A novel small-molecule fluorescent probe caused by minimal structural modifications for specifically staining of the cell nuclear membrane

Wendong Jin,^a Yang Liu,^{*b} Qing Lu,^c Jie Huang,^a and Zhiqiang Liu^{*a} and Xiaoqiang Yu^{*a}

^aState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100
^bDepartment of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250001.
^cChina Fire and Rescue Institute, Beijing 102202.
E-mail: yliu0319@163.com; zqliu@sdu.edu.cn; yuxq@sdu.edu.cn

Contents

1.	Materials and measurements
2.	General procedure for spectra measurements
	Absorption and fluorescence spectra
3.	Cell and animal experiments
	Cell culture and staining method
	MTT assay for the cell cytotoxicity
4.	Synthesis and characterization
5.	Supplemental figures and Tables
	Summary of reported nuclear membrane probes and INDA-NuMem
	Absorption spectra and emission spectra
	Photophysical data
	Cell Imaging
	Cell cytotoxicity
	NMR spectra
	High-resolution mass spectrometry

1. Materials and measurements

All materials were purchased from commercial sources. All chemical reagents used in the experiment were analytically pure and further re-evaporate to remove water. The solvents used for spectral test were chromatographic pure. The raw materials of synthetic drugs were purchased from BIDE PHARMATECH CO., LTD(China) and TCI(Japan). The water used in the experiments was ultrapure water. The DMEM and FBS used in biological experiments were purchased from HyClone and Gibico. NMR spectra were recorded on a Bruker Advance 400MHz (Germany) in CDCl₃ and DMSO-*d*₆. Shifts were referenced relative to the internal solvent signals. ESI-MS spectra were recorded on a Thermo Finnigan LCQ DECA XP spectrometer (USA). The quoted m/z values represented the major peaks in the isotopic distribution. UV/Vis spectra were recorded on a U2910 spectrophotometer (Japan). One-photon fluorescence and excitation spectra of dilute solutions were obtained on a HITACH F-2700 spectrofluorimeter equipped with a 450-W Xe lamp (Japan). For imaging, confocal images was collected on the Olympus FV1200 Microscope with a 60u oil-immersion objective lens.

2. General procedure for spectra measurements.

Absorption and fluorescence spectra

The solvents used in all spectroscopic testing were commercial chromatography-pure solvents and further purified by an ultra-dry solvent system to <30 ppm water content for testing. The probe stoke solution was tested at a concentration of 10mM. The stock solution was dispersed in the test solvent at a concentration of 10 μ M. All tests were conducted in dark and dark conditions.

Theoretical calculations

DOPC preparation: The water molecules in the initial structures were deleted and added hydrogen atoms. Ligand (probes) preparation: using the optimized structure, the partial atomic charges were obtained by restrained electrostatic potential (RESP) calculating with Gaussian 09 package at HF/6-31g* level. Following that, docking was carried out using AutoDock 4.2.6. The parameters were set as default except for the number of GA runs (150) and the maximum number of energy evaluations (2500000). The displayed images were processed with PyMOL.

3. Cell and animal experiments

Cell culture and staining method

HeLa cells were cultured in DMEM containing 10% fetal bovine serum (FBS), and 1% penicillin-streptomycin under 37°C in a 5% CO₂ atmosphere. All samples were incubated with INDA-Nu(20 μ M), INDA-Numem(20 μ M) INDO-H(10 μ M) and INDO-Cl(10 μ M) in a glucose-free medium for 15min, and then images were collected with a confocal microscope.

MTT assay for the cell cytotoxicity

This involves the reduction of MTT tetrazolium to MTT formazan pigment by the metabolic activity of livecells. Cells were seeded at a density of 1×10^5 cells/mL in a 96-well plate. After 24h of cell attachment, cells were treated with a probe for 24h. Six replicate wells were used for each control and tested concentrations. After incubation for 24h, the medium was removed and cells were washed with PBS twice. MTT tetrazolium solution (100mL of 0.5mg/mL in PBS) was added to each well, and the cells were further incubated at 37°C for 4h in a 5% CO₂ humidified atmosphere. Excess MTT tetrazolium solution was then carefully removed and the colored formazan was dissolved in 100µL DMSO. The plate was shaken for 10min and the absorbance was measured at 590nm using a microplate reader.

4. Synthesis and characterization

Scheme S1 Synthesis routes of Na-03

Synthesis route of Na-01

Methyl-5-bromo-1H-indazole-3-carboxylate(2.5g,10mmol) was dissolved with 40mL of THF. Stirring the mixture under -10° C at N₂ atmosphere for 10min, and then 10mL of LiAlH₄(1.6M in THF) was added. After stirring for 4h, the mixture was poured into ice water and extracted with ethyl acetate (3×10mL). The combined organic phase is distilled under vacuum pressure to remove the solvent, and the product Na-01 was obtained. The resulting product can be used directly for the next step without purification. The product does not need to be purified and can be used directly in the next step.

Synthesis route of Na-02

Na-01(2.27g,10mmol) was dissolved with 40mL of acetone. Stirring the mixture under 0°C for 10min, and then PCC(4.5g, 20mmol) was added slowly. After stirring for 2h, the mixture was poured into ice water and extracted with ethyl acetate (3×10 mL). The combined organic phase is distilled under vacuum pressure to remove the solvent. And then, the residue was purified by fast silica gel column chromatography through Flash Chromatography Instrument (CH₂Cl₂: Hexane= 1:20) and the product with the absorption spectra under both 365nm and 254nm was collected. State: Brown solid. Yield:1.96g (87.1%).

Synthesis route of Na-03

Na-02(225mg, 1mmol) and benzene-1,2-diamine(130mg, 1.2mmol) were dissolved in 10mL of THF and 7 drops of HCl(2N) were added. After stirring the mixture under 70°C at N₂ atmosphere for 30min, 8mL of sodium

bisulfite(1N) was added. After refluxing the mixture for 16h, the solution was cooled down to room temperature and diluted with ethyl acetate(25mL). The mixture was washed with water and brine, dried over anhydrous sodium sulfate. The combined organic phase is distilled under vacuum pressure to remove the solvent. The product does not need to be purified and can be used directly in the next step. State: White solid. Yield: 246mg (78.6%). ¹HNMR (400MHz, DMSO-*d*₆) δ 14.35 (s, 1H), 10.18 (s, 1H), 8.26 (d, J = 2.1 Hz, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.62 (dd, J = 8.8, 1.9 Hz, 1H). ¹³CNMR (101MHz, DMSO-*d*₆) δ 187.71, 143.21, 140.41, 130.64, 123.28, 122.35, 116.99, 113.91. MS: calced for C₈H₅BrN₂O⁺[M+H]⁺ 224.9658. Found for C₈H₅BrN₂O⁺[M+H]⁺ 224.9665.

Scheme S2 Synthesis routes of INDA-Nu

Synthesis route of INDA-Nu

Na-03(156.6mg, 0.5mmol), K₃PO₄(212mg, 1mmol), (4-benzyloxy)phenylboronic(201.6mg, 0.65mmol), PdCl₂(dppf)₂(36mg, 0.05mmol) were added into 4.5mL of dioxane and heated under 100°C under N₂ atmosphere for 18h. And then, the solution was cooled down to room temperature and diluted with ethyl acetate(25mL). The mixture was washed with water and brine, dried over anhydrous sodium sulfate. The combined organic phase is distilled under vacuum pressure to remove the solvent. And then, the residue was purified by fast silica gel column chromatography through Flash Chromatography Instrument (CH₂Cl₂: Hexane= 1:20) and the product with the absorption spectra under both 365nm and 254nm was collected. State: White solid. Yield:132mg (63.4%). ¹HNMR (400MHz, DMSO- d_6) δ 13.84 (s, 1H), 13.06 (s, 1H), 8.74 (d, J = 32.4 Hz, 2H), 7.85 – 7.81 (m, 1H), 7.77 (d, J = 7.2 Hz, 1H), 7.67 (s, 2H), 7.65 (s, 1H), 7.64 (d, J = 1.9 Hz, 1H), 7.61 (t, J = 1.6 Hz, 1H), 7.52 (dd, J = 8.1, 1.4 Hz, 1H), 7.44 (d, J = 8.8 Hz, 1H), 7.38 (dd, J = 8.8, 1.8 Hz, 1H), 7.27 – 7.19 (m, 4H), 6.52 (s, 2H). ¹³CNMR (101MHz, DMSO- d_6) δ 147.04, 146.33, 144.35, 143.38, 140.87, 140.43, 140.14, 139.85, 135.92, 134.65, 130.38, 130.09, 129.36, 124.51, 123.27, 122.72, 122.08, 119.44, 114.66, 113.32, 113.01, 111.93, 42.37. MS: calced for C₂₇H₂₀N₄O⁺[M+H]⁺416.1710. Found for C₂₇H₂₀N₄O⁺[M+H]⁺416.1759.

Scheme S3 Synthesis routes of INDA-NuMem

Synthesis route of INDA-NuMem

Na-03(156.6mg, 0.5mmol), K₃PO₄(212mg, 1mmol), (3-benzyloxy)phenylboronic(201.6mg, 0.65mmol), PdCl₂(dppf)₂(36mg. 0.05mmol) were added into 4.5mL of dioxane and heated under 100°C under N₂ atmosphere for 18h. And then, the solution was cooled down to room temperature and diluted with ethyl acetate(25mL). The mixture was washed with water and brine, dried over anhydrous sodium sulfate. The combined organic phase is distilled under vacuum pressure to remove the solvent. And then, the residue was purified by fast silica gel column chromatography through Flash Chromatography Instrument (CH₂Cl₂: Hexane= 1:20) and the product with the absorption spectra under both 365nm and 254nm was collected. State: Light yellow solid. Yield:166mg (79.7%).¹HNMR (400 MHz, DMSO-*d*₆) δ 13.71 (s, 1H), 13.02 (s, 1H), 8.72 (s, 1H), 7.76 (q, J = 8.7, 8.1 Hz, 3H), 7.53 (d, J = 7.4 Hz, 2H), 7.43 (q, J = 7.8 Hz, 4H), 7.34 (q, J = 7.4 Hz, 3H), 7.23 (d, J = 8.1 Hz, 2H), 7.09 – 7.03 (m, 1H), 5.23 (s, 2H). ¹³CNMR (101 MHz, DMSO-*d*₆) δ 159.33, 147.56, 142.77, 141.28, 137.62, 136.85, 134.75, 130.61, 128.94, 128.31, 128.28, 127.15, 123.12, 121.99, 120.14, 119.45, 114.11, 113.86, 111.59, 69.77. MS: calced for C₂₇H₂₀N₄O⁺[M+H]⁺416.1710. Found for C₂₇H₂₀N₄O⁺[M+H]⁺416.1762.

Scheme S4 Synthesis routes of INDO-H

Synthesis route of Na-04

5-bromo-1H-indole-3-carbaldehyde(224mg, 1mmol) and benzene-1,2-diamine(130mg, 1.2mmol) were dissolved in 10mL of THF and 7 drops of HCl(2N) were added. After stirring the mixture under 70°C at N_2 atmosphere for 30min, 8mL of sodium bisulfite(1N) was added. After refluxing the mixture for 16h, the solution was cooled down to room temperature and diluted with ethyl acetate(25mL). The mixture was washed with water and brine, dried over anhydrous sodium sulfate. The combined organic phase is distilled under vacuum pressure to remove the solvent. The product does not need to be purified and can be used directly in the next step. State: White solid. Yield:201mg (64.4%).

Synthesis route of INDO-H

Na-04(156.5mg, 0.5mmol), $K_3PO_4(212mg, 1mmol)$, (3-benzyloxy)phenylboronic(201.6mg, 0.65mmol), $PdCl_2(dppf)_2(36mg, 0.05mmol)$ were added into 4.5mL of dioxane and heated under 100°C under N₂ atmosphere for 18h. And then, the solution was cooled down to room temperature and diluted with ethyl acetate(25mL). The mixture was washed with water and brine, dried over anhydrous sodium sulfate. The combined organic phase is distilled under vacuum pressure to remove the solvent. And then, the residue was purified by fast silica gel column chromatography through Flash Chromatography Instrument (CH₂Cl₂: Hexane= 1:20) and the product with the absorption spectra under both 365nm and 254nm was collected. State: Light yellow solid. Yield:152mg

(73.2%). ¹HNMR (400MHz, DMSO-*d*₆) δ 12.46 (s, 1H), 11.71 (s, 1H), 8.73 (s, 1H), 8.18 (d, J = 2.7 Hz, 1H), 7.66 (s, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.55 – 7.45 (m, 4H), 7.42 (t, J = 7.9 Hz, 3H), 7.37 – 7.27 (m, 3H), 7.14 (d, J = 5.3 Hz, 2H), 7.01 (dd, J = 8.2, 2.5 Hz, 1H), 5.22 (s, 2H). ¹³CNMR (101 MHz, DMSO-*d*₆) δ 159.25, 149.87, 143.88, 137.69, 136.65, 133.29, 130.39, 128.93, 128.25, 127.43, 126.09, 122.21, 121.89, 121.38, 120.10, 119.91, 118.50, 114.05, 113.22, 112.79, 110.78, 107.55, 69.72. MS: calced for C₂₈H₂₁N₃O⁺[M+H]⁺416.1757. Found for C₂₇H₂₀N₄O⁺[M+H]⁺416.1762.

Scheme S5 Synthesis routes of INDO-Cl

Synthesis route of Na-05

5-bromo-1H-indole-3-carbaldehyde (224mg, 1mmol) and 2-(5-bromo-1H-indol-3-yl)-5,6-dichloro-1Hbenzo[d]imidazole (224mg, 1.2mmol) were dissolved in 10mL of THF and 7 drops of HCl(2N) were added. After stirring the mixture under 70°C at N₂ atmosphere for 30min, 8mL of sodium bisulfite(1N) was added. After refluxing the mixture for 16h, the solution was cooled down to room temperature and diluted with ethyl acetate(25mL). The mixture was washed with water and brine, dried over anhydrous sodium sulfate. The combined organic phase is distilled under vacuum pressure to remove the solvent. The product does not need to be purified and can be used directly in the next step. State: White solid. Yield:171mg (45.1%).

Synthesis route of INDO-Cl

Na-05(191mg, 0.5mmol), K₃PO₄(212mg, 1mmol), (3-benzyloxy)phenylboronic(201.6mg, 0.65mmol), PdCl₂(dppf)₂(36mg, 0.05mmol) were added into 4.5mL of dioxane and heated under 100°C under N₂ atmosphere for 18h. And then, the solution was cooled down to room temperature and diluted with ethyl acetate(25mL). The mixture was washed with water and brine, dried over anhydrous sodium sulfate. The combined organic phase is distilled under vacuum pressure to remove the solvent. And then, the residue was purified by fast silica gel column chromatography through Flash Chromatography Instrument (CH₂Cl₂: Hexane= 1:20) and the product with the absorption spectra under both 365nm and 254nm was collected. State: Light yellow solid. Yield:127mg (52.5%). ¹HNMR (400 MHz, DMSO-*d*₆) δ 12.79 (s, 1H), 11.82 (s, 1H), 8.66 (dd, J = 11.5, 1.9 Hz, 1H), 8.24 (s, 1H), 7.91 (s, 1H), 7.70 (s, 1H), 7.56 (dd, J = 26.5, 8.6 Hz, 4H), 7.41 (t, J = 7.3 Hz, 3H), 7.37 – 7.26 (m, 3H), 7.01 (dd, J = 8.2, 2.5 Hz, 1H), 5.22 (s, 2H). ¹³CNMR (101 MHz, DMSO-*d*₆) δ 159.25, 152.52, 143.77, 137.68, 136.67, 133.63, 130.39, 128.92, 128.42, 128.28, 128.24, 125.99, 125.47, 123.84, 122.45, 120.12, 119.76, 119.44, 114.67, 114.06, 113.79, 113.29, 112.95, 106.67, 69.73. MS: calced for C₂₈H₁₉Cl₂N₃O⁺[M+H]⁺484.0978. Found for C₂₈H₁₉Cl₂N₃O⁺[M+H]⁺484.0974.

5. Supplemental figures and Tables

Summary of reported nuclear membrane probes and INDA-NuMem

Scheme S6 Summary of reported nuclear membrane probes and INDA-NuMem
--

Probes	Species of target sites	Live cells or not	Stained objects	
$\begin{array}{c} \mathbf{R}_{2} \\ \mathbf{R}_{1} \\ \mathbf{R}_{1} \\ \mathbf{Probe DFs} \end{array}$	Small Molecular Probe (10.1073/pnas.2316450121)	Yes	Nuclear membrane, Cell membrane, and Endoplasmic Reticulum	
HN HN TAB-Piperazine-2	Small Molecular Probe (10.1016/j.snb.2018.01.161.)	Yes	(c) Nuclear membrane Nuclear pore Nucleolus Nucleor matrix 20um Nuclear membrane, Nucleolus, and Endoplasmic Reticulum	
$ \begin{array}{c} N = N + V + N \\ + V + N + N \\ + V + N + N \\ + N + N + N \\ + N + N + N \\ + N + N$	Small Molecular Probe (10.1039/d4sc03489a)	Yes	E Image: Constraint of the second	

mGFP-mcrt1	Green Fluorescent Protein (10.1038/s41556-023-01207-8)	Yes	Nuclear membrane	
mApple-Lamin A	Red Fluorescent Protein (10.1021/acschembio.8b00219)	Yes	Nuclear membrane	
msfGFP	Green Fluorescent Protein (10.1111/j.1600- 0854.2012.01336.x)	Yes	msfGFP Nuclear membrane, and Endoplasmic Reticulum	
$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	Halo-tag protein (10.1002/anie.202113163)	No	a) () () () () () () () () () () () () ()	
INDA-NuMem	Small Molecular Probe (This Paper)	Yes	Nuclear Membrane	

Absorption spectra and emission spectra

Figure S1 Absorption spectra of INDO-H(A), INDO-Cl(B), INDA-Nu(C), and INDA-NuMem(D) in different solvents. Testing concentration: 10µM.

Figure S2 Fluorescent emission spectra of INDO-H(A), INDO-Cl(B), INDA-Nu(C), and INDA-NuMem(D) in different solvents. Testing concentration: 10µM.

Figure S3 A.Relative fluorescence intensities of INDA-NuMem in different ratios of glycerol and water (F/F_{oil}) B. Fluorescence intensity ratio of INDA-NuMem at different temperatures ($F/F_{20^{\circ}C}$) in different solvents(Blue line: Gly; Pink Line: toluene).

Photophysical data

Comp.	Solvent	λ _{abs} /nm	ε/10 ⁴ M ⁻¹ cm ⁻¹	λ _{em} /nm	$\Phi_{\rm F}$	Stokes shift/cm ⁻¹	Brightness (ε*Φ _F)
	Toluene	319	3.88	365.5	7.2%	3988	2774.2
	THF	320	4.04	365.5	6.3%	3890	2516.9
INDO-H	EtOAc	317	4.41	363.0	7.1%	3998	3148.7
	MeOH	315	4.46	365.5	8.1%	4386	3599.2
	Toluene	328	5.66	371.5	9.3%	3570	5241.2
	THF	328	6.00	355.5	10.1%	2358	6054.0
INDO-CI	EtOAc	327	6.55	353.5	11.2%	2292	7362.2
	MeOH	328	6.27	358.5	6.8%	2594	4269.9
	Toluene	327	4.89	366.5	4.6%	3296	2234.7
INDA N-	THF	324	4.78	365.0	3.9%	3467	1873.8
INDA-NU	EtOAc	324	5.30	363.0	4.8%	3316	2522.8
	MeOH	323	4.83	364.0	4.6%	3487	2226.6
	Toluene	329	7.13	361.0	16.7%	2694	11935.6
INDA NuMom	THF	328	7.74	358.0	11.2%	2555	8676.5
HADA-MUIVICIII	EtOAc	328	7.30	356.0	9.9%	2398	7270.8
	MeOH	327	7.89	378.0	10.2%	4126	8024.1

 Table S1 Photophysical Data for INDO-H, INDO-Cl, INDA-Nu and INDA-NuMem.

Cell Imaging

Figure S4 Confocal imaging of INDA-NuMem under different conditions. A. 4%PFA. B. 4%PFA and 0.5%Triton X-100. C. 4%PFA 0.5%Triton X-100 and DNA/RNA Rase.

Figure S5 Live-cell co-localization confocal imaging of INDO-H(A) and INDO-Cl(B) with MTDR. Scale bar = 10 μ m, INDO-H: staining concentration = 20 μ M, staining time = 10min. λ ex=405nm, λ em=415-465nm. INDO-Cl: staining concentration = 20 μ M, staining time = 10min. λ ex=405nm, λ em=415-465nm. MTDR: staining concentration = 200nM, staining time = 30min. λ ex=633nm, λ em=650-750nm.

Figure S6 Colocalization analysis of Figure 4C and 4D. INDA-Nu(A) and INDA-NuMem(B) with bright field. Scale bar = $10\mu m$, INDA-Nu: staining concentration = $20\mu M$, staining time = 10min. $\lambda ex=405nm$, $\lambda em=415-465nm$. INDA-NuMem: staining concentration = $20\mu M$, staining time = 10min. $\lambda ex=405nm$, $\lambda em=415-465nm$.

Note: We performed images in Figure 4 to illustrate the probe positioning position

Figure S7 Live-cell confocal imaging unstained cells, using the same imaging conditions with INDA-NuMem. Scale bar = $10\mu m$, $\lambda ex = 405nm$, $\lambda em = 415-465nm$. Laser intensity: 20%.

Cell cytotoxicity

Figure S8 Cell cytotoxicity testing of INDO-H(A), INDO-Cl(B), INDA-Nu(C), and INDA-NuMem(D) under different concentration.

Figure S10 ¹³CNMR of Na-02

Figure S14 ¹³CNMR of INDO-Cl

High-resolution mass spectrometry

Figure S17 HRMS for Na-02

Figure S18 HRMS for INDO-H

Figure S19 HRMS for INDO-Cl

Figure S20 HRMS for INDA-Nu

Figure S21 HRMS for INDA-NuMem