Supporting Information For

Vinylene-linked Diketopyrrolopyrrole Covalent Organic Framework for

Photocatalytic Oxidation Reactions

Wei Zhao, a Jing-Lan Kan, Chaowei Zhao, b Yuan Guo, Fan Yang a and Yu-Bin Dong a

- ^a College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China. Email: <u>yangfan1180@sdnu.edu.cn</u>
- ^b Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China. Emai: <u>cwzhao114@163.com</u>
- ^c School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

Contents

- 1. Materials and Measurements (page S3-S4)
- 2. Synthesis of Intermediate Products and Monomer (page S4-S7)
- 3. Simulated and Experimental Structure of DPP-COF (page S7)
- 4. TGA Curve (page S8)
- 5. TEM Images (page S8)
- 6. Mott-Schottky Plots and Bands Potentials (page S9)
- 7. Photocurrent Response Curve (page S9)
- 8. Photocatalytic Experiments (page S10-S22)
- 9. Crystallographic Parameters (page S22-S24)
- 10. References (page S24-S25)

1. Materials and Measurements

All the solvents, intermediate chemicals and catalysts are commercially available from local chemical distributors, and used without further purification.

¹H-NMR and ¹³C-NMR spectra of intermedia products, monomers and photocatalytic products were individually recorded at 400/100 MHz on a Bruker Avance spectrometer with tetramethylsilane (TMS) as the internal standard. Powder X-ray diffraction (PXRD) data were collected using a D8 ADVANCE X-ray with Cu K α radiation ($\lambda = 1.5405$ Å). Transform Infrared (FT-IR) spectra in the region of 400-4000 cm⁻¹ were obtained with a Perkin-Elmer 1600 FT-IR spectrometer. Solid state ¹³C CP-MAS spectrum was acquired at BRUKER AVANCE NEO 400WB. N2 adsorption-desorption isotherm was obtained using an ASAP 2020/TriStar 3000 (Micromeritics) apparatus measured at 77 K, the sample was degassed at 100 °C for 12 h under high vacuum before analysis. High resolution transmission electron microscopy (TEM) images and HAADF-STEM images were obtained using TEM (Talos F200X). The corresponding elemental mapping images were obtained by using Talos F200i. Ultraviolet-visible (UV-vis) absorption spectra was recorded on a Shimadzu UV-2600 Double Beam UV-vis Spectrophotometer. Mott-Schottky measurement was performed in Na₂SO₄ solution (0.5M) on a CHI660E electrochemical workstation in a three-electrode system. The working electrode was prepared by dropcasting an 5% Nafion (50 uL) suspension of COF (0.2 mg) and carbon black (0.7 mg) onto a glassy carbon electrode. The auxiliary electrode and reference electrode were platinum-wire and Ag/AgCl, Mott-Schottky plots were measured at alternating current frequencies of 2000 Hz, 2500 Hz and 3000 Hz. Chenhua electrochemical workstation (CHI660D Instruments, Shanghai Chenhua Instrument Co., Ltd., Shanghai, China) was used to measure the photocurrent. Thermogravimetric analysis (TGA) was performed on a TGA/DSC 3+ in the temperature range of 30-800 °C under a nitrogen atmosphere and a heating rate of 10 °C/min. Electron paramagnetic resonance (EPR) spectra was measured by Bruker A300 EPR Spectroscopy. The apparent quantum yields (AQY) were calculated according to the formula: AQY (100%)= $(M_{(product)}*N_A*h*c)/(P*S*t*\lambda)*100\%$, where the $M_{(product)}$ is the mole number of product, N_A is Avogadro constant, h is Planck constant, c is speed of light, P (the light power intensity) is 633 W/m², S (irradiation area) is 1.5 cm², t is irradiation time, λ is 460 nm.

2. Synthesis of Intermediate Products and Monomer

Scheme S1 Synthesis procedure of monomer DPP-T-CHO. i: Neopentyl glycol, *p*-Toluenesulfonic acid monohydrate, toluene, 113 °C; ii: Diethyl succinate, *t*-BuONa, tert-Amyl alcohol, 100 °C; iii: 1-Bromobutane, K₂CO₃. 18-crown-6, DMF, 110 °C; iv: 1M HCl, THF, 75 °C.

s2: To a 100 mL pressure tube was charged with 5-formylthiophene-2-carbonitrile (s1, 6.0 g, 43.7 mmol), Neopentyl glycol (5.5 g, 52.5 mmol), p-Toluenesulfonic acid monohydrate (249.6 mg, 1.3 mmol) and 25 mL toluene. Then the reaction was executed in nitrogen atmosphere overnight at 113 °C. After cooling to room temperature, the solution was poured into water and extracted three times with ethyl acetate to collect the organic phase. Subsequently, the organic phase was dried and the solvent was removed in vacuo. The crude product was purified by silica gel chromatography (Petroleum ether as eluent) to obtain 9.2 g s2 as a white powder with 94.5% of yield. ¹H-NMR (CDCl3, 400 MHz): δ(ppm) 7.52-7.51 (d, *J* = 4.0 Hz, 1H), 7.12-7.10 (d, *J* = 8.0Hz, 1H), 5.61 (s, 1H), 3.77-3.74 (d, *J* = 12.0 Hz, 2H), 3.65-3.62 (d, *J* = 12.0 Hz, 2H), 1.25 (s, 3H), 0.81 (s, 3H). ¹³C-NMR (CDCl3, 100 MHz): δ(ppm): 149.22, 137.11, 125.16, 114.26, 109.76, 97.17, 30.26, 22.89, 21.76. HR-MS: m/z [M+H]+ calcd for C₁₁H₁₄NO₂S: 224.0745, found: 224.0743.

Fig. S1 The ¹H-NMR (left) and ¹³C-NMR spectra of s2.

s3: In N₂ atmosphere, Sodium tert-butoxide (6.5g, 68.0 mmol) was dissolved in 40 mL tert-Amyl alcohol and stirred at 100°C for 1h. After that, 5-(5,5-dimethyl-1,3-dioxan-2-yl)thiophene-2-carbonitrile (s2, 9.5 g, 42.5 mmol) was added. Then Diethyl succinate (2.96g, 17.0 mmol) was dissolved in 20 mL tert-Amyl alcohol and dropwised into the reaction solution with a constant pressure dropping funnel. Subsequently, the resulting suspension was strongly stirred at 100°C for 24 hours. After cooling to room temperature, glacial acetic acid (30 mL) and methanol (300 mL) were added into the reaction system, and the mixture was stirred at 55 °C for another 2 h. Then the mixture was filtered, washed several times with methanol and water, and dried in vacuo to give 2.2 g crude s3 as black-red solid without any purification.

s4: To a 100 mL pressure tube was added s3 (600.0 mg, 1.1 mmol), 1-Bromobutane (388.8 mg, 2.9 mmol), K2CO3 (470.6mg, 3.4 mmol), catalyst 18-crown-6 (45.0 mg, 0.17 mmol) and 25 mL DMF. The reaction system was degassed-inflated with N2 5 times and reacted at 110 °C overnight. After that, the solution was poured into water and extracted three times with dichloromethane to obtain organic phase. The organic phase was dried, condensed and purified via silica gel chromatography (dichloromethane as eluent) to obtain 377.0 mg s4 as dark red solid, and the total yield from s2 to s4 is 12.7%. ¹H-NMR (CDCl₃, 400 MHz): δ (ppm) 8.86-8.85 (d, *J* = 4.0 Hz, 2H), 7.27-7.26 (d, *J* = 4.0 Hz, 2H), 5.69 (s, 2H), 4.10-4.06 (t, *J* = 16.0 Hz,4H), 3.80-3.77 (d, *J* = 12.0 Hz, 4H), 3.67-3.65 (d, *J* = 8.0 Hz, 4H), 1.73-1.69 (m, *J* = 24.0 Hz, 4H), 1.59(s, 2H), 1.47-1.41 (m, 4H), 1.28 (s, 6H), 0.98-0.94 (t, *J*=16.0Hz, 6H), 082 (s, 6H). ¹³CNMR

(CDCl₃, 100 MHz): δ(ppm) 161.40, 146.80, 135.23, 129.76, 126.48, 108.04, 97.86, 41.96, 30.31, 20.19, 13.74. HR-MS: m/z [M+Na]+ calcd for C₃₄H₄₄N₂NaO₆S₂: 663.2538, found: 663.2531.

Fig. S2 The ¹H-NMR (left) and ¹³C-NMR spectra of s4.

DPP-T-CHO: To a 250 mL round-bottom flask was added 300.0 mg s4, 80 mL THF and 3 mL HCl aqueous solution (1 M). The solution was refluxed for 3 hours and then poured into water. Purple solid was collected by flitration, and pure DPP-T-CHO was obtained via silica gel chromatography with dichloromethane as eluent (200.0 mg, 91% of yield). ¹H-NMR (CDCl₃, 400 MHz): δ (ppm) 10.04 (s, 2H), 9.11-9.10 (d, *J* = 4.0 Hz, 2H), 7.89-7.88 (d, *J* = 4.0 Hz, 2H), 4.14-4.11 (t, *J* = 12.0 Hz, 4H), 1.75-1.71(m, 4H), 1.49-1.43 (m, 4H), 1.00-0.96 (t, J=16.0Hz, 6H). 13C-NMR (CDCl₃, 100 MHz): δ (ppm) 182.84, 146.62, 140.01, 136.19, 136.18, 100.00, 42.24, 32.14, 20.13, 13.73. HR-MS: m/z [M+H]+ calcd for C₂₄H₂₅N₂O₄S₂: 469.1256, found: 469.1255.

Fig. S3 The ¹H-NMR (left) and ¹³C-NMR spectra of DPP-T-CHO.

DPP-COF: To a 10 mL Pyrex tube was added DPP-T-CHO (52.7mg, 0.1125 mmol), 2,4,6trimethyl-1,3,5-triazine (TMT, 9.2 mg, 0.075 mmol), benzoic anhydride (67.87 mg, 0.3 mmol) and benzoic acid (36.6 mg, 0.3 mmol). Then, the tube was sealed and heated at 190 °C for 3 days. After reaction, a dark black powder was collected by sucking filtration and thoroughly washed with acetone, anhydrous ethanol, tetrahydrofuran, and dichloromethane, respectively. The collected sample was dried under vacuum at 120 °C for 24 h to give a dark black powder (55.3 mg, 95.5 % of yield).

3. Simulated and Experimental Structure of DPP-COF

Fig. S4 The simulated and experimental PXRD pattern of (a) AA and (b) AB stacking model with corresponding stacking structures.

4. TGA Curve

Fig. S5 TGA curve of DPP-COF.

5. TEM Images

6. Mott-Schottky Plots and Band Potentials

Fig. S7 (a) Mott-Schottky plots of DPP-COF, and the band potential was calculated according to the formula: E(NHE) = E(Ag/AgCl) + 0.197. (b) The bands potentials.

7. Photocurrent Response Curve

Fig. S8 Photocurrent response curve of DPP-COF.

8. Photocatalytic Experiments

8.1 General Procedure for Photocatalytic Oxidation Reaction

Photooxidation of sulfides: A 10 mL quartz tube was charged with reaction substrate (0.3 mmol), COF photocatalyst (10 mg), solvent (3 mL). The mixture was bubbled with oxygen and stirred, then the tube was irradiated with a 10 W blue LED lamp (460 nm) in room temperature. After reaction, the solution was centrifuged and the solvent was removed by rotary evaporation. Yields were determined by ¹H-NMR spectroscopy with 0.3 mmol diphenylacetonitrile (DPAT) as internal standard. The isolated yield was obtained by purifying the solution by silica gel flash chromatography (Petroleum ether : ethyl acetate, v/v = 1 : 1 as eluent).

Photooxidation of THIQs: A 10 mL quartz tube was charged with reaction substrate (0.3 mmol), COF photocatalyst (10 mg), CH₃CN (3 mL). The mixture was placed in air atomsphere and stirred, then the tube was irradiated with a 10 W blue LED lamp (460 nm) in room temperature. After reaction, the solution was centrifuged and the solvent was removed by rotary evaporation. Yields were determined by ¹H-NMR spectroscopy with 0.3 mmol diphenylacetonitrile (DPAT) as internal standard. The isolated yield was obtained by purifying the solution by silica gel flash chromatography (Petroleum ether : dichloromethane, v/v = 1 : 1 as eluent).

8.2 Photocatalytic oxidation of sulfides

8.2.1 Yield of 2a Determined by ¹H-NMR Analysis

Fig. S9 (a) Yield of model oxidation reaction determined by ¹H-NMR spectra. (b, c) Reaction time examination of **2a** based on DPP-COF as photocatalyst with corresponding ¹H-NMR spectra. **2a**: ¹H-NMR (CDCl₃, 400 MHz): δ (ppm) 7.67-7.65 (t, J = 8.0 Hz, 2H), 7.56-7.50 (m, 3H), 2.73 (s, 3H). ¹³C-NMR (CDCl₃, 100 MHz): δ (ppm) 145.77, 131.03, 129.36, 123.49, 43.97.

Fig. S10 ¹H-NMR (left) and ¹³C-NMR (right) spectra of 2a.

8.2.2 Control Experiments and Generality Discussion

	S.	≻ + O ₂	COF, Solven Blue LED lamp	t, RT	0 S S	
	1a				2a	
Entry	Solvent	Light	Catalyst	O ₂	Time (h)	Yield (%)
1	EtOH	460 nm	DPP- COF	v	11	94 ^[a] 90 ^[b]
2	EtOH	460 nm	DPP- COF	-	11	0 ^[a]
3	EtOH	-	DPP- COF	v	11	O ^[a]
4	EtOH	460 nm	-	v	11	0 ^[a]
5	MeCN	460 nm	DPP- COF	v	11	90 ^[a]
6	MeOH	460 nm	DPP- COF	V	11	93 ^[a]
7	EtOH	White LED	DPP- COF	v	11	33 ^[a]
8	EtOH	520 nm	DPP- COF	v	11	3 ^[a]

Table S1 The control experiments (photooxidation of 1a).

^[a] Yields were determined by ¹H-NMR spectra. ^[b] Isolated yield.

Fig. S11 Corresponding ¹H-NMR spectra of the control experiments (Table S1) with DPAT as internal standard.

Fig. S12 Yield of **2b-2f** catalyzed by DPP-COF determined by ¹H-NMR with DPAT as internal standard.

Fig. S13 ¹H-NMR (left) and ¹³C-NMR (right) spectra of 2b.

Isolated 2b: ¹H-NMR (CDCl₃, 400 MHz): δ (ppm) 7.55-7.53 (d, *J* = 8.0 Hz, 2H), 7.35-7.33 (d, *J* = 8.0 Hz, 2H), 2.71 (s, 3H), 2.42 (s, 3H). ¹³C-NMR (CDCl₃, 100 MHz): δ (ppm) 142.46, 141.57, 130.06, 123.60, 44.00, 21.41.

Fig. S14 ¹H-NMR (left) and ¹³C-NMR (right) spectra of 2c.

Isolated 2c : ¹H-NMR (CDCl₃, 400 MHz): δ (ppm) 7.61-7.58 (m, 2H), 7.05-7.02 (m, 2H), 3.86 (s, 3H), 2.70 (s, 3H). ¹³C-NMR (CDCl₃, 100 MHz): δ (ppm) 162.01, 136.57, 125.50, 114.88, 55.55, 43.98.

Fig. S15 ¹H-NMR (left) and ¹³C-NMR (right) spectra of 2d.

Isolated 2d : ¹H-NMR (CDCl₃, 400 MHz): δ (ppm) 7.67-7.63 (m, 2H), 7.26-7.20 (m, 2H), 2.71 (s, 3H). ¹³C-NMR (CDCl₃, 100 MHz): δ (ppm) 165.61, 163.11, 141.17, 125.91, 125.82, 116.83, 116.61, 44.17.

Fig. S16 ¹H-NMR (left) and ¹³C-NMR (right) spectra of 2e.

Isolated 2e:¹H-NMR (CDCl₃, 400 MHz): δ (ppm) 7.60-7.58 (d, J = 8.0 Hz, 2H), 7.52-7.50 (d, J = 8.0 Hz, 2H), 2.72 (s, 3H). ¹³C-NMR (CDCl₃, 100 MHz): δ (ppm) 144.42, 137.28, 129.69, 125.02, 44.25.

Fig. S17 ¹H-NMR (left) and ¹³C-NMR (right) spectra of 2f.

Isolated 2f: ¹H-NMR (CDCl₃, 400 MHz): δ (ppm) 7.63-7.60 (m, 2H), 7.53-7.51 (m, 3H), 2.92-2.75 (m, 2H), 1.22-1.18 (t, *J* = 16.0 Hz, 3H). ¹³C-NMR(CDCl₃,100MHz): δ (ppm) 143.23, 130.94, 129.14, 124.17, 50.25, 5.94.

8.3 Photocatalytic oxidation of THIQs

Fig. S18 Yield of **4a-4e** catalyzed by DPP-COF determined by ¹H-NMR with DPAT as internal standard.

Fig. S19 ¹H-NMR (left) and ¹³C-NMR (right) spectra of 4a.

Isolated 4a : ¹H-NMR (CDCl₃, 400 MHz): δ (ppm) 8.17-8.15 (dd, *J* = 8.0 Hz, 1H), 7.47-7.38 (m, 6H), 7.27-7.24 (d, *J* = 12.0 Hz, 2H), 4.01-3.98 (t, *J* = 12.0 Hz, 2H), 3.16-3.13 (t, *J* = 12.0 Hz, 2H). ¹³C-NMR (CDCl₃, 100 MHz): δ (ppm) 164.20, 143.18, 138.40, 132.08, 128.93, 128.73, 127.20, 127.03, 126.25, 125.35, 49.43, 28.63.

Fig. S20 ¹H-NMR (left) and ¹³C-NMR (right) spectra of 4b.

Isolated 4b : ¹H-NMR (CDCl₃, 400 MHz): δ (ppm) 8.17-8.15 (d, *J* = 8.0 Hz, 1H), 7.47-7.43 (t, *J* = 16.0 Hz, 1H), 7.38-7.34 (t, *J* =12.0 Hz, 1H), 7.28-7.20 (m, 5H), 3.97-3.93 (m, *J* = 16.0 Hz, 2H), 3.14-3.10 (t, *J* = 16.0 Hz, 2H), 2.36 (s,3H). ¹³C-NMR (CDCl₃, 100MHz): δ (ppm) 164.26, 140.60, 138.33, 136.07, 131.95, 129.83, 129.56, 128.73, 127.17, 126.94, 125.24, 49.54, 28.66, 21.06.

Fig. S21 ¹H-NMR (left) and ¹³C-NMR (right) spectra of 4c.

Isolated 4c : ¹H-NMR (CDCl₃, 400 MHz): δ (ppm) 8.17-8.15 (dd, *J* = 8.0 Hz, 1H), 7.50-7.46 (m, 1H), 7.40-7.34(m, 2H), 7.26-7.24 (m, 1H), 7.19-7.16 (m, 2H), 6.98-6.13 (m, 1H) 4.00-3.97 (t, *J* = 12.0 Hz, 2H), 3.16-3.13(t, *J* = 12.0 Hz, 2H). ¹³C-NMR (CDCl₃, 1 00MHz): δ (ppm) 164.16, 163.94, 161.50, 144.58, 144.48, 138.28, 132.29, 127.05, 120.64, 113.14, 112.93, 112.69, 49.30, 28.54.

Fig. S22 ¹H-NMR (left) and ¹³C-NMR (right) spectra of 4d.

Isolated 4d: ¹H-NMR (CDCl₃, 400 MHz): δ (ppm) 8.15-8.13 (d, *J* = 8.0 Hz, 1H), 7.49-7.45 (m, 1H), 7.39-7.31(m, 5H), 7.25-7.23 (d, *J* = 8.0 Hz, 1H), 3.98-3.95 (t, *J*=12.0Hz, 2H), 3.16-3.12(t, *J* = 16.0Hz, 2H). ¹³C-NMR (CDCl₃, 100MHz): δ (ppm) 164.23, 141.58, 138.23, 132.25, 131.60, 129.45, 129.00, 128.81, 127.31, 127.01, 126.56, 49.34, 28.57.

Fig. S23 ¹H-NMR (left) and ¹³C-NMR (right) spectra of **4e**.

Isolated 4e: ¹H-NMR (CDCl₃, 400 MHz): δ (ppm) 8.15-8.13 (d, *J* = 8.0 Hz, 1H), 7.53-7.46 (m, 3H), 7.40-7.36(m, 1H), 7.29-7.24 (m, 3H), 3.98-3.95 (t, *J* = 12.0Hz, 2H), 3.16-3.12 (t, *J* = 16.0Hz, 2H).¹³C-NMR (CDCl₃, 100MHz): δ (ppm) 164.16, 142.10, 138.25, 128.79, 126.90, 119.44, 49.27, 28.55.

Table S2 The control experiments (Photooxidation of 3a).

^[a] Yields were determined by ¹H-NMR spectra.

Fig. S24 Yield of 4a in the control experiments determined by ¹H-NMR.

8.4 Comparison of DPP-COF and Reported High-performing COFs

Table S3 The	performance of	different	COFs in the	photooxidation	of sulfides. ¹⁻¹²

Entry	Substrates (1a)	COF	Light Source / Time	Yileld	Conv.	Sel.	Ref.
				(%)	(%)	(%)	
1	0.3 mmol	DPP-COF (10 mg)	10 W blue LED/11 h	94			This Work
2	0.3 mmol	BI-COF-1 (8 mg)	300 W Xe lamp/8 h		100	92	1
3	0.1 mmol	En-COF-P (5 mg)	30 W blue LED/9 h		99	99	2
4	0.1 mmol	TpBpy-COF (5 mg)	Blue LED/6 h		99.9	99.9	3
5	0.11 mol	PDI-PDA (6 mg)	410-420 nm LED/4 h	90.4			4
6	0.3 mmol	BSe-COF (10 mg)	9 W blue LED/8 h	95			5
7	0.1 mmol	COF-NUST-1 (4 mg)	30 W blue LED/4 h		99	98	6
8	0.15 mmol	TPDH-PTBA (5 mg)	Blue LED/12 h		99		7

9	0.5 mmol	TBPA-COF (5 mg)	Blue LED/1.2 h		91	98	8
10	0.3 mmol	R-DTP-COF-QA (12 mg)	Red LED/16 h	94			9
11	0.2 mmol	PyPor-COF (1 mg)	5W red LED/24 h	99			10
12	0.05 mmol	CuPor-Dha (10 mg)	Blue LED /10 h	82			11
13	0.05 mmol	DhaTph-Zn (10 mg)	300 W Xe lamp/10 h		82	99	12

Table S4 The performance of different COFs in the photooxidation of THIQs.¹³⁻¹⁷

Entry	Substrates	COF	Light Source / Time	Yileld (%)	Ref.
1	3a (0.3 mmol)	DPP-COF (10 mg)	10 W blue LED/8 h	94	This Work
2	3b (0.3 mmol)	DPP-COF (10 mg)	10 W blue LED/8 h	87	This Work
3	3a (0.2 mmol)	2D-COF-1 (8 mg)	40 W blue LED/12 h	90	13
4	3a (0.1 mmol)	COF-TCZ-O (3 mg)	30 W blue LED/16 h	83	14
5	3b (0.1 mmol)	TRO-OMe (2.5 mg)	White LED/5 h	90	15
6	3a (0.1 mmol)	OZBT-COF (5 mg)	30 W blue LED/10 h	85	16
7	3a (0.1 mmol)	TEP-27FO (2.5 mg)	40 W red LED/2 h	91	17

8.5 Recycling Experiments

Fig. S25 (a, c) The recycle yields of 2a. (b) PXRD patterns after 5 cycles.

Fig. S26 (a, c) The recycle yields of 4a. (b) PXRD patterns after 5 cycles.

8.6 Quenching Experiments

Fig. S27 Quenching experiments and corresponding ¹H-NMR Yields of (a, c) 2a and (b, d) 4a in the presence of quenching agents. NaN₃/BQ/*t*-BuOH = 0.3/0.3/0.3 equivalent of substrates, respectively.

DPP-COF Space group: <i>P3</i>							
<i>a</i> = 35.51 Å, <i>b</i> = 35.51 Å, <i>c</i> = 3.65 Å							
	$\alpha = 90^\circ, \beta = 90^\circ, \gamma = 120^\circ$						
Atom	X	у	Z				
N1	0.04312	-0.97092	1.07869				
C2	0.01401	-0.95679	1.07913				
C3	0.02841	-0.91058	1.04128				
C4	0.06881	-0.88216	0.934				
C5	0.08363	-0.83638	0.85551				
S6	0.13458	-0.8033	0.68798				
C7	0.12433	-0.7611	0.69497				
C8	0.08312	-0.77301	0.81869				

9. Crystallographic Parameters

C9	0.05981	-0.81589	0.91057
C10	0.15676	-0.71625	0.5845
N11	0.20371	-0.69705	0.60678
C12	0.22082	-0.65465	0.49355
C13	0.18573	-0.64695	0.39508
C14	0.1476	-0.68639	0.46222
C15	0.17657	-0.61708	0.27279
N16	0.12962	-0.63628	0.25051
C17	0.11251	-0.67868	0.36374
C18	0.20901	-0.57224	0.16232
C19	0.25022	-0.56032	0.0386
C20	0.27352	-0.51744	-0.05328
C21	0.2497	-0.49696	0.00179
S22	0.19875	-0.53004	0.16931
C23	0.26452	-0.45117	-0.07671
C24	0.30493	-0.42276	-0.18399
C25	0.31932	-0.37655	-0.22184
N26	0.36241	-0.34738	-0.2214
C27	0.22662	-0.71921	0.7463
C28	0.27587	-0.68999	0.80077
C29	0.29667	-0.7164	0.93608
C30	0.34507	-0.68742	1.01832
C31	0.10672	-0.61413	0.11099
C32	0.05746	-0.64335	0.05652
C33	0.03666	-0.61693	-0.07879
C34	-0.01174	-0.64591	-0.16102
O35	0.07397	-0.70552	0.36925
O36	0.25937	-0.62781	0.48804
H37	0.00429	-0.90082	1.07761
H38	0.09198	-0.89305	0.88709
H39	0.0704	-0.75149	0.85361
H40	0.02722	-0.83073	1.02003
H41	0.26294	-0.58185	0.00368
H42	0.30611	-0.5026	-0.16274
H43	0.24135	-0.44028	-0.0298
H44	0.32904	-0.43251	-0.22032
H45	0.22097	-0.74628	0.56321
H46	0.21172	-0.73429	1.00891
H47	0.282	-0.66351	0.99212
H48	0.292	-0.67403	0.54559

H49	0.29287	-0.7414	0.73573
H50	0.27924	-0.73488	1.18056
H51	0.36402	-0.67514	0.76281
H52	0.35719	-0.70658	1.16623
H53	0.3511	-0.65887	1.1853
H54	0.12161	-0.59905	-0.15162
H55	0.11236	-0.58705	0.29408
H56	0.04134	-0.65931	0.3117
H57	0.05134	-0.66983	-0.13483
H58	0.05409	-0.59845	-0.32327
H59	0.04046	-0.59194	0.12156
H60	-0.03068	-0.6582	0.09449
H61	-0.01777	-0.67446	-0.328
H62	-0.02385	-0.62676	-0.30894

10. References

- Q. Zhang, F. Zhang, J. Dong, M. Shao, M. Zhu, D. Wang, Y. Guo, J. Zhang and Y. Liu, *Chem. Mater.*, 2022, **34**, 6977-6984.
- 2. Z. Gu, J. Tian, Y. Li, H. Li, Y. Chai and X. Chi, ACS Materials Letters, 2024, 6, 5292-5299.
- 3. T. Huang, J. Kou, H. Yuan, H. Guo, K. Yuan, H. Li, F. Wang and Z. Dong, *Adv. Funct. Mater.*, 2024, n/a, 2413943.
- 4. Z. Li, J. Jiao, W. Fu, K. Gao, X. Peng, Z. Wang, H. Zhuo, C. Yang, M. Yang, G. Chang, L. Yang, X. Zheng, Y. Yan, F. Chen, M. Zhang, Z. Meng and X. Shang, *Angew. Chem., Int. Ed.*, 2024, 63, e202412977.
- F. Yang, X. Li, H.-Y. Qu, J.-L. Kan, Y. Guo and Y.-B. Dong, *Chin. J. Chem.*, 2024, 42, 1960-1966.
- Z. Gu, J. Wang, Z. Shan, M. Wu, T. Liu, L. Song, G. Wang, X. Ju, J. Su and G. Zhang, J. Mater. Chem. A, 2022, 10, 17624-17632.
- 7. Y. Hu, Y. Ji, Z. Qiao and L. Tong, Microporous Mesoporous Mater., 2023, 362, 112767.
- 8. F. Zhang, X. Ma, X. Dong, X. Miao and X. Lang, Chem. Eng. J., 2023, 451, 138802.
- X. Kan, J.-C. Wang, Z. Chen, J.-Q. Du, J.-L. Kan, W.-Y. Li and Y.-B. Dong, J. Am. Chem. Soc., 2022, 144, 6681-6686.
- 10. K.-K. Niu, T.-X. Luan, J. Cui, H. Liu, L.-B. Xing and P.-Z. Li, ACS Catal., 2024, 14, 2631-

2641.

- S. Suleman, X. Guan, Y. Zhang, A. Waseem, O. Metin, Z. Meng and H.-L. Jiang, *Chem. Eng.* J., 2023, 476, 146623.
- 12. Y. Qian, D. Li, Y. Han and H.-L. Jiang, J. Am. Chem. Soc., 2020, 142, 20763-20771.
- 13. S. Liu, M. Tian, X. Bu, H. Tian and X. Yang, Chem. Eur. J., 2021, 27, 7738-7744.
- 14. W. Wang, F. Meng, Y. Bai, Y. Lu, Q. Yang, J. Feng, Q. Su, H. Ren and Q. Wu, *ChemSusChem*, 2024, **17**, e202301916.
- M. Liu, J. Liu, J. Li, Z. Zhao, K. Zhou, Y. Li, P. He, J. Wu, Z. Bao, Q. Yang, Y. Yang, Q. Ren and Z. Zhang, *J. Am. Chem. Soc.*, 2023, **145**, 9198-9206.
- W. Wang, Y. Bai, Z. Li, Q. Su, B. Li, M. Lei, J. Feng, A. Xu and Q. Wu, Chem. Eng. J., 2024, 501, 157486.
- H. Zhang, T. Yuan, N. Zhumabay, Z. Ruan, H. Qian and M. Rueping, *Chem. Sci.*, 2024, 15, 17435-17443.