Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2025

Gold(I)-Catalyzed [2+4] Cycloaddition of 1,1-Difluoroallenes with Conjugated Enones: Syntheses of Ring-Difluorinated Dihydro-2*H*-Pyrans

Daisuke Miyazaki,¹ Reo Eto,¹ Junji Ichikawa,² and Kohei Fuchibe¹*

kfuchibe@chem.tsukuba.ac.jp,¹ jichikawa@sagami.or.jp²

Division of Chemistry, Faculty of Pure and Applied Sciences University of Tsukuba, Tsukuba, Ibaraki 305–8571, Japan¹

Sagami Chemical Research Institute, 2743-1 Hayakawa Ayase, Kanagawa 252–1193, Japan²

— Supporting Information —

Table of Contents

1.	General Statements	•••••	S2
2.	Typical Procedures	•••••	S3
3.	Spectral Data of Products	•••••	S4
4.	NMR Spectra of Products	•••••	S11

1. General Statements

1–1. Solvents and Reagents

Superdry THF, dichloromethane and DMF were purchased from Kanto Chemical Co., Inc. and used as received. 1,2-Dichloroethane was distilled from P_4O_{10} and from CaH₂ sequently, and then stored over MS 4A.

AuCl, AuCl₃ and AuCl(IPr) were purchased from Merck KGaA and used as received. AuCl(PPh₃) was purchased from FUJIFILM Wako Pure Chemical Co., Ltd. and used as received. AgSbF₆ was purchased from Tokyo Chemical Industry Co., Ltd. and used as received. Molecular sieves 4A was purchased from Merck KGaA, dried under microwave irradiation (3 min), and further flame-dried in a reaction vessel just before use.

 α, α, α -Trifluorotoluene (an internal standard for ¹⁹F NMR quantitative analysis) was purchased from Tokyo Chemical Industry Co., Ltd. and used as received.

1,1-Difluoroallenes 1a-c were prepared by our reported method.^[1] The spectral data of 1,1-difluoroallenes 1a-c were provided in our previous publication.^[1b]

1-2. Purification

Column chromatography was conducted on silica gel (Silica Gel 60 N, Kanto Chemical Co., Inc.). Preparative thin-layer chromatography was conducted on silica gel (Wakogel B-5F, FUJIFILM Wako Pure Chemical Corporation).

1–3. Analyses

IR spectra were recorded on a JASCO FT/IR-4100 spectrometer. NMR spectra were recorded on a Bruker Avance 500 spectrometer in CDCl₃ at 500 MHz (¹H NMR), at 126 MHz (¹³C NMR) and at 471 MHz (¹⁹F NMR). Chemical shifts were given in ppm relative to internal Me₄Si (for ¹H NMR: $\delta = 0.00$), CDCl₃ (for ¹³C NMR: $\delta = 77.0$) and C₆F₆ (for ¹⁹F NMR: $\delta = 0.0$; C₆F₆ exhibits a ¹⁹F NMR signal at –162.9 ppm vs. CFCl₃). Elemental analyses (EA) were performed with a Yanako MT-3 CHN Corder apparatus. High-resolution mass spectroscopy (HRMS) was conducted with a Jeol JMS-T100GCV (EI, TOF) spectrometer.

^[1] a) Fuchibe, K.; Abe, M.; Oh, K.; Ichikawa, J. Org. Synth. 2016, 93, 352–366; b) Oh, K.; Fuchibe, K.; Ichikawa, J. Synthesis 2011, 2011, 881–886.

2. Typical Procedures

2–1. Synthesis of (*E*)-3-Alkylidene-2,2-Difluorodihydro-2*H*-Pyrans

To a flame-dried molecular sieves 4A (401 mg) were added *trans*-chalcone 2d (218 mg, 1.05 mmol), AuCl(IPr) (12 mg, 0.020 mmol), AgSbF₆ (0.007 mg, 0.019 mmol), and 1,2-dichloroethane (4 mL). After stirring for 10 min at room temperature, white precipitates were observed. To the resulting suspension was added a 1,2-dichloroethane solution (1 mL) of 1,1-difluoroallene 1a (186 mg, 1.03 mmol) at room temperature. After stirring for 1 h at room temperature, the reaction mixutre was passed through a small pad of silica gel using dichlromethane as an eluent. After removal of solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexane/AcOEt = 30:1) to give difluorodihydropyran **3f** (399 mg, quantitative) as a colorless liquid.

3. Spectral Data of Products

3–1. (*E*)-2,2-Difluoro-6-methyl-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3a**

Synthesized from 1,1-difluoroallene **1a** (54 mg, 0.30 mmol), *trans*benzalacetone **2a** (45 mg, 0.31 mmol), AuCl(IPr) (3.4 mg, 0.006 mmol), AgSbF₆ (2.0 mg, 0.006 mmol) and MS 4A (119 mg).

Purified by column chromatography (SiO₂, hexane/ethyl acetate = 20:1).

A colorless liquid, 88 mg, 90% yield.

¹H NMR (CDCl₃, 500 MHz) δ 7.31–7.23 (m, 6H), 7.23–7.16 (m, 2H), 7.08 (d, J = 7.3 Hz, 2H), 6.29 (td, J = 7.3, 2.5 Hz, 1H), 4.89 (br d, J = 4.3 Hz, 1H), 4.31 (br s, 1H), 2.69–2.57 (m, 2H), 2.53–2.34 (m, 2H), 1.88 (s, 3H).

¹³C NMR (CDCl₃, 126 MHz) δ 146.6 (d, $J_{CF} = 4$ Hz), 141.5, 140.9, 131.3 (dd, $J_{CF} = 6$, 6 Hz), 128.5, 128.4, 128.3, 128.2 (dd, $J_{CF} = 31$, 21 Hz), 127.47, 127.45, 126.7, 126.1, 119.8 (dd, $J_{CF} = 258$, 249 Hz), 101.9, 39.4 (d, $J_{CF} = 3$ Hz), 34.6 (d, $J_{CF} = 1$ Hz), 30.0, 19.0.

¹⁹F NMR (CDCl₃, 471 MHz) δ 103.1 (d, J = 159 Hz, 1F), 79.4 (d, J = 159 Hz, 1F).

IR (neat): $\tilde{v} = 2927$, 1703, 1450, 1319, 1154, 1069, 909 cm⁻¹.

HRMS (EI): m/z calcd. for $C_{21}H_{20}F_2O[M]^+$: 326.1472; found: 326.1474.

3–2. (*E*)-3-[3-(4-*tert*-Butylphenyl)-2-methylpropan-1-ylidene]-2,2-difluoro-6-methyl-4-phenyl-3,4-dihydro-2*H*-pyran **3b**

Synthesized from 1,1-difluoroallene 1b (75 mg, 0.30 mmol),

trans-benzalacetone **2a** (44 mg, 0.30 mmol), AuCl(IPr) (3.8 mg, 0.006 mmol), AgSbF₆ (2.1 mg, 0.006 mmol) and MS 4A (120 mg).

Purified by preparative thin-layer chromatography (SiO₂, hexane/ethyl acetate = 30:1).

A colorless liquid, 99 mg, 83% yield (dr = 83:17).

¹H NMR (CDCl₃, 500 MHz) δ 7.30–7.23 (m, 4H), 7.22–7.15 (m, 3H), 7.03 (d, *J* = 8.2 Hz, 1.66H), 6.75 (d, *J* = 8.2 Hz, 0.34H), 6.16 (br d, *J* = 11.2 Hz, 0.17H), 6.02 (br dd, *J* = 10.5, 2.5 Hz, 0.83H), 4.93 (br d, *J* = 4.3 Hz, 0.17H), 4.61 (br d, *J* = 4.6 Hz, 0.83H), 4.40 (br s, 0.17H), 3.80 (br s, 0.83H), 2.74–2.65 (m, 1H), 2.64 (dd, *J* = 13.2, 5.7 Hz, 0.83H), 2.50 (dd, *J* = 13.2, 8.5 Hz, 0.83H), 2.45 (dd, *J* = 13.3, 6.0 Hz, 0.17H), 2.26 (dd, *J* = 13.3, 8.8 Hz, 0.17H), 1.87 (s, 0.51H), 1.81 (s, 2.49H), 1.30 (s, 7.47H), 1.29 (s, 1.53H), 0.97 (d, *J* = 6.5 Hz, 2.49H), 0.93 (d, *J* = 6.6 Hz, 0.51H).

¹³C NMR (CDCl₃, 126 MHz) δ 148.8, 148.7, 146.2 (d, $J_{CF} = 4$ Hz), 146.1 (d, $J_{CF} = 4$ Hz), 142.0, 141.6, 137.9 (dd, $J_{CF} = 6$, 6 Hz), 136.6, 136.4 (dd, $J_{CF} = 6$, 6 Hz), 136.2, 128.83, 128.82, 128.6,

128.4, 127.50, 127.48, 127.24, 127.22, 126.8 (dd, $J_{CF} = 34$, 23 Hz), 126.7, 126.5, 125.9 (dd, $J_{CF} = 34$, 23 Hz), 125.04, 125.00, 119.9 (dd, $J_{CF} = 258$, 249 Hz), 119.8 (dd, $J_{CF} = 258$, 249 Hz), 102.5, 101.5, 42.7, 41.4 (d, $J_{CF} = 2$ Hz), 39.6 (d, $J_{CF} = 3$ Hz), 38.9 (d, $J_{CF} = 3$ Hz), 35.4, 34.6, 34.35, 34.34, 31.4, 19.7 (d, $J_{CF} = 2$ Hz), 19.1, 19.0.

¹⁹F NMR (CDCl₃, 471 MHz) δ 103.0 (d, J = 159 Hz, 0.17F), 102.6 (d, J = 158 Hz, 0.83F), 79.6 (d, J = 159 Hz, 0.17F), 79.2 (d, J = 158 Hz, 0.83F).

IR (neat): $\tilde{v} = 2930$, 1705, 1462, 1312, 1153, 1069, 902 cm⁻¹.

HRMS (EI): m/z calcd. for $C_{26}H_{30}F_2O[M]^+$: 396.2260; found: 396.2253.

3–3. 2,2-Difluoro-4,6-diphenyl-3-(4-phenylbutan-2-ylidene)-3,4-dihydro-2*H*-pyran **3c**

Synthesized from 1,1-difluoroallene 1c (75 mg, 0.39 mmol), trans-

chalcone **2d** (81 mg, 0.39 mmol), AuCl(IPr) (11.0 mg, 0.018

mmol), $AgSbF_6$ (6.2 mg, 0.018 mmol) and MS 4A (156 mg).

Purified by column chromatography (SiO₂, hexane/ethyl acetate = 20:1).

A colorless liquid, 151 mg, 97% yield (E/Z = 53:47).

¹H NMR (CDCl₃, 500 MHz) δ 7.61–7.54 (m, 2H), 7.33–7.12 (m, 12H), 6.98–6.94 (m, 1H), 5.94 (d, *J* = 6.3 Hz, 0.53H), 5.82 (d, *J* = 6.5 Hz, 0.47H), 4.44 (d, *J* = 6.3 Hz, 0.53H), 4.29 (d, *J* = 6.5 Hz, 0.47H), 2.83–2.65 (m, 2H), 2.62–2.53 (m, 0.47H), 2.39–2.25 (m, 1.53H), 2.11 (dd, *J*_{HF} = 3.5, 3.5 Hz, 1.41H), 1.72 (dd, *J*_{HF} = 2.8, 2.8 Hz, 1.59H).

¹³C NMR (CDCl₃, 126 MHz) δ 147.1 (d, $J_{CF} = 2$ Hz), 147.0 (d, $J_{CF} = 3$ Hz), 144.7, 144.0, 143.7, 142.7, 141.6, 141.2, 132.82, 132.80, 128.9, 128.82, 128.77, 128.77, 128.38, 128.38, 128.38, 128.36, 128.32, 128.294, 128.285, 128.28, 127.3, 126.7, 126.6, 126.03, 125.96, 124.8 (dd, $J_{CF} = 28$, 26 Hz), 124.56, 124.54 (dd, $J_{CF} = 28$, 26 Hz), 124.53, 122.5 (dd, $J_{CF} = 264$, 250 Hz), 122.4 (dd, $J_{CF} = 261$, 253 Hz), 106.2, 106.0, 42.0, 41.5, 38.2 (dd, $J_{CF} = 5$, 2 Hz), 38.1, 35.0, 33.1, 20.5, 19.7 (dd, $J_{CF} = 5$, 2 Hz).

¹⁹F NMR (CDCl₃, 471 MHz) δ 104.9 (d, J = 164 Hz, 1.06F), 104.3 (d, J = 164 Hz, 0.47F), 102.5 (d, J = 164 Hz, 0.47F).

IR (neat): $\tilde{v} = 2938$, 1795, 1647, 1600, 1451, 1318, 1140, 650 cm⁻¹.

HRMS (EI): m/z calcd. for $C_{27}H_{24}F_2O[M]^+$: 402.1790; found: 402.1787, 402.1788.

3–4. (*E*)-6-Cyclohexyl-2,2-difluoro-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3d**

Synthesized from 1,1-difluoroallene **1a** (58 mg, 0.32 mmol), enone **2b** (64 mg, 0.30 mmol), AuCl(IPr) (4 mg, 0.006 mmol), AgSbF₆ (2 mg, 0.006 mmol), and MS 4A (121 mg).

Purified by column chromatography (SiO₂, hexane/ethyl acetate = 30:1).

A yellow liquid, 101 mg, 85% yield.

¹H NMR (CDCl₃, 500 MHz) δ 7.23–7.08 (m, 8H), 7.00 (d, *J* = 7.0 Hz, 2H), 6.19 (br t, *J* = 7.0 Hz, 1H), 4.77 (br d, *J* = 3.8 Hz, 1H), 4.24 (br s, 1H), 2.60–2.47 (m, 2H), 2.42–2.25 (m, 2H), 1.99–1.93 (m, 1H), 1.85–1.78 (m, 2H), 1.72–1.66 (m, 2H), 1.62–1.58 (m, 1H), 1.22–1.08 (m, 5H).

¹³C NMR (CDCl₃, 126 MHz) δ 154.3 (d, $J_{CF} = 4$ Hz), 141.9, 141.0, 131.0 (dd, $J_{CF} = 6$, 6 Hz), 128.9 (dd, $J_{CF} = 32$, 22 Hz), 128.5, 128.4, 128.3, 127.59, 127.57, 127.5, 127.3, 127.1, 126.6, 126.1, 120.0 (dd, $J_{CF} = 257$, 248 Hz), 99.9, 41.2, 39.5 (d, $J_{CF} = 3$ Hz), 34.6, 30.3, 30.1, 30.0, 26.03, 25.97.

¹⁹F NMR (CDCl₃, 471 MHz) δ 104.8 (d, J = 158 Hz, 1F), 81.8 (d, J = 158 Hz, 1F).

IR (neat): $\tilde{v} = 2930$, 1725, 1453, 1154, 1059 cm⁻¹.

HRMS (EI): *m/z* calcd. for C₂₆H₂₈F₂O [M]⁺: 394.2103; found: 394.2093.

3–5. (*E*,*E*)-2,2-Difluoro-4-phenyl-3-(3-phenylpropan-1-ylidene)-6-(2-phenylvinyl)-3,4dihydro-2*H*-pyran **3e**

Synthesized from 1,1-difluoroallene **1a** (58 mg, 0.32 mmol), enone **2c** (70 mg, 0.32 mmol), AuCl(IPr) (4 mg, 0.006 mmol), AgSbF₆ (2 mg, 0.006 mmol),

and MS 4A (128 mg).

Purified by column chromatography (SiO₂, hexane/ethyl acetate = 30:1).

A pale yellow liquid, 131 mg, quantitative yield.

¹H NMR (CDCl₃, 500 MHz) δ 7.31 (dd, J = 7.1, 1.4 Hz, 2H),

7.22–7.06 (m, 11H), 6.97 (dd, *J* = 7.1, 1.4 Hz, 2H), 6.91 (d, *J* = 15.9 Hz, 1H), 6.35 (d, *J* = 15.9 Hz, 1H), 6.25 (t, *J* = 6.5 Hz, 1H), 5.13 (br d, *J* = 4.6 Hz, 1H), 4.37 (br s, 1H), 2.56–2.46 (m, 2H), 2.40–2.25 (m, 2H).

¹³C NMR (CDCl₃, 126 MHz) δ 146.6 (d, J_{CF} = 4 Hz), 141.2, 140.8, 136.3, 131.8 (dd, J_{CF} = 6, 6 Hz), 129.6, 128.70, 128.65, 128.5, 128.3, 128.1, 127.7, 127.6, 126.9, 126.8, 126.2, 120.8, 120.1 (dd, J_{CF} = 259, 250 Hz), 107.5, 40.3 (d, J_{CF} = 3 Hz), 34.5 (d, J_{CF} = 1 Hz), 30.0.

¹⁹F NMR (CDCl₃, 470 MHz) δ 104.8 (d, J = 158 Hz, 1F), 82.3 (d, J = 158 Hz, 1F).

IR (neat): $\tilde{v} = 2928$, 1495, 1452, 1329, 1264, 1153, 484 cm⁻¹.

HRMS (EI): m/z calcd. for $C_{28}H_{24}F_2O$ [M]⁺: 414.1790; found: 414.1797.

3-6. (E)-2,2-Difluoro-4,6-diphenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2H-pyran 3f

Synthesized from 1,1-difluoroallene 1a (186 mg, 1.03 mmol),

enone **2d** (218 mg, 1.05 mmol), AuCl(IPr) (12 mg, 0.020 mmol), AgSbF₆ (7 mg, 0.019 mmol), and MS 4A (401 mg).

Purified by column chromatography (SiO₂, hexane/ethyl acetate = 30:1).

F

3e

A colorless liquid, 399 mg, quantitative yield.

¹H NMR (CDCl₃, 500 MHz) δ 7.49 (d, J = 7.4 Hz, 2H), 7.25–7.05 (m, 11H), 6.96 (d, J = 7.4 Hz, 2H), 7.25 (br t, J = 3.2 Hz, 1H), 5.52 (br d, J = 3.4 Hz, 1H), 4.38 (br s, 1H), 2.55–2.45 (m, 2H), 2.42–2.26 (m, 2H).

¹³C NMR (CDCl₃, 126 MHz) δ 147.1 (d, J_{CF} = 4 Hz), 141.3, 140.8, 132.9, 131.6 (dd, J_{CF} = 6, 6 Hz), 128.9, 128.6, 128.4, 128.31, 128.27, 127.65, 127.64, 126.8, 126.1, 124.7, 120.3 (dd, J_{CF} = 259, 250 Hz), 102.9, 40.1, 34.4, 30.0.

¹⁹F NMR (CDCl₃, 471 MHz) δ 104.3 (d, J = 157 Hz, 1F), 81.9 (d, J = 157 Hz, 1F).

IR (neat): $\tilde{v} = 3028$, 3015, 1677, 1496, 1323, 1163, 1059 cm⁻¹.

HRMS (EI): m/z calcd. for $C_{26}H_{22}F_2O$ [M]⁺: 388.1634; found: 388.1653.

3–7. (*E*)-2,2-Difluoro-6-(4-methylphenyl)-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4dihydro-2*H*-pyran **3g**

Synthesized from 1,1-difluoroallene **1a** (56 mg, 0.031 mmol), enone **2e** (69 mg, 0.31 mmol), AuCl(IPr) (4 mg, 0.006 mmol), AgSbF₆ (3 mg, 0.008 mmol), and MS 4A (122 mg).

Purified by column chromatography (SiO₂, hexane/ethyl acetate = 30:1).

A yellow liquid, 126 mg, quantitative yield.

¹H NMR (CDCl₃, 500 MHz) δ 7.40 (d, *J* = 8.0 Hz, 2H), 7.23–7.08 (m, 8H), 7.06 (d, *J* = 8.0 Hz, 2H), 6.99 (d, *J* = 7.1 Hz, 2H), 6.26 (br t, *J* = 6.0 Hz, 1H), 5.50 (br d, *J* = 3.6 Hz, 1H), 4.40 (br s, 1H), 2.59–2.47 (m, 2H), 2.47–2.27 (m, 2H), 2.25 (s, 3H).

¹³C NMR (CDCl₃, 126 MHz) δ 147.3 (d. $J_{CF} = 9$ Hz), 141.5, 140.9, 138.9, 131.5 (dd, $J_{CF} = 6, 6$ Hz), 131.4, 129.0, 128.6, 128.4, 128.3, 127.71, 127.69, 126.8, 126.1, 124.7, 120.2 (dd, $J_{CF} = 259, 250$ Hz), 102.0, 40.1 (d, $J_{CF} = 3$ Hz), 34.6, 30.1, 21.2.

¹⁹F NMR (CDCl₃, 471 MHz) δ 104.1 (d, J = 158 Hz, 1F), 81.8 (d, J = 158 Hz, 1F).

IR (neat): $\tilde{v} = 3030$, 1495, 1453, 1319, 1163, 1058, 758 cm⁻¹.

HRMS (EI): m/z calcd. for $C_{27}H_{24}F_2O$ [M]⁺: 402.1790; found: 402.1783.

3–8. (*E*)-6-(4-Chlorophenyl)-2,2-difluoro-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4dihydro-2*H*-pyran **3h**

Synthesized from 1,1-difluoroallene **1a** (59 mg, 0.33 mmol), enone **2f** (74 mg, 0.30 mmol), AuCl(IPr) (5 mg, 0.008 mmol), AgSbF₆ (2 mg, 0.006 mmol), and MS 4A (122 mg). Purified by column chromatography (SiO₂, hexane/ethyl acetate = 30:1). **3h**

A pale yellow liquid, 125 mg, 97% yield.

വ

¹H NMR (CDCl₃, 500 MHz) δ 7.42 (d, J = 8.5 Hz, 2H), 7.24–7.11 (m, 9H), 7.08 (t, J = 7.0 Hz, 1H), 6.98 (d, J = 7.5 Hz, 2H), 6.27 (br t, J = 6.5 Hz, 1H), 5.53 (br d, J = 2.8 Hz, 1H), 4.40 (br s, 1H), 2.58–2.47 (m, 2H), 2.44–2.28 (m, 2H).

¹³C NMR (CDCl₃, 126 MHz) δ 146.3 (d, $J_{CF} = 5$ Hz), 141.1, 140.8, 134.8, 131.9 (dd, $J_{CF} = 6, 6$ Hz), 131.5, 128.7, 128.6, 128.4, 128.3, 128.2 (dd, $J_{CF} = 31, 22$ Hz), 127.6 (d, $J_{CF} = 3$ Hz), 127.0, 126.14, 126.07, 120.1 (dd $J_{CF} = 259, 250$ Hz), 103.4, 40.2, 34.5, 30.1.

¹⁹F NMR (CDCl₃, 471 MHz) δ 103.9 (d, J = 158 Hz, 1F), 81.7 (d, J = 158 Hz, 1F).

IR (neat): $\tilde{v} = 2930$, 1675, 1493, 1315, 1161, 834 cm⁻¹.

HRMS (EI): m/z calcd. for $C_{26}H_{21}CIF_2O[M]^+$: 422.1244; found: 422.1229.

3–9. (*E*)-2,2-Difluoro-6-(4-nitrophenyl)-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3i**

Synthesized from 1,1-difluoroallene **1a** (60 mg, 0.33 mmol), enone **2g** (79 mg, 0.31 mmol), AuCl(IPr) (4 mg, 0.006 mmol), AgSbF₆ (2 mg, 0.006 mmol), and MS 4A (120 mg).

Purified by column chromatography (SiO₂, hexane/ethyl acetate = 30:1).

A yellow liquid, 106 mg, 78% yield.

¹H NMR (CDCl₃, 500 MHz) δ 8.13 (d, *J* = 9.0 Hz, 2H), 7.67 (d, *J* = 9.0 Hz, 2H), 7.27–7.15 (m, 7H), 7.11 (t, *J* = 7.0 Hz, 1H), 7.00 (d, *J* = 5.8 Hz, 2H), 6.33 (br t, *J* = 6.8 Hz, 1H), 5.78 (br d, *J* = 4.5 Hz, 1H), 4.46 (br s, 1H), 2.62–2.50 (m, 2H), 2.46–2.30 (m, 2H).

¹³C NMR (CDCl₃, 126 MHz) δ 147.8, 145.4 (d, $J_{CF} = 5$ Hz), 140.7, 140.5, 138.9, 132.5 (dd, $J_{CF} = 6$, 6 Hz), 128.9, 128.5, 128.3, 127.64, 127.63 (dd, $J_{CF} = 30$, 26 Hz), 127.2, 126.2, 125.4, 123.7, 120.0 (dd $J_{CF} = 260$, 251 Hz), 107.1, 40.4 (d, $J_{CF} = 3$ Hz), 34.5, 30.1.

¹⁹F NMR (CDCl₃, 471 MHz) δ 103.7 (d, J = 158 Hz, 1F), 81.5 (d, J = 158 Hz, 1F).

IR (neat): $\tilde{v} = 3027$, 1599, 1522, 1348, 1217, 1162, 771 cm⁻¹.

HRMS (EI): m/z calcd. for $C_{26}H_{21}F_2NO_3$ [M]⁺: 433.1485; found: 433.1504.

3–10. (*E*)-2,2-Difluoro-4-(4-methylphenyl)-6-phenyl-3-(3-phenylpropan-1-ylidene)-3,4dihydro-2*H*-pyran **3**j

Synthesized from 1,1-difluoroallene 1a (54 mg, 0.30 mmol),

enone **2h** (68 mg, 0.31 mmol), AuCl(IPr) (4 mg, 0.006 mmol),

 $AgSbF_6$ (3 mg, 0.009 mmol), and MS 4A (121 mg).

Purified by column chromatography (SiO₂, hexane/ethyl acetate = 30:1).

A colorless liquid, 116 mg, 96% yield.

¹H NMR (CDCl₃, 500 MHz) δ 7.50 (dd, J = 8.3, 1.5 Hz, 2H), 7.25–7.05 (m, 8H), 7.00–6.98 (m,

3j

3i

NO₂

4H), 6.24 (br t, *J* = 6.6 Hz, 1H), 5.53 (br d, *J* = 4.5 Hz, 1H), 4.36 (br s, 1H), 2.54–2.50 (m, 2H), 2.42–2.28 (m, 2H), 2.20 (s, 3H).

¹³C NMR (CDCl₃, 126 MHz) δ 147.1 (d, J_{CF} = 5 Hz), 140.9, 138.3, 136.5, 133.0, 131.4 (dd, J_{CF} = 6, 6 Hz) , 129.3, 128.8, 128.6 (dd, J_{CF} = 32, 21 Hz), 128.4, 128.3, 127.58, 127.56, 126.1, 124.7, 120.2 (dd, J_{CF} = 259, 250 Hz) , 103.0, 39.8 (d, J_{CF} = 3 Hz), 34.6, 30.0, 21.0.

¹⁹F NMR (CDCl₃, 471 MHz) δ 104.1 (d, J = 157 Hz, 1F), 81.9 (d, J = 157 Hz, 1F).

IR (neat): $\tilde{v} = 3013$, 2976, 1326, 1163, 1059 cm⁻¹.

HRMS (EI): m/z calcd. for $C_{27}H_{24}F_2O[M]^+$: 402.1790; found: 402.1777.

3–11. (*E*)-4-(4-Chlorophenyl)-2,2-difluoro-6-phenyl-3-(3-phenylpropan-1-ylidene)-3,4dihydro-2*H*-pyran 3k Cl

Synthesized from 1,1-difluoroallene 1a (58 mg, 0.32 mmol),

enone 2i (72 mg, 0.30 mmol), AuCl(IPr) (5 mg, 0.007 mmol),

 $AgSbF_6$ (2 mg, 0.007 mmol), and MS 4A (128 mg).

Purified by column chromatography (SiO₂, hexane/ethyl acetate = 30:1).

A yellow liquid, 131 mg, quantitative yield.

¹H NMR (CDCl₃, 400 MHz) δ 7.53–7.43 (m, 2H), 7.28–6.93 (m, 12H), 6.25 (br t, J = 6.4 Hz, 1H), 5.47 (br d, J = 4.6 Hz, 1H), 4.34 (br s, 1H), 2.56–2.52 (m, 2H), 2.44–2.27 (m, 2H).

¹³C NMR (CDCl₃, 126 MHz) δ 147.6 (d, $J_{CF} = 5$ Hz), 140.6, 139.7, 132.8, 132.7, 131.8 (dd, $J_{CF} = 6$, 6 Hz), 129.1, 129.0 (d, $J_{CF} = 3$ Hz), 128.7, 128.5, 128.4, 128.3, 128.1 (dd, $J_{CF} = 31$, 22 Hz), 126.2, 124.8, 120.1 (dd, $J_{CF} = 259$, 250 Hz), 102.1, 39.4 (d, $J_{CF} = 3$ Hz), 34.6, 30.0.

¹⁹F NMR (CDCl₃, 470 MHz) δ 104.3 (d, J = 158 Hz, 1F), 81.5 (d, J = 158 Hz, 1F).

IR (neat): $\tilde{v} = 3028$, 1677, 1491, 1324, 1162, 1035, 752 cm⁻¹.

HRMS (EI): m/z calcd. for C₂₆H₂₁ClF₂O [M]⁺: 422.1244; found: 422.1250.

3–12. (*E*)-2,2-Difluoro-4-(4-nitrophenyl)-6-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3**l

Synthesized from 1,1-difluoroallene **1a** (60 mg, 0.33 mmol), enone **2j** (78 mg, 0.31 mmol), AuCl(IPr) (5 mg, 0.008 mmol), AgSbF₆ (2 mg, 0.007 mmol), and MS 4A (123 mg).

Purified by column chromatography (SiO₂, hexane/ethyl acetate = 30:1).

A yellow liquid, 89 mg, 67% yield.

¹H NMR (CDCl₃, 500 MHz) δ 8.04 (d, *J* = 8.8 Hz, 2H), 7.54–7.52 (m, 2H), 7.35–7.28 (m, 5H), 7.20–7.11 (m, 3H), 7.02 (d, *J* = 7.2 Hz, 2H), 6.35 (br t, *J* = 6.2 Hz, 1H), 5.52 (br d, *J* = 4.6 Hz, 1H), 4.47 (br s, 1H), 2.66–2.63 (m, 2H), 2.51–2.32 (m, 2H).

31

3k

¹³C NMR (CDCl₃, 126 MHz) δ 148.5 (d, $J_{CF} = 6$ Hz, 1H), 148.4, 146.8, 140.4, 132.6 (d, $J_{CF} = 6$ Hz), 132.5 (d, $J_{CF} = 5$ Hz), 129.4, 128.6, 128.5, 128.4, 128.3, 127.3 (dd, $J_{CF} = 32$, 22 Hz), 126.3, 124.9, 123.9, 119.9 (dd, $J_{CF} = 258$, 251 Hz), 100.6, 39.5 (d, $J_{CF} = 3$ Hz), 34.6, 30.2. ¹⁹F NMR (CDCl₃, 471 MHz) δ 104.5 (d, J = 158 Hz, 1F), 80.9 (d, J = 158 Hz, 1F). IR (neat): $\tilde{v} = 2928$, 1523, 1349, 1265, 1164, 909 cm⁻¹. HRMS (EI): m/z calcd. for C₂₆H₂₁F₂NO₃ [M]⁺: 433.1485; found: 433.1487.

Figure S1.

3–13. (*E*)-2,2-Difluoro-6-phenyl-3-(3-phenylpropan-1-ylidene)-4-(2-thienyl)-3,4-dihydro-2*H*-pyran **3m**

Synthesized from 1,1-difluoroallene 1a (47 mg, 0.26 mmol),

enone 2k (57 mg, 0.26 mmol), AuCl(IPr) (4 mg, 0.006 mmol),

AgSbF₆ (2 mg, 0.006 mmol), and MS 4A (122 mg).

Purified by column chromatography (SiO₂, hexane/ethyl acetate = 30:1).

A yellow liquid, 94 mg, 91% yield.

¹H NMR (CDCl₃, 500 MHz) δ 7.52 (d, J = 8.0 Hz, 2H), 7.30–

7.23 (m, 3H), 7.19 (dd, J = 7.5, 7.5 Hz, 2H), 7.13–7.05 (m, 4H), 6.83–6.78 (m, 2H), 6.26 (td, J = 7.5, 2.5 Hz, 1H), 5.59 (dd, J = 9.5, 1.5 Hz, 1H), 4.62 (br s, 1H), 2.70–2.58 (m, 2H), 2.52–2.45 (m, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ 147.7 (d, $J_{CF} = 5$ Hz), 144.4, 140.7, 132.8, 131.4 (dd, $J_{CF} = 6$, 6 Hz), 129.1, 128.5, 128.2, 128.0 (dd, $J_{CF} = 32$, 22 Hz), 126.7, 126.2, 124.9, 124.7 (d, $J_{CF} = 2$ Hz), 124.2, 119.9 (dd, $J_{CF} = 260$, 250 Hz), 101.6, 35.0 (d, $J_{CF} = 3$ Hz), 34.6, 30.0.

¹⁹F NMR (CDCl₃, 471 MHz) δ 104.1 (d, J = 156 Hz, 1F), 79.8 (d, J = 156 Hz, 1F). IR (neat): $\tilde{y} = 2929$, 1496, 1323, 1165, 1063, 699 cm⁻¹.

HRMS (EI): m/z calcd. for $C_{24}H_{20}F_2OS$ [M]⁺: 394.1197; found: 394.1204.

4. NMR Spectra of Products

¹H NMR Spectrum of (*E*)-2,2-Difluoro-6-methyl-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4dihydro-2*H*-pyran **3a**

¹³C NMR Spectrum of (*E*)-2,2-Difluoro-6-methyl-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4dihydro-2*H*-pyran **3a**

¹⁹F NMR Spectrum of (*E*)-2,2-Difluoro-6-methyl-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4dihydro-2*H*-pyran **3a**

¹H NMR Spectrum of (*E*)-3-[3-(4-tert-Butylphenyl)-2-methylpropan-1-ylidene]-2,2-difluoro-6methyl-7-phenyl-3,4-dihydro-2*H*-pyran **3b** (dr = 83:17)

S14

¹³C NMR Spectrum of (*E*)-3-[3-(4-tert-Butylphenyl)-2-methylpropan-1-ylidene]-2,2-difluoro-6methyl-7-phenyl-3,4-dihydro-2*H*-pyran **3b** (dr = 83:17)

S15

¹⁹F NMR Spectrum of (*E*)-3-[3-(4-*tert*-Butylphenyl)-2-methylpropan-1-ylidene]-2,2-difluoro-6-methyl-7-phenyl-3,4-dihydro-2*H*-pyran **3b** (dr = 83:17)

¹H NMR Spectrum of 2,2-Difluoro-4,6-diphenyl-3-(4-phenylbutan-2-ylidene)-3,4-dihydro-2*H*pyran **3c** (E/Z = 53:47)

¹³C NMR Spectrum of 2,2-Difluoro-4,6-diphenyl-3-(4-phenylbutan-2-ylidene)-3,4-dihydro-2Hpyran **3c** (E/Z = 53:47)

dm-20241109-1502-Data-13C

ta-130

H-D0241103-150

¹⁹F NMR Spectrum of 2,2-Difluoro-4,6-diphenyl-3-(4-phenylbutan-2-ylidene)-3,4-dihydro-2Hpyran **3c** (E/Z = 53:47)

¹H NMR Spectrum of (*E*)-6-Cyclohexyl-2,2-difluoro-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3d**

re-230425-157-column-1H-2

¹³C NMR Spectrum of (*E*)-6-Cyclohexyl-2,2-difluoro-4-phenyl-3-(3-phenylpropan-1-ylidene)3,4-dihydro-2*H*-pyran **3d**

¹⁹F NMR Spectrum of (*E*)-6-Cyclohexyl-2,2-difluoro-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3d**

¹H NMR Spectrum of (*E*,*E*)-2,2-Difluoro-4-phenyl-3-(3-phenylpropan-1-ylidene)-6-(2-phenylvinyl)-3,4-dihydro-2*H*-pyran **3e**

¹³C NMR Spectrum of (*E*,*E*)-2,2-Difluoro-4-phenyl-3-(3-phenylpropan-1-ylidene)-6-(2-phenylvinyl)-3,4-dihydro-2*H*-pyran **3**e

¹⁹F NMR Spectrum of (*E,E*)-2,2-Difluoro-4-phenyl-3-(3-phenylpropan-1-ylidene)-6-(2-phenylvinyl)-3,4-dihydro-2*H*-pyran **3e**

¹H NMR Spectrum of (*E*)-2,2-Difluoro-4,6-diphenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3f**

re-250123-542-column-1H

¹³C NMR Spectrum of (*E*)-2,2-Difluoro-4,6-diphenyl-3-(3-phenylpropan-1-ylidene)-3,4dihydro-2*H*-pyran **3f**

¹H NMR Spectrum of (*E*)-2,2-Difluoro-6-(4-methylphenyl)-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3**g

re-230426-159-column-1H

¹³C NMR Spectrum of (*E*)-2,2-Difluoro-6-(4-methylphenyl)-4-phenyl-3-(3-phenylpropan-1ylidene)-3,4-dihydro-2*H*-pyran **3**g

¹H NMR Spectrum of (*E*)-6-(4-Chlorophenyl)-2,2-difluoro-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3h**

¹³C NMR Spectrum of (*E*)-6-(4-Chlorophenyl)-2,2-difluoro-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3h**

¹⁹F NMR Spectrum of (*E*)-6-(4-Chlorophenyl)-2,2-difluoro-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3h**

¹H NMR Spectrum of (*E*)-2,2-Difluoro-6-(4-nitrophenyl)-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3i**

¹³C NMR Spectrum of (*E*)-2,2-Difluoro-6-(4-nitrophenyl)-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3i**

D. Miyazaki, R. Eto, J. Ichikawa, and K. Fuchibe

¹⁹F NMR Spectrum of (*E*)-2,2-Difluoro-6-(4-nitrophenyl)-4-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3i**

¹H NMR Spectrum of (*E*)-2,2-Difluoro-4-(4-methylphenyl)-6-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3**j

¹³C NMR Spectrum of (*E*)-2,2-Difluoro-4-(4-methylphenyl)-6-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3**j

¹⁹F NMR Spectrum of (*E*)-2,2-Difluoro-4-(4-methylphenyl)-6-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3**j

D. Miyazaki, R. Eto, J. Ichikawa, and K. Fuchibe

¹H NMR Spectrum of (*E*)-4-(4-Chlorophenyl)-2,2-difluoro-6-phenyl-3-(3-phenylpropan-1ylidene)-3,4-dihydro-2*H*-pyran **3**k

¹³C NMR Spectrum of (*E*)-4-(4-Chlorophenyl)-2,2-difluoro-6-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3**k

D. Miyazaki, R. Eto, J. Ichikawa, and K. Fuchibe

¹⁹F NMR Spectrum of (*E*)-4-(4-Chlorophenyl)-2,2-difluoro-6-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3**k

D. Miyazaki, R. Eto, J. Ichikawa, and K. Fuchibe

¹H NMR Spectrum of (*E*)-2,2-Difluoro-4-(4-nitrophenyl)-6-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3**l

¹³C NMR Spectrum of (*E*)-2,2-Difluoro-4-(4-nitrophenyl)-6-phenyl-3-(3-phenylpropan-1-ylidene)-3,4-dihydro-2*H*-pyran **3**l

D. Miyazaki, R. Eto, J. Ichikawa, and K. Fuchibe

¹H NMR Spectrum of (*E*)-2,2-Difluoro-6-phenyl-3-(3-phenylpropan-1-ylidene)-4-(2-thienyl)-3,4-dihydro-2*H*-pyran **3m**

¹³C NMR Spectrum of (*E*)-2,2-Difluoro-6-phenyl-3-(3-phenylpropan-1-ylidene)-4-(2-thienyl)3,4-dihydro-2*H*-pyran **3m**

¹⁹F NMR Spectrum of (*E*)-2,2-Difluoro-6-phenyl-3-(3-phenylpropan-1-ylidene)-4-(2-thienyl)-3,4-dihydro-2*H*-pyran **3m**

