 117.8, 116.4, 112.6, 112.0, 111.9, 111.8, 101.1, 101.0, 55.7, 55.4, 54.6, 30.9, 17.2.

IR (cm⁻¹): *V*max = 3378, 3141, 3041, 1611, 1420, 1344, 1254, 1199, 1162, 730.

HRMS (ESI): calcd for C₂₇H₂₄N₄O₂ [M+Na] ⁺: 461.1953; found 461.1978.

Synthesis of 2,3-di(1H-indol-3-yl)-1,2,3,4-tetrahydroquinoxaline-6-carbonitrile (4aj)

Prepared according to the general procedure (3c) mentioned above in 80% yield (93.4 mg), eluent (25% EtOAc/hexane) to afford a off white solid, mp= 130-132 °C.

¹**H** NMR (500 MHz, DMSO-d₆) δ 10.82 (s, 2H), 7.43 (dd, J = 14.5, 8.0 Hz, 2H), 7.26 (dd, J = 8.2, 2.9 Hz, 2H), 7.08 (dd, J = 5.1, 2.5 Hz, 2H), 6.99 (qd, J = 6.9, 1.2 Hz, 2H), 6.92 – 6.78

(m, 5H), 6.63 (d, *J* = 7.9 Hz, 1H), 6.19 (s, 1H), 4.94 (d, *J* = 7.4 Hz, 1H), 4.78 (d, *J* = 7.5 Hz, 1H).

¹³C NMR (126 MHz, DMSO-d₆) δ 139.5, 136.6, 136.5, 134.5, 126.7, 126.5, 124.1, 124.0, 122.7, 121.9, 121.3, 121.3, 119.4, 118.9, 118.9, 115.0, 114.8, 114.7, 112.1, 111.9, 111.8, 96.3, 53.7, 52.2.

IR (cm⁻¹): *v*max = 3302, 3142, 3062, 2235, 1507, 1230, 1120, 733

HRMS (ESI): calcd for C₂₅H₁₉N₅ [M+Na]⁺: 412.1538; found 412.1545

Synthesis of 5,6-dihydrodiindolo[3,2-a:2',3'-c] phenazine (5aa)

Prepared according to the general procedure (3d) mentioned above in 86% yield (30.8mg), eluent (25-30% EtOAc/hexane) to afford a reddish brown solid, mp= 380-382 °C.

¹**H** NMR (600 MHz, DMSO-d₆) δ 12.01 (s, 2H), 9.10 (d, *J* = 7.1 Hz, 2H), 8.41 (dd, *J* = 6.3, 3.4 Hz, 2H), 7.92 - 7.88 (m, 4H), 7.50 - 7.44 (m, 4H).

¹³C NMR (151 MHz, DMSO-d₆) δ 139.9, 139.4, 137.8, 129.7, 128.5, 128.0, 124.6, 124.0, 122.1, 121.0, 112.3, 111.8.

IR (cm⁻¹): *V*max; 3159, 3041, 1623, 1584, 1123, 711.

HRMS (ESI): calcd for C₂₄H₁₄N₄ [M+Na] ⁺: 381.1116; found 381.1109.

Synthesis of 2,9-dimethoxy-5,6-dihydrodiindolo[3,2-a:2',3'-c] phenazine (5ab)

Prepared according to the general procedure (3d) mentioned above in 67% yield (28.0mg), eluent (25-30% EtOAc/hexane) to afford a reddish brown solid, mp= 300-302 °C.

¹**H NMR** (**600 MHz**, **DMSO-d**₆) **δ** 11.82 (s, 2H), 8.59 (d, *J* = 2.5 Hz, 2H), 8.38 (dd, *J* = 6.3, 3.4 Hz, 2H), 7.87 (dd, *J* = 6.8, 3.4 Hz, 2H), 7.77 (d, *J* = 8.7 Hz, 2H), 7.11 (dd, *J* = 8.7, 2.7 Hz, 2H), 3.99 (s, 6H).

¹³C NMR (151 MHz, DMSO-d₆) δ 155.3, 140.7, 139.7, 133.2, 130.7, 129.1, 128.3, 125.8, 113.9, 113.6, 111.9, 104.7, 55.8.

IR (cm⁻¹): *V*max; 3114, 3039, 1613, 1555, 1204, 1140, 717.

HRMS (ESI): calcd for C₂₄H₁₈N₄O₂ [M+H] ⁺: 419.1508; found 419.1519.

Synthesis of 1,20-dihydrobenzo [5,6] indolo[3,2-a] benzo [5,6] indolo[2,3-c] phenazine (5ac)

Prepared according to the general procedure (3d) mentioned above in 58% yield (26.6mg), eluent (25-30% EtOAc/hexane) to afford a reddish brown solid, mp=308-310 °C.

¹**H** NMR (600 MHz, DMSO-d₆) δ 12.63 (s, 2H), 9.17 (d, *J* = 8.6 Hz, 2H), 8.44 – 8.41 (m, 4H), 8.14 (d, *J* = 8.0 Hz, 2H), 7.93 – 7.90 (m, 4H), 7.77 (t, *J* = 7.4 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 2H).
¹³C NMR (151 MHz, DMSO-d₆) δ 141.0, 140.2, 133.5, 131.5, 129.4, 129.2, 128.9, 126.8, 125.5, 122.5, 122.1, 121.6, 121.1, 113.5.

IR (cm⁻¹): *V*max; 3155, 3054, 1619, 1562, 1140, 705.

HRMS (ESI): calcd for C₃₂H₁₈N₄ [M+Na] ⁺: 481.1429; found 481.1440.

Synthesis of 12-methyl-5,6-dihydrodiindolo[3,2-a:2',3'-c] Phenazine (5ad)

Prepared according to the general procedure (3d) mentioned above in 75% yield (27.9mg), eluent (25-30% EtOAc/hexane) to afford a reddish brown solid. mp= 304-306 °C.

¹**H NMR (600 MHz, DMSO-d**₆) δ 11.98 (d, *J* = 6.6 Hz, 2H), 9.10 – 9.02 (m, 2H), 8.23 (d, *J* = 8.4 Hz, 1H), 7.90 – 7.87 (m, 2H), 7.80 – 7.75 (m, 2H), 7.49 – 7.42 (m, 4H), 3.07 (s, 3H).

¹³C NMR (151 MHz, DMSO-d₆) δ 140.2, 139.3, 138.6, 136.8, 130.3, 128.5, 127.3, 125.4, 124.7, 122.9, 122.8, 121.9, 121.8, 113.1, 113.0, 18.0.

IR (cm⁻¹): *V*max; 3126, 3070, 1649, 1530, 1402, 1103, 698

HRMS (ESI): calcd for C₂₅H₁₆N₄ [M+Na] ⁺: 395.1273; found.395.1255

5. Mechanistic studies:

5a. The Radical scavenging experiment in the presence of (2,2,6,6 Tetramethylpiperidin-1-yl) oxyl (TEMPO)

The reaction was performed with 39.0 mg of **1a** (0.3mmol), 35.1 mg of **2a** (0.3mmol), and 93.7 mg of TEMPO (0.6mmol) added into the oven dried clean reaction tube, in acetonitrile (1mL), after that 26 μ l of HCl was added dropwise into the reaction mixture at room temperature, and the reaction mixture stirred in an oil bath at 70 °C up to 24 hrs, our desired product observed in 60% yield.

5b. The radical scavenging experiment in the presence of **3,5-Di-tert-4**butylhydroxytoluene (BHT)

The reaction was performed with 39.0 mg of **1a** (0.3mmol), 35.1 mg of **2a** (0.3mmol), and 132.2 mg of BHT (0.6mmol) added in to the oven dried clean reaction tube, in acetonitrile,(1mL) after that $26 \,\mu$ l of HCl was added dropwise into the reaction mixture at room temperature, and the reaction mixture stirred in an oil bath at 70 °C up to 24 hrs, our desired product observed less than 55%.

5c. Intermediate detected by HRMS

5d. Mechanism of oxidative cyclisation of 4aa

Based on control experiments and literature reports,⁶ we proposed a two plausible reaction mechanisms Path-A and B (Scheme S1). Initially, **4aa** in presence of p-TSA, generates intermediate **A**, and its oxidation generates another intermediate **B**. Intermediate **B**, under similar conditions may provide stable intermediate **C**, which was isolated and confirmed by NMR. In presence of acid, intermediate **C** will generate carbocationic intermediate **D** and its reaction with DDQ will generate another intermediate **E**. Finally aromatisation of **E** give the desired product **5aa**.⁶ Through Path-B, **4aa** may directly transformed to **5aa** by DDQ through oxidative cyclisation as per the reported literature.⁶

Scheme S1: Plausible mechanism

100 90 f1 (ppm)

6. X-ray Structure and Data

6a. Procedure for the crystal growth

15–20 mg of the pure substance was taken and diluted in 1-2 mL of solvent (hexane and ethyl acetate) in a glass vial (5 mL), it was kept for slow evaporation at room temperature. After 2-3 days small crystals were begun to form. X-ray diffraction data were collected on a Bruker Kappa Apex-II CCD diffractometer at 296 K.

Table S8: Crystal Data and Refinement Parameters (Experimental: X-ray part).

Identification code	4aa	3au
Empirical formula	$C_{24}H_{20}N_4$	C ₂₃ H ₁₇ N ₃ O
Formula weight	364.44	351.39
Temperature/K	298	298
Crystal system	triclinic	orthorhombic
Space group	P-1	P212121
a/Å	9.2942(8)	9.6588(4)
b/Å	10.9020(8)	13.5399(5)
c/Å	11.0378(9)	14.1363(5)
α/°	62.717(3)	90
β/°	71.571(4)	90
γ/°	89.138(3)	90
Volume/Å ³	931.76(13)	1848.73(12)
Z	2	4
ρ _{calc} g/cm ³	1.299	1.262
µ/mm ⁻¹	0.079	0.079
F(000)	384.0	736.0

	-	
Crystal size/mm ³	0.13 imes 0.12 imes 0.08	0.29 imes 0.2 imes 0.06
Radiation	MoK α ($\lambda = 0.71073$)	MoK α ($\lambda = 0.71073$)
2Θ range for data	4.254 to 50	4.166 to 66.486
collection/°		
Index ranges	$-11 \le h \le 11, -12 \le k \le 12, -13 \le$	$-14 \le h \le 14, -20 \le k \le 20, -$
	1≤13	$21 \le l \le 21$
Reflections collected	45073	165909
Independent reflections	3266 [$R_{int} = 0.0938$, $R_{sigma} =$	7107 [$R_{int} = 0.1160, R_{sigma} =$
	0.0364]	0.0409]
Data/restraints/paramet	3266/0/253	7107/0/244
ers		
Goodness-of-fit on F ²	1.086	1.071
Final R indexes [I>=2o	$R_1 = 0.0512, wR_2 = 0.1322$	$R_1 = 0.0447, wR_2 = 0.1004$
(I)]		
Final R indexes [all	$R_1 = 0.0831, wR_2 = 0.1620$	$R_1 = 0.0919, wR_2 = 0.1301$
data]		
Largest diff. peak/hole /	0.28/-0.27	0.16/-0.23
е Å ⁻³		
CCDC	2408003	2410123

Fig. S3. (a) Thermal ellipsoid plot for the crystal structure 4aa (CCDC 2408003). (b) Thermal ellipsoid plot for the crystal structure 3au (CCDC 2410123).

Copies of ¹H, ¹³C & ¹⁹F NMR

¹H NMR OF DMSO-d₆ (blank for reference)

The spectrum shows a characteristic water peak at 3.36 ppm and 2.50 ppm are attributed to residual water in the solvent (DMSO-d₆). Hence these peaks appears in the spectra wherever DMSO is used as solvent for recording NMR and these peaks may be ignored during integration.

¹H NMR, 600 MHz CDCl₃

¹H NMR of 3aa

¹³C NMR of 3ab

¹³C NMR of 3ac

¹³C NMR of 3ad

¹³C NMR of 3ae

¹³C NMR of 3af

¹³C NMR of 3ah

¹³C NMR of 3aj

¹⁹F NMR of 3aj

¹³C NMR of 3ak

¹³C NMR of 3al

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹⁹F NMR of 3al

¹³C NMR of 3am

¹³C NMR of 3an

¹³C NMR of 3ao

00.0

¹³C NMR of 3ap

¹³C NMR of 3aq

¹³C NMR of 3ar

¹³C NMR of 3au

¹³C NMR of 3av

¹³C NMR of 3aw

S71

¹³C NMR of 3ay

¹³C NMR of 3ba

¹³C NMR of 3bb

¹³C NMR of 3bc

¹⁹F NMR of 3bc

¹³C NMR of 3bd

¹³C NMR of 3be

--- 0:00

¹³C NMR of 3bg

¹³C NMR of 3bh

¹⁹F NMR, 471 MHz DMSO-d₆

¹⁹F NMR of 3bi

¹³C NMR of 3bj

¹³C NMR of 4aa

¹³C NMR of 4ab

0.00

¹³C NMR of 4ad

¹³C NMR of 4af

¹³C NMR of 4ag

¹³C NMR of 4ah

¹³C NMR of 4ai

¹³C NMR of 4aj

¹³C NMR of 5ac

¹³C NMR of 5ad

8. References

1. Z. T. Bhutia, G. Prasannakumar, A. Das, M. Biswas, A. Chatterjee, & M. Banerjee, *ChemistrySelect.*, 2017, 2 (3), 1183–1187.

2. A. F Garrido-Castro, A. Gini, M. C. Maestro, J. Alemán, *Chem. Commun.*, 2020, **56**, 3769-3772.

3. S. Kamila, H. Ankati, E. R. Biehl, ARKIVOC., 2011, (9), 94–104.

4. J. Huang, L. Wang, X.-Y. Tang, Org. Biomol., Chem., 2023, 21, 2709-2714.

5. H. C. Ni, H. Mao, Y. Huang, Y. Lu, Z. X. Liu, *Molecules.*, 2024, 29 (11), 2649.

6. (a) M. A. Alsharif., Q. A. Raja, N. A. Majeed, R. S. Jassas, A. A. Alsimaree, A., Naeem, N. Sadiq, E. U. Mughal, R. I. Alsantali, Z. Moussa, & S. A. Ahmed, (2021). *RSC Advances*, 11 (47), 29826–29858; (b) S. Mahboobi, E. Eibler, M. Koller, S. Kumar KC, and Alfred Popp *J. Org. Chem.*, 1999 Vol. 64, No. 13, (c) J. Bergman, E. Koch, & B. Pelcman, *Perkin 1*, 2000, 16, 2609–2614; (d) T. Wang, Y. Bai, L. Ma and X.-P. Yan, *Org. Biomol. Chem.*, 2008, 6, 1751–1755; (e) J. L. Sessler, D.-G Cho and V. Lynch, *J. Am. Chem. Soc.*, 2006, 128, 16518–16519.

Note: Abbreviations

1. w. r. t. = with respect to

- 2. NMR = Nuclear Magnetic Resonance
- 3. HRMS = High Resolution Mass Spectrometry
- 4. CCDC = Cambridge Crystallographic Data Centre
- 5. *p*-TSA = p-Toluenesulfonic acid
- 6. DDQ = 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
- 7. o-DCB = 1,2-Dichlorobenzene