Supporting Information

Spontaneous adsorption of iridium chloride complex on oxychloride photocatalysts provides efficient and durable reaction site for water oxidation

Hajime Suzuki,^{a,*} Kengo Minamimoto,^a Yusuke Ishii,^a Yudai Furuta,^a Osamu Tomita,^a Akinobu Nakada,^{a,b} Shunsuke Nozawa,^c Ryu Abe^{a,*}

^a Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

^b Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

^c Photon Factory (PF), Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan

AUTHOR INFORMATION

Corresponding Author

- * suzuki.hajime.7x@kyoto-u.ac.jp (H. S.)
- * ryu-abe@scl.kyoto-u.ac.jp (R. A.)

Experimental

Synthesis of Bi-Based Oxyhalides

Bi₄NbO₈Cl was synthesized using the flux method reported in our previous work.¹ A stoichiometric mixture of Bi₂O₃, BiOCl, and Nb₂O₅ was mixed with a flux (NaCl and CsCl; 35:65 molar ratio) at 1 mol% and placed in an alumina crucible. The mixture was heated at 50 °C h⁻¹ to 650 °C and held at this temperature for 10 h. The product was then cooled naturally to room temperature. The resulting product was thoroughly washed with distilled water, filtered, and air-dried. The powder obtained was characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy, and scanning electron microscope (SEM) and was confirmed to be Bi₄NbO₈Cl (Figure S1).

 Bi_4TaO_8CI was synthesized via a solid-state method following a previously reported procedure.² Bi_2O_3 , BiOCI, and Ta_2O_5 were mixed in stoichiometric proportions, pelletized, and sealed in a vacuum quartz tube. The quartz tube was heated at 10 °C min⁻¹ to 800 °C and held at this temperature for 20 h. The samples were then allowed to cool naturally to room temperature. The obtained powder was confirmed as Bi_4TaO_8CI (Figure S10).

 Bi_2ErO_4Cl was synthesized using the flux method following a previously reported procedure.³ Bi_2O_3 , BiOCl, and Er_2O_3 (1:2:1.1 molar ratio) were mixed with a flux agent (CsCl). The mixture was placed in an alumina crucible, heated at a rate of 10 °C min⁻¹ to 800 °C, and held at this temperature for 20 h. The product was cooled naturally to room temperature and thoroughly washed with distilled water, filtered, and air-dried. The obtained powder was confirmed as Bi_2ErO_4Cl (Figure S10).

SrBi₃O₄Cl₃ was synthesized using the flux method, following a previously reported procedure.⁴ SrCO₃ and BiOCl were mixed in stoichiometric amounts with the flux agents SrCl₂ and KCl (50:50 molar ratio). The mixture was placed in an alumina crucible, heated at a rate of 10 °C min⁻¹ to 700 °C, and held at this temperature for 12 h. The product was cooled naturally to room temperature and was thoroughly washed with distilled water, filtered, and air-dried. The obtained powder was confirmed as SrBi₃O₄Cl₃ (Figure S10).

Loading of Ir-based cocatalysts

Ir-based cocatalysts were deposited using four different methods⁵⁻⁷: microwave-assisted (MW), impregnation (IMP), colloidal adsorption (COL), photodeposition (PD), and adsorption (ADS). The loading amount of the Ir was set at 0.5 wt.% relative to the photocatalyst.

For the MW method, 0.3 g of Bi₄NbO₈Cl was suspended in Milli-Q water and an IrCl₃·nH₂O precursor solution was added. The total volume was adjusted to 15 mL and the mixture was dispersed using an ultrasonic cleaner. Microwave heating was performed at 150 °C for 10 min using a Biotage Initiator+ microwave reactor. For the IMP method, 0.3 g of Bi₄NbO₈Cl was suspended in Milli-Q water, and a Na₂IrCl₆·nH₂O precursor solution was added. The suspension was evaporated in a water bath, and the resulting powder was heated at 450 °C in air for 30 min. In the COL method, 0.3 g of Bi4NbO8Cl was suspended in Milli-Q water and an Ir colloidal solution, prepared according to a previous report,⁶ was added. The total volume was adjusted to 150 mL, and the mixture was dispersed using an ultrasonic cleaner. The suspension was stirred in the dark for 1 h under ambient conditions, after which the powder was recovered by vacuum filtration, thoroughly washed with Milli-Q water, and air-dried. In the PD method, 0.3 g of Bi₄NbO₈Cl was suspended in a 5 mM sodium nitrate aqueous solution (150 mL), and a Na₃IrCl₆·nH₂O precursor solution was added. The mixture was then dispersed using an ultrasonic cleaner. The suspension was stirred under an Ar atmosphere while being irradiated with visible light (λ > 400 nm) for 5 h using a 300-W Xe lamp. The resulting powder was recovered by vacuum filtration, thoroughly washed with Milli-Q water, and air-dried. In the ADS method, 0.3 g of Bi₄NbO₈Cl was suspended in Milli-Q water, and a Na₃IrCl₆·nH₂O precursor solution was added. The total volume was adjusted to 150 mL, and the mixture was dispersed using an ultrasonic cleaner. The suspension was stirred in the dark for 5 h under ambient conditions, after which the powder was recovered via vacuum filtration, thoroughly washed with Milli-Q water, and air-dried.

Characterization

The prepared samples were studied via X-ray absorption fine structure (XAFS) spectroscopy. XAFS measurements were performed at the BL12C beamline of the Photon Factory (High Energy Accelerator Research Organization, Tsukuba, Japan). The X-ray energy was varied using a Si(111) double-crystal monochromator. The reference samples were diluted in boron nitride, compressed to form pellets, and measured in the transmission mode. Cocatalyst-loaded samples were measured in fluorescence mode using a multichannel solid-state detector. Inductively coupled plasma atomic emission

spectroscopy (ICP-AES, Thermo Scientific iCAP 7400 Duo) was performed to determine the amount of Ir loaded onto Bi₄NbO₈Cl. Scanning transmission electron microscopy (STEM) and scanning electron microscopy (SEM) were conducted using a JEM-ARM200CF and Nvision 40 (Zeiss) system, respectively. The loaded Ir species were observed and analyzed via STEM (JEM-ARM200CF, JEOL) and energy-dispersive X-ray spectroscopy (EDX).

Photocatalytic reaction

Photocatalytic reactions were performed using a closed gas-circulating system. The photocatalyst powder (0.1 g) was dispersed in an aqueous AgNO₃ solution (8 mM, 100 mL, without pH adjustment) in a Pyrex top-window cell. The photocatalysts were irradiated with visible light (λ > 400 nm) through a cutoff filter (HOYA; L42) from a 300-W Xe-arc lamp (PerkinElmer; Cermax-PE300BF). The quantity of evolved gases was determined using an online gas chromatograph (thermal conductivity detector; molecular sieve with 5 Å column packing; Ar carrier gas). The oxygen evolution reactions using Fe³⁺ and [SiVW₁₁O₄₀]⁵⁻ as electron acceptors were also conducted in the same setup. For Fe³⁺, an aqueous solution of FeCl₃ (8 mM, pH 2.3–2.4) was used. For [SiVW₁₁O₄₀]⁵⁻, an aqueous solution of KH₂PO₄ (0.5 M, pH=4.4) and K₅[SiVW₁₁O₄₀] • 14H₂O (0.5 mM) was used.

Figure S1. (a) XRD pattern, (b) diffuse reflectance spectrum, and (c) SEM image of Bi₄NbO₈Cl prepared via the flux method.

Figure S2. Initial O₂ evolution rate of Bi₄NbO₈Cl loaded with various metal species via the IMP method, along with that of bare Bi₄NbO₈Cl. Co(NO₃)₂· $6H_2O$ and RuCl₃· nH_2O were used as Co and Ru species precursors, respectively.

Figure S3. Time course of O_2 evolution on Bi₄NbO₈Cl loaded with Ir species via ADS method. The reaction was performed in aqueous AgNO₃ solution (8 mM, 100 mL) under visible light irradiation ($\lambda > 400$ nm). If all the introduced Ag⁺ ions are reduced to Ag metal by photoexcited electrons, 200 µmol of O₂ would be generated according to the following equations.

$Ag^+ + e^- \rightarrow Ag$	(1)
-----------------------------	-----

 $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$ (2)

Figure S4. Initial O₂ evolution rate of Bi_4NbO_8Cl loaded with various metal (Co, Ru, and Ir) species via adsorption (ADS) method, along with bare Bi_4NbO_8Cl . CoCl₂·6H₂O and RuCl₃·nH₂O were used as Co and Ru species precursors, respectively.

Figure S5. Initial O₂ evolution rate over bare Bi₄NbO₈Cl and Bi₄NbO₈Cl loaded with Ir species via ADS method from aqueous $[SiV^VW_{11}O_{40}]^{5-}$ or Fe³⁺ solution under visible light irradiation ($\lambda > 400$ nm).

Figure S6. Amount of Ir loaded on Bi₄NbO₈Cl via various methods (COL, MW, PD, and ADS), determined by ICP measurements. The loading amounts of Ir species for the ADS and PD samples were slightly smaller, while most of the introduced Ir species (0.5 wt.% metal content) were successfully loaded onto the surface of Bi₄NbO₈Cl, regardless of the loading method.

Figure S7. STEM images of Bi₄NbO₈Cl loaded with Ir species via various methods (COL, PD, and IMP).

Figure S8. Ir L3-edge XANES spectra of (a) Bi₄NbO₈Cl loaded with Ir species via various methods (COL, MW, IMP, PD, and ADS), along with those of the (b) reference samples.

Figure S9. Ir L3-edge (a) EXAFS and (b) XANES spectra of Bi₄NbO₈Cl loaded with Ir species via ADS method before and after O₂ evolution reaction.

Figure S10. XRD patterns of Bi₄TaO₈Cl, Bi₂ErO₄Cl, and SrBi₃O₄Cl₃.

Figure S11. Time course of O₂ evolution on oxyhalides (Bi₄TaO₈Cl, Bi₂ErO₄Cl, and SrBi₃O₄Cl₃) loaded with Ir species via ADS method.

Figure S12. Initial O_2 evolution rate of BiVO₄, TaON, and WO₃ loaded with or without Ir species via ADS method.

Figure S13. Initial O₂ evolution rate of Bi₄NbO₈Cl loaded with Ir species via ADS method using various Ir precursors (Na₃IrCl₆, Na₂IrCl₆, and Ir(acac)₃).

References

- 1. K. Ogawa, A. Nakada, H. Suzuki, O. Tomita, M. Higashi, A. Saeki, H. Kageyama and R. Abe, *ACS Appl. Mater. Interface*, 2019, **11**, 5642-5650.
- 2. H. Kunioku, A. Nakada, M. Higashi, O. Tomita, H. Kageyama and R. Abe, *Sustain. Energy Fuels*, 2018, **2**, 1474-1480.
- 3. A. Nakada, D. Kato, R. Nelson, H. Takahira, M. Yabuuchi, M. Higashi, H. Suzuki, M. Kirsanova, N. Kakudou, C. Tassel, T. Yamamoto, C. M. Brown, R. Dronskowski, A. Saeki, A. Abakumov, H. Kageyama and R. Abe, *J. Am. Chem. Soc.*, 2021, **143**, 2491-2499.
- 4. Y. Ishii, H. Suzuki, K. Ogawa, O. Tomita, A. Saeki and R. Abe, *Sustain. Energy Fuels*, 2022, **6**, 3263-3270.
- 5. K. Chen, J. Xiao, J. J. M. Vequizo, T. Hisatomi, Y. Ma, M. Nakabayashi, T. Takata, A. Yamakata, N. Shibata and K. Domen, *J. Am. Chem. Soc.*, 2023, **145**, 3839-3843.
- 6. K. Maeda and K. Domen, *Angew. Chem. Int. Ed.*, 2012, **51**, 9865-9869.
- 7. A. Iwase, H. Kato and A. Kudo, *Chem. Lett.*, 2005, **34**, 946-947.