Supplementary Information

Diastereoselective synthesis of benzazocines by Zn(OTf)₂-catalyzed (4+4) cyclocondensation of multisubstituted donor-acceptor cyclopropanes with anthranils

Xuelian Huang, Gaosheng Yang * and Zhuo Chai *

MOE Key Laboratory of Functionalized Molecular Solids, Anhui Key Laboratory of Molecule-Based

Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui

Normal University, Wuhu, Anhui 241002, China

*Corresponding authors *E-mail:* gshyang@ahnu.edu.cn, chaizhuo@ahnu.edu.cn

Contents

1. Gener	al information	S2
2. Experi	imental procedures	S2
2.1	General procedures for the preparation of cyclopropanes 1	S2
2.2	Optimization of the (4+4) cyclocondensation reaction conditions	S3
2.3	General procedure for the synthesis of products 3	S4
2.4	Procedure for the preparation of 3aa on gram-scale	S4
2.5	Procedure for the reduction of 3aa	S4
2.6	Procedure for the reductive N–O bond cleavage of 4	S5
2.7	Procedure for the decarboxylation of 4	S5
2.8	Procedure for the reductive N–O bond cleavage of 7	S5
2.9	Procedure for the reduction of 7	S6
2.10	Procedure for the cycloetherification of 10	S6
2.11	Procedure for the reductive N–O bond cleavage and acetylation of 11	S6
3. X-Ray	v crystal structure and details of compounds 3aa, 6, 12, 13, 1u and 3ua	S7
4. Refere	ences	S10
5. Charae	cterization data of compounds	S11
5.1	Characterization data of cyclopropanes 1	S11
5.2	Characterization data of products 3	S12
5.3	Characterization data of transformation products	S20
6. Copies	s of NMR spectra for compounds	S23
6.1	Copies of NMR spectra for compounds 15u, 16u, 1u and 1u'	S23
6.2	Copies of NMR spectra for products 3	S31
6.3	Copies of NMR spectra for transformation products	S104
7. Studie	es on the conversion of compound 8 to compound 9	S128
8. Deterr	nination of the structure of 3ua' by transesterification and by comparison of HPLC	. S129

1. General information

All reactions between the D–A cyclopropanes **1** with anthranils **2** were carried out with flame-dried Schlenk-type glassware using a Schlenk line. The cyclopropanes **1** were prepared according to the related literature.¹ Anthranils **2** are known products and prepared according to the related literature.² All other reagents were purchased from commercial suppliers and purified by standard techniques, and the purified solvents were stored over activated molecular sieves 4Å. Flash column chromatography was performed using silica gel (200–400 mesh). Thin-layer chromatography (TLC) was performed on silica gel plates (HSGF 254). Visualization of the developed chromatogram was performed by UV light, staining with iodine (dispersed in silica gel), or by KMnO₄ stain. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) and ¹⁹F NMR (470) spectra were recorded in CDCl₃. Data for ¹³C{¹H} NMR were recorded with broad-band proton decoupling technique. The NMR data of compound **12** was acquired at –50 °C. Structural assignments for compounds **11** and **13** were made with additional information from gCOSY, gHSQC experiments. All chemical shifts (δ) are given in ppm relative to TMS ($\delta = 0$ ppm) as internal standard. Data are reported as follows: chemical shift, multiplicity, coupling constants and integration. Melting points were uncorrected. High resolution mass spectral (HRMS) data were obtained with an ionization mode of APCI/ESI and a TOF analyzer.

2. Experimental procedures

2.1 General procedures for the preparation of cyclopropanes 1¹

Aryl *p*-tolyl sulfones 14^{3a} , 2-aroylmethylenemalonates 15^{3b} were prepared according to related literatures.

Under an argon atmosphere, to an oven-dried Schlenk tube containing a magnetic stirring bar was added 14 (4.5 mmol, 1.5 equiv), 60% NaH (0.3 g, 7.5 mmol, 2.5 equiv), and DMSO (20 mL). The mixture was stirred at r.t about 30 mins, then 15 (3 mmol, 1 equiv) was added. The resulting mixture was stirred at 60 °C in metal sand bath until the disappearance of 15 as monitored by TLC. Then the reaction mixture was cooled down to room temperature and quenched with saturated NH₄Cl (30 mL). The resulting mixture was extracted with ethyl acetate (100 mL \times 3). The organic layer was washed with brine (20 mL \times 3), and dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was purified by chromatography on silica gel

to afford the product 16.

Under an argon atmosphere, to an oven-dried Schlenk tube containing a magnetic stirring bar was added **16** (2 mmol, 1 equiv), trimethylsulfoxonium iodide (0.88 g, 4 mmol, 2 equiv), 60% sodium hydride (0.24 g, 6 mmol, 3 equiv), DMF (20 mL). The above mixture was stirred at 50 °C in metal sand bath until the disappearance of **16** as monitored by TLC. The reaction mixture was cooled down to room temperature and quenched with saturated NH₄Cl (30 mL). The resulting mixture was extracted with ethyl acetate (100 mL × 3). The organic layer was washed with brine (20 mL × 3), and dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was purified by chromatography on silica gel to afford the cyclopropanes **1**. For the preparation of enantioenriched products **1u** and **1u'**, commercial enantioenriched (*S*)-1-phenylethanol (98% ee) was used.

2.2 Optimization of the (4+4) cyclocondensation reaction conditions

Table S1 Optimization of reaction conditions for the (4+4) annulation of the D-A cyclopropane **1a** with
anthranils^{*a*}

entry	2a (equiv)	LA ($x \mod \%$)	solvent	temperature (°C)	time (days)	yield ^b (%)
1	2.0	no	1,2-DCE	25	7	NR
2	2.0	no	1,2-DCE	60	7	NR
3	2.0	no	1,2-DCE	90	7	complicated
4	2.0	$Sc(OTf)_3(5)$	1,2-DCE	25	7	NR
5	2.0	$Sc(OTf)_3(5)$	1,2-DCE	40	7	NR
6	2.0	$Sc(OTf)_3(5)$	1,2-DCE	60	7	13
7	2.0	$Y(OTf)_3(5)$	1,2-DCE	60	7	15
8	2.0	$La(OTf)_3(5)$	1,2-DCE	60	7	24
9	2.0	$Sm(OTf)_3(5)$	1,2-DCE	60	7	trace
10	2.0	$Er(OTf)_3(5)$	1,2-DCE	60	7	15
11	2.0	$Yb(OTf)_3(5)$	1,2-DCE	60	7	11
12	2.0	$Mg(OTf)_2(5)$	1,2-DCE	60	7	complicated
13	2.0	$Al(OTf)_3(5)$	1,2-DCE	60	7	complicated
14	2.0	$Fe(OTf)_3(5)$	1,2-DCE	60	7	complicated
15	2.0	$Cu(OTf)_2(5)$	1,2-DCE	60	7	trace
16	2.0	$Zn(OTf)_2(5)$	1,2-DCE	60	7	28
17	2.0	$Sn(OTf)_2(5)$	1,2-DCE	60	7	16
18	2.0	$BF_3 \cdot Et_2O(5)$	1,2-DCE	60	7	NR
19	2.0	$AlCl_3(5)$	1,2-DCE	60	7	complicated
20	2.0	$\operatorname{FeCl}_3(5)$	1,2-DCE	60	7	complicated
21	2.0	$MgBr_2(5)$	1,2-DCE	60	7	complicated
22	2.0	$MgI_2(5)$	1,2-DCE	60	7	complicated
23	2.0	$CaI_2(5)$	1,2-DCE	60	7	trace
24	2.0	$La(OTf)_3(5)$	1,2-DCE	80	4	37
25	2.0	$La(OTf)_3(5)$	1,2-DCE	90	2.5	53
26	2.0	$La(OTf)_3(5)$	1,2-DCE	100	2	49

27	2.0	$Zn(OTf)_2(5)$	1,2-DCE	80	4	58
28	2.0	$Zn(OTf)_2(5)$	1,2-DCE	90	2.5	65
29	2.0	$Zn(OTf)_2(5)$	1,2-DCE	100	2	57
30	2.0	$Zn(OTf)_2(10)$	1,2-DCE	90	2.5	55
31	2.0	$Zn(OTf)_2(2)$	1,2-DCE	90	2.5	80
32^c	2.0	$Zn(OTf)_2(2)$	1,2-DCE	90	2.5	80 (0.95 g)
33	2.0	$Zn(OTf)_2(1)$	1,2-DCE	90	2.5	74
34	2.0	$Zn(OTf)_2(2)$	DCM	reflux	2.5	NR
35	2.0	$Zn(OTf)_2(2)$	DMSO	90	2.5	NR
36	2.0	$Zn(OTf)_2(2)$	ethyl ether	reflux	2.5	NR
37	2.0	$Zn(OTf)_2(2)$	dioxane	90	2.5	62
38	2.0	$Zn(OTf)_2(2)$	THF	reflux	2.5	45
39	2.0	$Zn(OTf)_2(2)$	toluene	90	2.5	65
40	3.0	$Zn(OTf)_2(2)$	1,2-DCE	90	2.5	87
41	4.0	$Zn(OTf)_2(2)$	1,2-DCE	90	2.5	96
42^d	4.0	$Zn(OTf)_2(2)$	1,2-DCE	90	2.5	98 (1.34 g)
43	4.0	$La(OTf)_3(2)$	1,2-DCE	90	2.5	61
44	4.0	$Sc(OTf)_3(2)$	1,2-DCE	90	2.5	25
45	4.0	$Sn(OTf)_2(2)$	1,2-DCE	90	2.5	10

^aThe reaction was conducted with 0.1 mmol of **1a** in 1 mL of solvent. ^bIsolated yields. ^cRun with 2.63 mmol of **1a**. ^dRun with 3 mmol of **1a**.

2.3 General procedure for the synthesis of products 3

Under an argon atmosphere, to an oven-dried Schlenk tube containing a magnetic stirring bar was added cyclopropanes **1** (0.2 mmol, 1 equiv), anthranils **2** (0.8 mmol, 4 equiv), 1,2-DCE (2 mL) and $Zn(OTf)_2$ (1.45 mg, 0.004 mmol, 2 mol%). The reaction mixture was stirred at 90 °C in metal sand bath for 2.5 days. After the reaction was finished, the organic solvent was removed under reduced pressure. Then the crude mixture was purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 5/1) to furnish the desired products **3**.

2.4 Procedure for the preparation of 3aa on gram-scale

Under an argon atmosphere, to an oven-dried Schlenk tube containing a magnetic stirring bar was added cyclopropane **1a** (1.14 g, 3 mmol, 1 equiv), anthranil **2a** (1.428 g, 12 mmol, 4 equiv), 1,2-DCE (40 mL) and $Zn(OTf)_2$ (21.8 mg, 0.06 mmol, 2 mol%). The reaction mixture was stirred at 90 °C in metal sand bath for 2.5 days. After the reaction was finished, the organic solvent was removed under reduced pressure. Then the crude mixture was purified by column chromatography (eluting with petroleum ether/ethyl acetate (v/v): 15/1 – 5/1) to furnish the desired products **3aa** in 98% yield (1.34 g, 2.95 mmol).

2.5 Procedure for the reduction of 3aa

Under an argon atmosphere, the cycloadduct **3aa** (415 mg, 0.91 mmol) was dissolved in THF (20 mL), and cooled down to 0 °C, and then LiAlH₄ (104 mg, 2.73 mmol, 3 equiv) was added into the solution. The reaction mixture was stirred at room temperature. When the cycloadduct **3aa** disappeared (monitored by TLC),

the reaction mixture was quenched with H_2O and NaOH, and then passed over a plug of celite with 50 mL of MeOH. The filtrate was removed under reduced pressure and the residue was purified by silica gel column chromatography (eluting with petroleum ether/ethyl acetate (v/v): 6/1) to give the desired product **4** in 80% yield (332.2 mg, 0.73 mmol).

2.6 Procedure for the reductive N–O bond cleavage of 4⁴

The compound **4** (45.6 mg, 0.1 mmol, 1 equiv) and dichloromethane (1 mL) were added into a reaction flask with stirring bar. Zinc dust (130 mg, 2.00 mmol, 20 equiv) and acetic acid (1 mL) were sequentially added in to the flask. Then the reaction mixture was stirred at 25 °C. When **4** disappeared (monitored by TLC), the reaction mixture was passed over a plug of celite with 15 mL of ethyl acetate. The filtrate was removed under reduced pressure and the residue was purified by silica gel column chromatography (eluting with petroleum ether/ethyl acetate (v/v): 5/1) to give the product **5** in 25% yield (11.5 mg, 0.025 mmol) and product **6** in 50% yield (21.9 mg, 0.05 mmol).

The compound **4** (45.6 mg, 0.1 mmol, 1 equiv), MeOH (1 mL) and H₂O (1 mL) were added into a reaction flask with stirring bar. Zinc dust (130 mg, 2.00 mmol, 20 equiv) and acetic acid (1 mL) were sequentially added into the flask. Then the reaction mixture was stirred at room temperature. When **4** disappeared (monitored by TLC), the reaction mixture was passed over a plug of celite with 15 mL of ethyl acetate. The filtrate was removed under reduced pressure and the residue was purified by silica gel column chromatography (eluting with petroleum ether/ethyl acetate (v/v): 5/1) to give the product **5** in 80% yield (36.6 mg, 0.08 mmol) and product **6** in 15% yield (6.7 mg, 0.015 mmol).

2.7 Procedure for the decarboxylation of 4

A mixture of compound **4** (332 mg, 0.73 mmol, 1 equiv) and NaCl (342 mg, 5.84 mmol, 8 equiv) in DMSO (5 mL) and water (0.5 mL) was heated at 100 °C under an argon atmosphere for 24 hours. After completion of the reaction, the mixture was cooled down to room temperature, diluted with water (30 mL) and extracted with CH₂Cl₂ (3 × 30 mL). The combined organic layers were washed with brine (30 mL), dried with anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure, and the residue was purified by column chromatography (eluting with petroleum ether/ethyl acetate (v/v): 5/1) to afford the desired product **7** in 89% yield (251.5 mg, 0.66 mmol).

2.8 Procedure for the reductive N–O bond cleavage of 7⁴

The compound **7** (38.3 mg, 0.1 mmol, 1 equiv) and dichloromethane (1 mL) were added into a reaction flask with stirring bar. Zinc dust (130 mg, 2.00 mmol, 20 equiv) and acetic acid (1 mL) were sequentially added in to the flask. Then the reaction mixture was stirred at room temperature. When **7** disappeared

(monitored by TLC, about 24 hours), the reaction mixture was passed over a plug of celite with 15 mL of ethyl acetate. The filtrate was removed under reduced pressure and the residue was purified by silica gel column chromatography (eluting with petroleum ether/ethyl acetate (v/v): 5/1) to give the product **8** in 35% yield (13.5 mg, 0.035 mmol) and product **9** in 50% yield (18.5 mg, 0.05 mmol).

The compound **7** (38.3 mg, 0.1 mmol, 1 equiv), MeOH (1 mL) and H₂O (1 mL) were added into a reaction flask with stirring bar. Zinc dust (130 mg, 2.00 mmol, 20 equiv) and acetic acid (1 mL) were sequentially added in to the flask. Then the reaction mixture was stirred at room temperature. When **7** disappeared (monitored by TLC, about 3 hours), the reaction mixture was passed over a plug of celite with 15 mL of ethyl acetate. The filtrate was removed under reduced pressure and the residue was purified by silica gel column chromatography (eluting with petroleum ether/ethyl acetate (v/v): 5/1) to give the product **8** in 85% yield (32.7 mg, 0.085 mmol) and product **9** in 8% yield (3 mg, 0.008 mmol).

2.9 Procedure for the reduction of 7

Under an argon atmosphere, the compound 7 (126.4 mg, 0.33 mmol, 1 equiv) was dissolved in THF (5 mL), and cooled at 0 °C, and then LiAlH₄ (50.2 mg, 1.32 mmol, 4 equiv) was added into the reaction mixture. The reaction mixture was stirred at room temperature. When the compound 7 disappeared (monitored by TLC), the reaction mixture was quenched with H₂O and NaOH, and then passed over a plug of celite with 30 mL of MeOH. The filtrate was removed under reduced pressure and the residue was purified by silica gel column chromatography (eluting with petroleum ether/ethyl acetate (v/v): 2/1) to give the desired product **10** in 94% yield (120 mg, 0.31 mmol).

2.10 Procedure for the cycloetherification of 10

Under an argon atmosphere, to an ice-cooled solution of diol **10** (120 mg, 0.31 mmol, 1 equiv) in THF (5 mL) was added NaH (24.8 mg 60% dispersion in mineral oil, 0.62 mmol, 2 equiv). The resultant suspension was stirred for 10 min before the addition of MsCl (70.7 mg, 0.62 mmol, 2 equiv). Then the reaction mixture was stirred at 25 °C for 12 h before being quenched by the addition of H₂O. The residue was dissolved in 10 mL of CH₂Cl₂ and 10 mL of H₂O and the aqueous phase was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were washed with brine solution (30 mL), dried with anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (eluting with petroleum ether/ethyl acetate (v/v): 8/1) to afford the desired product **11** in 90% yield (103.3 mg, 0.28 mmol).

2.11 Procedure for the reductive N–O bond cleavage and acetylation of 11

Under an argon atmosphere, the product **11** (103.3 mg, 0.28 mmol, 1 equiv) and dichloromethane (5 mL) were added into an oven-dried reaction flask with stirring bar. Zinc dust (364 mg, 5.60 mmol, 20 equiv) and

acetic acid (5 mL) were sequentially added in to the flask. Then the reaction mixture was stirred at room temperature. When **11** disappeared (monitored by TLC), the reaction mixture was passed over a plug of celite with 15 mL of ethyl acetate. The filtrate was removed under reduced pressure and the residue was purified by silica gel column chromatography (eluting with petroleum ether/ethyl acetate (v/v): 4/1) to give the product **12** in 86% yield (90 mg, 0.24 mmol).

The product **12** (18.6 mg, 0.05 mmol, 1 equiv) was dissolved in DCM (1 mL), then Et_3N (10.2 mg, 0.1 mmol, 2 equiv) and Ac₂O (10.1 mg, 0.1 mmol, 2 equiv) was added into the solution. The reaction mixture was stirred at room temperature. When **12** disappeared (monitored by TLC), the reaction mixture was extracted with ethyl acetate, the organic layer was washed with 5% aqueous solution of NaOH and water, and dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was purified by silica gel column chromatography (eluting with petroleum ether/ethyl acetate (v/v): 6/1) to give the desired product **13** in 76% yield (15.9 mg, 0.038 mmol).

3. X-Ray crystal structure and details of compounds 3aa, 6, 12, 13, 1u and 3ua

The single crystals of **3aa**, **6**, **12**, **13**, **1u** and **3ua** suitable for X-ray crystallographic analysis were obtained by recrystallization from a mixed solvent of dichloromethane and petroleum ether. The single crystal X-ray diffraction data for the five compounds were collected on a Bruker APEX-II CCD diffractometer with graphite monchromated Mo K α radiation ($\lambda = 0.71073$ Å) for **3aa**, **6**, **12**, **13**, **1u** and **3ua**. Saint program and SADABS program carried out the data integration. The structure was solved by a direct method and refined on F2 using SHELXTL suite of program. All non-hydrogen atoms were anisotropically refined by full-matrix least squares methods. All hydrogen atoms were geometrically generated and isotropically refined using a riding model. The details of the X-ray data collection, structure solution and structure refinements are given in **Table S4**, **Table S5** and **Table S6**.

Compound	3 aa	6	
Formula	$C_{28}H_{23}NO_5$	$C_{28}H_{25}NO_4$	
Formula weight	453.47	439.52	
Temperature/K	293	293	
Crystal system	triclinic	triclinic	
Space group	P-1	P-1	
<i>a</i> , Å	11.9433(10)	9.838(4)	
<i>b</i> , Å	12.3276(10)	11.101(4)	
<i>c</i> , Å	20.1320(17)	11.425(4)	
α , deg	75.060(1)	97.664(5)	
β , deg	81.142(1)	97.936(5)	
γ, deg	75.914(1)	110.262(4)	
Volume/Å ³	2764.6(4)	1137.1(7)	

Table S4Crystallographic data and structural refinement details for compounds 3aa and 6.

Z	4	2
µ/mm ⁻¹	0.075	0.086
θ range for data collection, deg	2.1 to 25.0	1.8 to 27.5
Reflections collected	27603	9787
Unique reflections/R _{int}	9696 / R(int) = 0.1373	4981 / R(int) = 0.027
Goodness-of-fit on F ²	1.030	1.08
R, R _w [I > 2σ (I)]	0.0722, 0.2479	0.0552, 0.1543
Residual $\rho/(e \cdot \text{\AA}^{-3})$	0.38, -0.33	0.28, -0.31
CCDC	2309776	2309777

Table S5Crystallographic data and structural refinement details for compounds 12 and 13.

Compound	12	13
Formula	$C_{25}H_{25}NO_2$	C ₂₇ H ₂₇ NO ₃
Formula weight	371.46	413.49
Temperature/K	293	273
Crystal system	orthorhombic	triclinic
Space group	Pca21	P-1
<i>a</i> , Å	11.3577(14)	10.0943(6)
b, Å	12.6655(16)	12.4294(8)
<i>c</i> , Å	27.035(3)	18.1764(13)
α , deg	90	85.359(2)
β , deg	90	80.756(2)
γ, deg	90	85.323(2)
Volume/Å ³	3889.0(8)	2238.1(3)
Z	8	4
μ/mm^{-1}	0.080	0.079
θ range for data collection, deg	1.5 to 27.5	2.6 to 25.0
Reflections collected	32590	80513
Unique reflections/R _{int}	8633 / R(int) = 0.036	7849 / R(int) = 0.160
Goodness-of-fit on F ²	1.03	1.07
R, R _w [I > 2σ (I)]	0.0501, 0.1386	0.0573, 0.1538
Residual $\rho/(e \cdot \text{\AA}^{-3})$	0.37, -0.21	0.32, -0.34
CCDC	2309778	2309779

Table S6Crystallographic data and structural refinement details for compounds 1u and 3ua.

Compound	1u	3ua	
Formula	$C_{35}H_{31}BrO_5$	$C_{34}H_{26}BrNO_5$	
Formula weight	611.51	608.47	
Temperature/K	273	273	
Crystal system	trigonal	orthorhombic	
Space group	P3 ₁ 21	$P2_{1}2_{1}2_{1}$	
<i>a</i> , Å	11.5209(2)	10.4122(6)	
<i>b</i> , Å	11.5209(2)	13.8828(10)	
<i>c</i> , Å	40.4128(12)	19.5704(13)	
α , deg	90	90	
β , deg	90	90	
γ, deg	120	90	
Volume/Å ³	4645.4(2)	2828.9(3)	

Z	6	4
µ/mm ⁻¹	2.129	1.497
θ range for data collection, deg	4.4 to 68.4	2.5 to 25.0
Reflections collected	104615	79600
Unique reflections/R _{int}	5495 / R(int) = 0.094	4978 / R(int) = 0.0907
Goodness-of-fit on F ²	1.08	1.054
R, R _w [I > 2σ (I)]	0.0550, 0.1437	0.0369, 0.0759
Residual $\rho/(e \cdot \text{\AA}^{-3})$	0.70, -0.78	0.15, -0.42
Flack x	0.080(6)	-0.006(4)
CCDC	2349182	2349183

Figure S1 X-ray structure (30 % probability ellipsoids) of 3aa, 6, 12, 13, 1u and 3ua

Compound 12

4. References

- 1. Jiao, J.; Yang, G. Preparation of α -(di(alkoxycarbonyl)methyl)chalcones and their application in the synthesis of multisubstituted cyclopropanes. *Chin. J. Org. Chem.* **2025**, 10.6023/cjoc202408023.
- 2. Chauhan, J.; Fletcher, S. One-pot synthesis of 2,1-benzisoxazoles (anthranils) by a stannous chloride-mediated tandem reduction-heterocyclization of 2-nitroacylbenzenes under neutral conditions. *Tetrahedron Lett.* **2012**, *53*, 4951–4954.
- (a) Chang, M.-Y.; Chen, Y.-C.; Chan, C.-K. One-pot synthesis of multifunctionalized cyclopropanes. *Tetrahedron* 2014, 70, 2257–2263. (b) Qi, C.; Chen, W.; Yang, G. Catalyst-free Synthesis of Aroylmethylidene Malonates via Two-step in One Pot. *Chin. J. Syn. Chem.* 2021, 29, 969–974.
- 4. Singh, R. R.; Skaria, M.; Chen, L.-Y.; Cheng, M.-J.; Liu, R.-S. Gold-catalyzed (4+3)-annulations of 2-alkenyl-1-alkynylbenzenes with anthranils with alkyne-dependent chemoselectivity: skeletal rearrangement *versus* non-rearrangement. *Chem. Sci.* **2019**, *10*, 1201–1206.

5. Characterization data of compounds

5.1 Characterization data of cyclopropanes 1

All the cyclopropanes **1** were prepared as previously described.¹ The characterizing data for the new substrate **1u** and the related compounds (**15u**, **16u** and **1u'**) are as follows:

Bis((*S*)-1-phenylethyl) 2-(2-oxo-2-phenylethylidene)malonate (**15u**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1) to afford a yellow oil in 65% yield (1400.4 mg). $[\alpha]_D^{23} = -40.08$ (*c* 0.4, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.87 (s, 1H), 7.68 – 7.60 (m, 1H), 7.54 – 7.47

(m, 2H), 7.39 - 7.24 (m, 10H), 6.13 (q, J = 6.5 Hz, 1H), 6.02 (q, J = 6.6 Hz, 1H), 1.61 (d, J = 6.6 Hz, 3H), 1.58 (d, J = 6.6 Hz, 3H). ${}^{13}C{}^{1}H{}$ NMR (125 MHz, CDCl₃) δ 189.1, 163.8, 162.1, 140.6, 140.4, 136.4, 136.02, 135.98, 134.2, 128.91, 128.89, 128.6, 128.4, 128.1, 128.0, 126.5, 126.0, 74.8, 74.2, 22.1, 21.0. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₇H₂₄O₅Na 451.1516, found 451.1513.

Bis((*S*)-1-phenylethyl) 2-((*E*)-1-(4-bromophenyl)-3-oxo-3-phenylprop-1-en-2-yl)malon- ate (**16u**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 6/1) to afford a yellow oil in 56% yield (999.6 mg). $[\alpha]_D^{23} = -38.21$ (*c* 0.4, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 7.89 – 7.81 (m, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.55 –

7.46 (m, 4H), 7.41 – 7.31 (m, 11H), 7.25 (d, J = 8.3 Hz, 2H), 6.14 – 5.98 (m, 2H), 4.89 (s, 1H), 1.620 (d, J = 6.6 Hz, 3H), 1.618 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 196.0, 166.5, 166.4, 143.0, 140.9, 140.5, 137.2, 134.9, 132.9, 132.1, 131.9, 130.2, 129.7, 128.3, 128.2, 127.9, 127.8, 126.3, 126.0, 123.5, 74.18, 74.17, 51.6, 21.8, 21.5. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₄H₂₉BrO₅Na 619.1091, found 619.1092.

Bis((*S*)-1-phenylethyl) 2-((1*S*,2*R*)-1-benzoyl-2-(4-bromophenyl)cyclopropyl)malonate (**1u**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 10/1) to afford a white solid in 38% yield (462 mg). Mp: 120 – 121 °C. $[\alpha]_D^{23} = -26.11$ (*c* 0.4, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, *J* = 6.6 Hz, 2H), 7.47 – 7.30 (m, 11H),

7.21 (d, J = 8.3 Hz, 2H), 7.13 (d, J = 6.9 Hz, 2H), 7.02 (d, J = 8.3 Hz, 2H), 5.96 (q, J = 6.5 Hz, 1H), 5.86 (q, J = 6.6 Hz, 1H), 3.08 – 2.98 (m, 1H), 2.85 (s, 1H), 1.98 – 1.83 (m, 1H), 1.72 – 1.66 (m, 1H), 1.60 (d, J = 6.5 Hz, 3H), 1.46 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.3, 167.9, 167.3, 140.9, 140.6, 137.4, 134.1, 131.6, 130.8, 130.6, 128.48, 128.45, 128.1, 128.0, 127.8, 127.4, 126.3, 126.1, 121.4, 73.8, 73.5, 53.2, 37.8, 27.9, 21.9, 21.2, 16.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₅H₃₂BrO₅ 611.1428, found 611.1427.

Bis((*S*)-1-phenylethyl) 2-((1*R*,2*S*)-1-benzoyl-2-(4-bromophenyl)cyclopropyl)malonate (1u'). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 10/1) to afford a yellow oil in 43% yield (526.8 mg). $[\alpha]_D^{23}$ = -66.79 (*c* 0.4, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.63 – 7.54 (m, 2H), 7.52 – 7.46 (m, 1H), 7.46 – 7.38 (m, 4H),

7.38 – 7.28 (m, 5H), 7.27 – 7.19 (m, 3H), 7.16 – 7.06 (m, 4H), 5.85 (q, J = 6.6 Hz, 1H), 5.77 (q, J = 6.6 Hz, 1H), 3.15 – 3.06 (m, 1H), 2.75 (s, 1H), 1.96 – 1.87 (m, 1H), 1.68 – 1.62 (m, 1H), 1.42 (d, J = 6.6 Hz, 3H), 1.35 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 202.4, 168.0, 167.2, 141.3, 140.3, 137.7, 134.3, 131.7, 130.8, 130.6, 128.5, 128.3, 128.2, 128.1, 127.7, 127.5, 126.7, 125.9, 121.4, 74.2, 73.7, 53.3, 38.3, 27.4, 21.8, 21.1, 16.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₅H₃₂BrO₅ 611.1428, found 611.1427.

5.2 Characterization data of products 3

Ethyl 2-oxo-5,11a-diphenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*]furo[2,3-*e*]azocine-3-carboxylate (**3aa**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 96% yield (87.1 mg). Mp: $182 - 183 \,^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J* = 7.8 Hz, 2H), 7.53 (d, *J* = 7.8 Hz, 2H), 7.50 -

7.37 (m, 5H), 7.36 – 7.28 (m, 3H), 7.10 (t, J = 7.4 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 6.03 (s, 1H), 4.52 (dd, J = 10.3, 5.6 Hz, 1H), 4.34 – 4.21 (m, 2H), 3.53 (dd, J = 12.1, 5.4 Hz, 1H), 3.04 – 2.95 (m, 1H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.9, 167.5, 160.5, 151.2, 142.5, 135.0, 130.3, 129.6, 129.2, 128.9, 127.7, 126.8, 126.3, 126.1, 124.68, 124.66, 120.8, 112.0, 88.1, 83.0, 68.3, 61.7, 34.7, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₄NO₅ 454.1649, found 454.1650.

Methyl 2-oxo-5,11a-diphenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*]furo[2,3-*e*]azocine-3-carboxylate (**3ba**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 94% yield (82.5 mg). Mp: 204 – 205 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.61 (m, 2H), 7.55 (d, *J* = 7.3

Hz, 2H), 7.51 - 7.38 (m, 5H), 7.36 - 7.27 (m, 3H), 7.09 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 6.03 (s, 1H), 4.54 (dd, J = 10.4, 5.5 Hz, 1H), 3.82 (s, 3H), 3.57 (dd, J = 12.0, 5.6 Hz, 1H), 3.01 (dd, J = 11.9, 10.6 Hz, 1H). $^{13}C{^{1}H}$ NMR (125 MHz, CDCl₃) δ 176.0, 167.4, 161.0, 151.2, 142.4, 134.9, 130.3, 129.6, 129.2, 128.8, 127.6, 126.7, 126.2, 126.1, 124.6, 120.4, 112.0, 88.2, 82.9, 68.2, 52.5, 34.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₂NO₅ 440.1492, found 440.1498.

Isopropyl 2-oxo-5,11a-diphenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*]furo[2,3-*e*]azocine-3-carboxylate (**3ca**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 96% yield (89.7 mg). Mp: 190 - 191 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.73 - 7.62 (m, 2H), 7.54 (d, *J* = 7.8 Hz,

2H), 7.50 – 7.38 (m, 5H), 7.38 – 7.27 (m, 3H), 7.15 – 7.05 (m, 1H), 6.90 (d, J = 7.8 Hz, 1H), 6.03 (s, 1H), 5.21 – 5.07 (m, 1H), 4.53 (dd, J = 10.3, 5.7 Hz, 1H), 3.51 (dd, J = 12.2, 5.7 Hz, 1H), 2.99 (dd, J = 12.0, 10.6 Hz, 1H), 1.31 (d, J = 6.3 Hz, 6H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 173.5, 167.4, 159.8, 151.2, 142.5, 135.0, 130.1, 129.5, 129.1, 128.8, 127.6, 126.8, 126.2, 126.0, 124.65, 124.60, 121.1, 111.8, 87.9, 82.9, 69.4, 68.2, 34.6, 21.86, 21.81. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₆NO₅ 468.1805, found 468.1803.

Ethyl 11a-(4-fluorophenyl)-2-oxo-5-phenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*] furo[2,3-*e*]azocine-3-carboxylate (**3da**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 86% yield (81.0 mg). Mp: 185 – 186 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.62 (m, 2H),

7.53 (d, J = 7.3 Hz, 2H), 7.47 – 7.39 (m, 2H), 7.37 – 7.28 (m, 3H), 7.21 – 7.05 (m, 3H), 6.91 (d, J = 7.9 Hz, 1H), 5.98 (s, 1H), 4.53 (dd, J = 10.4, 5.6 Hz, 1H), 4.35 – 4.20 (m, 2H), 3.55 (dd, J = 12.1, 5.6 Hz, 1H), 2.95 (dd, J = 12.1, 10.5 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.5, 167.2, 163.2 (d, ¹ $J_{FC} = 250.0$ Hz), 160.3, 151.2, 142.4, 130.9 (d, ⁴ $J_{FC} = 3.1$ Hz), 130.4, 128.9, 128.3 (d, ³ $J_{FC} = 8.4$ Hz), 127.7, 126.6, 126.0, 124.7, 124.6, 120.8, 116.2 (d, ² $J_{FC} = 21.7$ Hz), 112.0, 87.6, 83.0, 68.2, 61.7, 34.6, 14.1. ¹⁹F NMR (470 MHz, CDCl₃) δ –111.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₃FNO₅ 472.1555, found 472.1562.

Ethyl 11a-(4-chlorophenyl)-2-oxo-5-phenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo
[*b*]furo[2,3-*e*]azocine-3-carboxylate (**3ea**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 – 10/1) to afford a white solid in 80% yield (77.9 mg). Mp: 194 – 195 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.66 – 7.58 (m,

2H), 7.56 – 7.49 (m, 2H), 7.47 – 7.38 (m, 4H), 7.36 – 7.28 (m, 3H), 7.14 – 7.05 (m, 1H), 6.90 (d, J = 8.1 Hz, 1H), 5.96 (s, 1H), 4.52 (dd, J = 10.4, 5.6 Hz, 1H), 4.35 – 4.19 (m, 2H), 3.55 (dd, J = 12.1, 5.6 Hz, 1H), 2.94 (dd, J = 12.1, 10.4 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.3, 167.1, 160.3, 151.1, 142.3, 135.8, 133.6, 130.4, 129.4, 128.9, 127.73, 127.71, 126.5, 126.0, 124.7, 124.6, 120.9, 112.0, 87.5, 82.9, 68.2, 61.7, 34.6, 14.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₃ClNO₅ 488.1259 found 488.1257.

Ethyl 11a-(4-bromophenyl)-2-oxo-5-phenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo [*b*]furo[2,3-*e*]azocine-3-carboxylate (**3fa**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 76% yield (80.7 mg). Mp: 212 - 213 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.64 – 7.49 (m,

6H), 7.45 - 7.38 (m, 2H), 7.37 - 7.28 (m, 3H), 7.10 (t, J = 7.3 Hz, 1H), 6.90 (d, J = 8.1 Hz, 1H), 5.95 (s, 1H), 4.52 (dd, J = 10.4, 5.6 Hz, 1H), 4.34 - 4.20 (m, 2H), 3.54 (dd, J = 12.1, 5.6 Hz, 1H), 2.94 (dd, J = 12.0, 10.5 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H). ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃) δ 174.3, 167.1, 160.3, 151.2, 142.3, 134.2, 132.4, 130.4, 128.9, 128.0, 127.8, 126.5, 126.0, 124.7, 124.6, 124.0, 120.9, 112.0, 87.6, 82.9, 68.2, 61.7, 34.6, 14.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₃BrNO₅ 532.0754, found 532.0753.

Ethyl 2-oxo-5-phenyl-11a-(4-(trifluoromethyl)phenyl)-4,5,11,11a-tetrahydro-2*H*-6,11epoxy-benzo[*b*]furo[2,3-*e*]azocine-3-carboxylate (**3ga**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 96% yield (100.0 mg). Mp: 200 - 201 °C. ¹H NMR (500

MHz, CDCl₃) δ 7.84 (d, J = 8.2 Hz, 2H), 7.72 (d, J = 8.2 Hz, 2H), 7.54 (d, J = 7.5 Hz, 2H), 7.48 – 7.38 (m, 2H), 7.37 – 7.27 (m, 3H), 7.17 – 7.04 (m, 1H), 6.91 (d, J = 8.0 Hz, 1H), 5.98 (s, 1H), 4.55 (dd, J = 10.2, 5.6 Hz, 1H), 4.39 – 4.13 (m, 2H), 3.57 (dd, J = 12.1, 5.6 Hz, 1H), 3.05 – 2.81 (m, 1H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 173.9, 167.0, 160.2, 151.2, 142.2, 139.3, 131.8 (q, ² $_{FC}$ = 32.9 Hz), 130.5, 128.9, 127.8, 126.8, 126.3, 126.2 (q, ³ $_{FC}$ = 3.2 Hz), 126.0, 124.8, 124.6, 123.6 (q, ¹ $_{FC}$ = 272.8 Hz), 121.2, 112.0, 87.4, 83.0, 68.2, 61.8, 34.6, 14.1. ¹⁹F NMR (470 MHz, CDCl₃) δ –62.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₃F₃NO₅ 522.1523, found 522.1516.

Ethyl 2-oxo-5-phenyl-11a-(*p*-tolyl)-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*]furo[2, 3-*e*]azocine-3-carboxylate (**3ha**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 96% yield (89.7 mg). Mp: 205 – 206 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.50 (m,

4H), 7.45 - 7.37 (m, 2H), 7.35 - 7.22 (m, 5H), 7.13 - 7.05 (m, 1H), 6.90 (d, J = 7.8 Hz, 1H), 6.01 (s, 1H), 4.51 (dd, J = 10.4, 5.6 Hz, 1H), 4.34 - 4.20 (m, 2H), 3.52 (dd, J = 12.1, 5.6 Hz, 1H), 2.99 (dd, J = 12.0, 10.5 Hz, 1H), 2.37 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H). ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃) δ 175.0, 167.6, 160.5, 151.2, 142.5, 139.7, 131.9, 130.2, 129.9, 128.8, 127.7, 126.9, 126.2, 126.1, 124.6, 120.7, 112.0, 88.1, 82.9, 68.3, 61.6, 34.6, 21.2, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₆NO₅ 468.1805, found 468.1804.

Ethyl 11a-(2-methoxyphenyl)-2-oxo-5-phenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*] furo[2,3-*e*]azocine-3-carboxylate (**3ia**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 95% yield (91.7 mg). Mp: 180 – 181 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (dd, *J* = 7.8, 1.1 Hz,

1H), 7.49 (d, J = 7.6 Hz, 2H), 7.45 – 7.34 (m, 3H), 7.33 – 7.24 (m, 3H), 7.17 – 7.04 (m, 2H), 6.89 (d, J = 8.0 Hz, 2H), 6.19 (s, 1H), 4.51 (dd, J = 10.3, 5.7 Hz, 1H), 4.35 – 4.20 (m, 2H), 3.66 (s, 3H), 3.54 (dd, J = 12.0, 5.7 Hz, 1H), 2.87 (dd, J = 11.8, 10.7 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 173.2, 168.0, 160.8, 158.8, 151.6, 142.6, 131.2, 130.0, 128.9, 128.7, 127.5, 126.8, 126.1, 124.70, 124.65, 122.1, 121.8, 120.9, 112.3, 111.9, 87.2, 81.9, 67.9, 61.2, 55.6, 34.7, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₆NO₆ 484.1755, found 484.1747.

Ethyl 11a-(3-methoxyphenyl)-2-oxo-5-phenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo [*b*]furo[2,3-*e*]azocine-3-carboxylate (**3ja**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 93% yield (89.6 mg). Mp: 190 – 191 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 7.3 Hz,

2H), 7.47 – 7.23 (m, 7H), 7.22 – 7.14 (m, 1H), 7.13 – 7.05 (m, 1H), 6.99 – 6.92 (m, 1H), 6.90 (d, J = 7.8 Hz, 1H), 6.00 (s, 1H), 4.52 (dd, J = 10.4, 5.6 Hz, 1H), 4.34 – 4.19 (m, 2H), 3.82 (s, 3H), 3.54 (dd, J = 12.1, 5.6 Hz, 1H), 3.04 (dd, J = 12.1, 10.5 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.8, 167.4, 160.4, 160.1, 151.2, 142.5, 136.5, 130.3, 128.8, 127.7, 126.8, 126.1, 124.66, 124.63, 120.7, 118.4, 114.8, 112.2, 112.0, 87.9, 83.0, 68.2, 61.6, 55.4, 34.7, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₆NO₆ 484.1755, found 484.1754.

Ethyl 11a-(4-methoxyphenyl)-2-oxo-5-phenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*]furo[2,3-*e*]azocine-3-carboxylate (**3ka**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 95% yield (91.8 mg). Mp: 182 - 183 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.62 –

7.48 (m, 4H), 7.46 – 7.37 (m, 2H), 7.35 – 7.27 (m, 3H), 7.09 (t, J = 7.4 Hz, 1H), 7.00 – 6.94 (m, 2H), 6.90 (d, J = 7.8 Hz, 1H), 6.00 (s, 1H), 4.52 (dd, J = 10.4, 5.6 Hz, 1H), 4.35 – 4.19 (m, 2H), 3.82 (s, 3H), 3.53 (dd, J = 12.0, 5.6 Hz, 1H), 2.98 (dd, J = 11.9, 10.6 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 175.0, 167.4, 160.5, 160.4, 151.2, 142.5, 130.2, 128.8, 127.7, 127.6, 126.9, 126.6, 126.0, 124.6, 120.6, 114.5, 111.9, 88.0, 82.9, 68.2, 61.6, 55.4, 34.6, 14.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₆NO₆ 484.1755, found 484.1752.

Ethyl 11a-(3,4-dimethoxyphenyl)-2-oxo-5-phenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*]furo[2,3-*e*]azocine-3-carboxylate (**3la**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 95% yield (97.5 mg). Mp: $176 - 177 \,^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d,

J = 7.4 Hz, 2H), 7.45 – 7.36 (m, 2H), 7.36 – 7.26 (m, 4H), 7.13 – 7.03 (m, 2H), 6.99 – 6.84 (m, 2H), 5.97 (s, 1H), 4.52 (dd, J = 10.3, 5.6 Hz, 1H), 4.35 – 4.20 (m, 2H), 3.89 (s, 3H), 3.87 (s, 3H), 3.54 (dd, J = 12.1, 5.7 Hz, 1H), 3.04 (dd, J = 11.8, 10.7 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 175.0, 167.5, 160.4, 151.1, 149.9, 149.3, 142.5, 130.2, 128.8, 127.6, 127.1, 126.8, 126.0, 124.6, 120.4, 119.0, 111.9, 111.3, 109.0, 88.0, 83.2, 68.1, 61.6, 56.0, 55.9, 34.6, 14.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₀H₂₈NO₇ 514.1860, found 514.1862.

Ethyl 5-(4-fluorophenyl)-2-oxo-11a-phenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*] furo[2,3-e]azocine-3-carboxylate (3ma). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 93% yield (87.5 mg). Mp: 170 - 171 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.69 - 7.61 (m, 2H), 7.54 - 7.40 (m, 5H), 7.36 - 7.28 (m, 2H), 7.16 - 7.03 (m, 3H), 6.89 (d, J = 7.8 Hz, 1H), 6.02 (s, 1H), 4.51 (dd, J = 10.4, 5.6 Hz, 1H), 4.34 - 4.19 (m, 2H), 3.51 (dd, J = 12.1, 5.6 Hz, 1H), 2.94 (dd, J = 12.0, 10.5 Hz, 1H),

1.32 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.7, 167.4, 162.2 (d, ¹J_{FC} = 246.3 Hz), 160.5, 151.1, 138.3 (d, ${}^{4}J_{FC} = 3.1$ Hz), 134.9, 130.3, 129.7, 129.2, 127.8 (d, ${}^{3}J_{FC} = 8.1$ Hz), 126.8, 126.2, 124.8, 124.7, 120.9, 115.7 (d, ${}^{2}J_{FC}$ = 21.5 Hz), 112.0, 88.0, 83.0, 67.6, 61.7, 34.7, 14.2. ${}^{19}F$ NMR (470 MHz, CDCl₃) δ -114.8. HRMS (ESI) m/z: [M + H]⁺Calcd for C₂₈H₂₃FNO₅472.1555, found 472.1546.

Ethyl 5-(4-chlorophenyl)-2-oxo-11a-phenyl-4,5,11,11a-tetrahydro-2H-6,11-epoxybenzo [b]furo[2,3-e]azocine-3-carboxylate (**3na**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 94% yield (91.5 mg). Mp: 196 – 197 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.59 (m,

2H), 7.51 – 7.40 (m, 5H), 7.40 – 7.35 (m, 2H), 7.35 – 7.28 (m, 2H), 7.15 – 7.06 (m, 1H), 6.89 (d, J = 7.8 Hz, 1H), 6.02 (s, 1H), 4.51 (dd, J = 10.4, 5.6 Hz, 1H), 4.34 – 4.18 (m, 2H), 3.52 (dd, J = 12.1, 5.6 Hz, 1H), 2.93 (dd, J = 12.0, 10.5 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.6, 167.3, 160.5, 151.0, 141.0, 134.9, 133.5, 130.4, 129.7, 129.3, 129.0, 127.5, 126.8, 126.2, 124.8, 124.7, 120.9, 112.0, 88.0, 83.0, 67.6, 61.7, 34.5, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₃ClNO₅ 488.1259, found 488.1254.

Ethyl 5-(4-bromophenyl)-2-oxo-11a-phenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*] furo[2,3-e]azocine-3-carboxylate (30a). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 91% yield (100.3 mg). Mp: $205 - 206 \,^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃) δ 7.70 - 7.58 (m, 2H),

7.58 - 7.50 (m, 2H), 7.50 - 7.37 (m, 5H), 7.37 - 7.28 (m, 2H), 7.16 - 7.07 (m, 1H), 6.89 (d, J = 7.8 Hz, 1H), 6.02 (s, 1H), 4.49 (dd, J = 10.4, 5.6 Hz, 1H), 4.34 – 4.19 (m, 2H), 3.52 (dd, J = 12.1, 5.6 Hz, 1H), 2.92 (dd, J = 12.0, 10.5 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 174.6, 167.3, 160.5, 151.0, 141.5, 134.9, 131.9, 130.4, 129.7, 129.3, 127.9, 126.8, 126.2, 124.8, 124.7, 121.6, 121.0, 112.0, 88.0, 83.0, 67.6, 61.7, 34.4, 14.2. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₈H₂₂BrNO₅Na 554.0574, found 554.0569.

2-oxo-11a-phenyl-5-(4-(trifluoromethyl)phenyl)-4,5,11,11a-tetrahydro-2H-6,11-Ethyl epoxybenzo[b]furo[2,3-e]azocine-3-carboxylate (**3pa**). Purified column by chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 – 10/1) to afford a white solid in 90% yield (93.7 mg). Mp: 193 - 194 °C. ¹H NMR (500

MHz, CDCl₃) δ 7.76 – 7.58 (m, 6H), 7.52 – 7.39 (m, 3H), 7.38 – 7.29 (m, 2H), 7.17 – 7.07 (m, 1H), 6.89 (d, J = 7.8 Hz, 1H), 6.04 (s, 1H), 4.59 (dd, J = 10.4, 5.6 Hz, 1H), 4.36 – 4.20 (m, 2H), 3.56 (dd, J = 12.1, 5.6 Hz, 1H), 2.93 (dd, J = 12.0, 10.5 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.4, 167.2, 160.5, 150.9, 146.3, 134.8, 130.4, 130.0 (q, ${}^{2}J_{FC} = 32.5$ Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, ${}^{2}J_{FC} = 32.5$ Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, ${}^{2}J_{FC} = 32.5$ Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.7, 129.3, 126.8, 126.6, 126.2, 125.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.7, 129.8 (q, {}^{2}J_{FC} = 32.5 Hz), 129.8 (q, {}^{2}J_{FC} = 32.5 ${}^{3}J_{\text{FC}} = 3.7$ Hz), 124.9, 124.8, 124.0 (q, ${}^{1}J_{\text{FC}} = 272.0$ Hz), 121.1, 112.0, 88.0, 83.1, 67.7, 61.8, 34.3, 14.2. ${}^{19}\text{F}$ NMR (470 MHz, CDCl₃) δ –62.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₃F₃NO₅ 522.1523, found 522.1530.

Ethyl 2-oxo-11a-phenyl-5-(*p*-tolyl)-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*]furo [2,3-*e*]azocine-3-carboxylate (**3qa**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 95% yield (88.6 mg). Mp: 192 – 193 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.62 (m, 2H),

7.52 – 7.38 (m, 5H), 7.36 – 7.28 (m, 2H), 7.22 (d, J = 7.9 Hz, 2H), 7.14 – 7.05 (m, 1H), 6.89 (d, J = 7.8 Hz, 1H), 6.02 (s, 1H), 4.50 (dd, J = 10.4, 5.6 Hz, 1H), 4.34 – 4.20 (m, 2H), 3.52 (dd, J = 12.1, 5.6 Hz, 1H), 2.99 (dd, J = 12.0, 10.5 Hz, 1H), 2.37 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.9, 167.5, 160.4, 151.3, 139.6, 137.4, 135.0, 130.2, 129.6, 129.5, 129.2, 126.8, 126.2, 126.0, 124.61, 124.57, 120.7, 111.9, 88.0, 82.9, 68.1, 61.6, 34.7, 21.1, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₆NO₅ 468.1805, found 468.1810.

Ethyl 5-(2-methoxyphenyl)-2-oxo-11a-phenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*] furo[2,3-*e*]azocine-3-carboxylate (**3ra**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 45% yield (43.5 mg). Mp: 195 – 196 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.75 (dd, *J* = 7.6, 1.6 Hz,

1H), 7.71 - 7.62 (m, 2H), 7.49 - 7.38 (m, 3H), 7.36 - 7.26 (m, 3H), 7.13 - 7.03 (m, 2H), 6.96 - 6.86 (m, 2H), 6.02 (s, 1H), 4.93 (dd, J = 10.2, 5.7 Hz, 1H), 4.38 - 4.28 (m, 1H), 4.28 - 4.19 (m, 1H), 3.88 (s, 3H), 3.67 (dd, J = 12.0, 5.7 Hz, 1H), 2.84 (dd, J = 12.0, 10.2 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H). $^{13}C{^{1}H}$ NMR (125 MHz, CDCl₃) δ 174.2, 167.8, 160.3, 155.5, 151.2, 135.2, 130.9, 130.1, 129.5, 129.1, 128.8, 127.5, 126.9, 126.3, 124.52, 124.49, 121.3, 121.0, 112.2, 110.3, 88.2, 82.8, 62.6, 61.4, 55.4, 32.2, 14.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₆NO₆ 484.1755, found 484.1752.

Ethyl 5-(3-methoxyphenyl)-2-oxo-11a-phenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo [*b*]furo[2,3-*e*]azocine-3-carboxylate (**3sa**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 95% yield (91.6 mg). Mp: 183 – 184 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.62 (m,

2H), 7.51 – 7.39 (m, 3H), 7.38 – 7.27 (m, 3H), 7.17 – 7.05 (m, 3H), 6.95 – 6.83 (m, 2H), 6.01 (s, 1H), 4.50 (dd, J = 10.4, 5.6 Hz, 1H), 4.35 – 4.19 (m, 2H), 3.85 (s, 3H), 3.53 (dd, J = 12.1, 5.6 Hz, 1H), 2.99 (dd, J = 12.0, 10.4 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.7, 167.4, 160.4, 160.0, 151.2, 144.0, 135.0, 130.2, 129.9, 129.6, 129.2, 126.8, 126.2, 124.6, 120.8, 118.3, 112.9, 111.96, 111.95, 88.0, 82.9, 68.1, 61.6, 55.3, 34.5, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₆NO₆ 484.1755, found 484.1750.

(*S*)-1-phenylethyl (5*S*, 6*R*, 11*R*, 11a*R*)-5-(4-bromophenyl)-2-oxo-11a-phenyl-4,5,11,11atetrahydro-2H-6,11-epoxybenzo[b]furo[2, 3-e]azocine-3-carboxylate (**3ua**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 10/1) to afford a white solid in 63% yield (38 mg). Mp: 156 – 157 °C. $[\alpha]_D^{23}$ = –63.58 (*c* 0.4, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.62 (m, 2H), 7.53 – 7.43 (m, 5H), 7.41

-7.29 (m, 7H), 7.21 (d, J = 8.4 Hz, 2H), 7.16 -7.12 (m, 1H), 6.80 (d, J = 7.8 Hz, 1H), 6.03 (s, 1H), 6.01 (q, J = 6.6 Hz, 1H), 4.32 (dd, J = 10.4, 5.7 Hz, 1H), 3.47 (dd, J = 12.1, 5.7 Hz, 1H), 2.89 (dd, J = 12.0, 10.5 Hz, 1H), 1.62 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 173.7, 167.2, 159.4, 150.9, 141.3, 140.3, 134.8, 131.8, 130.2, 129.6, 129.2, 128.7, 128.4, 127.8, 126.8, 126.4, 126.2, 124.81, 124.77, 121.6, 120.8, 111.8, 87.9, 83.0, 73.8, 67.4, 34.3, 21.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₂₇NBrO₅ 608.1067, found 608.1073.

(S)-1-phenylethyl (5R, 6S, 11S, 11aS)-5-(4-bromophenyl)-2-oxo-11a-phenyl-4,5,11,11atetrahydro-2H-6,11-epoxybenzo[b]furo[2, 3-e]azocine-3-carboxylate (3ua'). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 10/1) to afford a yellow oil in 29% yield (17.8 mg). $[\alpha]_{D}^{23} = -40.84$ (c 0.4, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.63 (m, 2H), 7.51 – 7.43 (m, 5H), 7.41 – 7.33 (m, 6H), 7.25 (t, J = 7.3 Hz, 1H), 7.19 (d, J = 8.4 Hz, 2H), 7.12 (t, J = 7.5 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 6.03 (s, 1H), 5.99 (q, J = 6.6 Hz, 1H), 4.37 (dd, J = 10.3, 5.8 Hz, 1H), 3.40 (dd, J = 12.1, 5.8 Hz, 1H), 2.85 (dd, J =

12.0, 10.5 Hz, 1H), 1.61 (t, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 173.7, 167.2, 159.6, 150.9, 141.3, 140.6, 134.8, 131.8, 130.2, 129.7, 129.2, 128.7, 128.2, 127.8, 126.8, 126.2, 126.1, 124.8, 121.5, 121.1, 111.8, 88.0, 83.0, 73.9, 67.2, 34.2, 21.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₂₇NBrO₅ 608.1067, found 608.1073.

Ethyl 7-chloro-2-oxo-5,11a-diphenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*]furo[2,3elazocine-3-carboxylate (**3ab**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 74% yield (72.0 mg). Mp: 175 – 176 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.62 (m, 2H), 7.52 (d, J

= 7.6 Hz, 2H), 7.49 – 7.39 (m, 5H), 7.33 (t, J = 7.4 Hz, 1H), 7.23 (t, J = 7.9 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.78 (d, *J* = 7.8 Hz, 1H), 6.18 (s, 1H), 4.64 (dd, *J* = 10.4, 5.6 Hz, 1H), 4.38 – 4.23 (m, 2H), 3.61 (dd, *J* = 12.1, 5.6 Hz, 1H), 3.03 (dd, J = 12.0, 10.6 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.3, 166.4, 160.6, 152.6, 141.9, 134.9, 131.6, 130.4, 129.6, 129.2, 128.9, 127.8, 126.1, 126.0, 125.7, 124.8, 121.2, 110.1, 88.9, 83.2, 67.9, 61.8, 34.6, 14.2. HRMS (ESI) m/z: [M + H]⁺Calcd for C₂₈H₂₃ClNO₅488.1259, found 488.1262.

Ethyl 9-fluoro-2-oxo-5,11a-diphenyl-4,5,11,11a-tetrahydro-2H-6,11-epoxybenzo[b]furo[2,3-e] azocine-3-carboxylate (3ac). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 88% yield (82.8

mg). Mp: 187 – 188 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.59 (m, 2H), 7.51 (d, J = 7.2 Hz, 2H), 7.49 – 7.37 (m, 5H), 7.32 (t, J = 7.4 Hz, 1H), 7.09 – 6.96 (m, 2H), 6.89 – 6.81 (m, 1H), 5.99 (s, 1H), 4.48 (dd, J = 10.5, 5.5 Hz, 1H), 4.37 – 4.23 (m, 2H), 3.54 (dd, J = 12.1, 5.5 Hz, 1H), 2.99 (dd, J = 12.1, 10.5 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.8, 167.2, 160.5, 159.8 (d, ¹J_{FC} = 244.6 Hz), 147.4, 142.3, 134.8, 129.7, 129.3, 128.9, 128.8 (d, ${}^{3}J_{FC} = 8.9$ Hz), 127.8, 126.2, 126.0, 120.9, 117.3 (d, ${}^{2}J_{FC} = 24.2$ Hz), 113.0 (d, ${}^{3}J_{FC} = 8.8$ Hz), 112.2 (d, ${}^{2}J_{FC} = 25.6$ Hz), 87.8, 82.9, 68.7, 61.8, 34.6, 14.2. ${}^{19}F$ NMR (470 MHz, CDCl₃) δ –117.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₃FNO₅ 472.1555, found 472.1546.

Ethyl 9-chloro-2-oxo-5,11a-diphenyl-4,5,11,11a-tetrahydro-2H-6,11-epoxybenzo[b]furo [2,3-e]azocine-3-carboxylate (3ad). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 87% yield (84.6 mg). Mp: 192 – 193 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.59 (m, 2H), 7.55

- 7.38 (m, 7H), 7.36 - 7.26 (m, 3H), 6.83 (d, J = 8.3 Hz, 1H), 5.99 (s, 1H), 4.51 (dd, J = 10.5, 5.5 Hz, 1H), 4.38 – 4.22 (m, 2H), 3.53 (dd, J = 12.2, 5.5 Hz, 1H), 2.99 (dd, J = 12.1, 10.5 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H). $^{13}C{^{1}H}$ NMR (125 MHz, CDCl₃) δ 174.5, 167.1, 160.5, 149.9, 142.1, 134.8, 130.4, 129.9, 129.7, 129.3, 128.9, 128.8, 127.8, 126.1, 126.0, 124.8, 121.2, 113.0, 87.7, 82.9, 68.7, 61.9, 34.6, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₃ClNO₅ 488.1259, found 488.1250.

Ethyl 9-bromo-2-oxo-5,11a-diphenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*]furo [2,3-*e*]azocine-3-carboxylate (**3ae**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 85% yield (91.4 mg). Mp: 214 – 215 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.59 (m, 2H),

7.55 – 7.37 (m, 9H), 7.36 – 7.29 (m, 1H), 6.78 (d, J = 8.3 Hz, 1H), 5.99 (s, 1H), 4.51 (dd, J = 10.4, 5.5 Hz, 1H), 4.38 – 4.23 (m, 2H), 3.53 (dd, J = 12.2, 5.5 Hz, 1H), 2.99 (dd, J = 12.1, 10.5 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.4, 167.0, 160.5, 150.4, 142.1, 134.8, 133.2, 129.7, 129.3, 129.1, 128.9, 127.8, 127.7, 126.1, 126.0, 121.2, 117.1, 113.4, 87.7, 82.9, 68.6, 61.9, 34.6, 14.2. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₈H₂₂BrNO₅Na 554.0574, found 554.0579.

Ethyl 9-methoxy-2-oxo-5,11a-diphenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*] furo[2,3-*e*]azocine-3-carboxylate (**3af**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 80% yield (77.3 mg). Mp: $179 - 180 \,^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J* = 7.5 Hz, 2H),

7.52 (d, J = 7.5 Hz, 2H), 7.50 – 7.36 (m, 5H), 7.31 (t, J = 7.4 Hz, 1H), 6.90 – 6.76 (m, 3H), 5.97 (s, 1H), 4.43 (dd, J = 10.4, 5.5 Hz, 1H), 4.38 – 4.20 (m, 2H), 3.79 (s, 3H), 3.50 (dd, J = 12.1, 5.6 Hz, 1H), 2.98 (dd, J = 11.7, 10.8 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 175.0, 167.7, 160.5, 157.1, 144.5, 142.7, 135.0, 129.6, 129.2, 128.8, 128.2, 127.6, 126.2, 126.1, 120.3, 117.1, 112.9, 109.2, 88.1, 83.0, 68.5, 61.7, 55.9, 34.6, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₆NO₆484.1755, found 484.1761.

Ethyl 8-fluoro-2-oxo-5,11a-diphenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*]furo [2,3-*e*]azocine-3-carboxylate (**3ag**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 89% yield (83.8 mg). Mp: $196 - 197 \,^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.59 (m, 2H), 7.51 (d, *J* = 7.2 Hz, 2H), 7.50 – 7.38 (m, 5H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.30 – 7.23 (m, 1H), 6.85 – 6.75 (m, 1H),

6.62 (dd, J = 8.5, 2.2 Hz, 1H), 5.99 (s, 1H), 4.52 (dd, J = 10.4, 5.6 Hz, 1H), 4.39 – 4.23 (m, 2H), 3.56 (dd, J = 12.1, 5.6 Hz, 1H), 3.00 (dd, J = 12.1, 10.5 Hz, 1H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.6, 167.3, 164.1 (d, ¹ $J_{FC} = 248.3$ Hz), 160.4, 153.1 (d, ³ $J_{FC} = 11.3$ Hz), 142.0, 134.8, 129.7, 129.3, 128.9, 127.8, 126.2, 126.0, 125.7 (d, ³ $J_{FC} = 10.1$ Hz), 122.4, 121.2, 111.7 (d, ² $J_{FC} = 23.3$ Hz), 100.2 (d, ² $J_{FC} = 26.9$ Hz), 88.0, 82.8, 68.2, 61.8, 34.6, 14.2. ¹⁹F NMR (470 MHz, CDCl₃) δ –110.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₃FNO₅ 472.1555, found 472.1554.

Ethyl 8-chloro-2-oxo-5,11a-diphenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*]furo[2,3-*e*] azocine-3-carboxylate (**3ah**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 87% yield (84.7 mg). Mp: 193 – 194 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.59 (m, 2H), 7.56 – 7.36 (m, 7H), 7.36 – 7.30 (m, 1H), 7.24 (d, *J* = 8.1 Hz, 1H), 7.07 (dd, *J* = 8.0, 1.8 Hz, 1H), 6.90 (d, *J* = 1.8 Hz,

1H), 6.00 (s, 1H), 4.50 (dd, J = 10.5, 5.5 Hz, 1H), 4.38 – 4.25 (m, 2H), 3.56 (dd, J = 12.2, 5.6 Hz, 1H), 3.00 (dd, J = 12.1, 10.5 Hz, 1H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.6, 167.3, 160.4, 152.7, 141.9, 136.2, 134.8, 129.7, 129.3, 128.9, 127.8, 126.2, 126.0, 125.6, 125.4, 124.9, 121.2, 112.6, 87.9, 82.9, 68.5, 61.9, 34.6, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₃CINO₅ 488.1259, found 488.1260.

Ethyl 8-bromo-2-oxo-5,11a-diphenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*]furo[2,3*e*]azocine-3-carboxylate (**3ai**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 92% yield (97.7 mg). Mp: $200 - 201 \,^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, *J* = 7.7 Hz, 2H), 7.55 - 7.38 (m, 7H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.25 - 7.14 (m, 2H), 7.06 (s, 1H), 5.98 (s, 1H), 4.50 (dd, *J* = 10.4, 5.5

Hz, 1H), 4.39 - 4.24 (m, 2H), 3.57 (dd, J = 12.1, 5.5 Hz, 1H), 3.05 - 2.94 (m, 1H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 174.5, 167.3, 160.4, 152.8, 141.9, 134.7, 129.7, 129.3, 128.9, 127.8, 127.7, 126.2, 126.0, 125.8, 123.9, 121.2, 115.4, 87.8, 82.9, 68.5, 61.9, 34.6, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₃BrNO₅ 532.0754, found 532.0749.

Ethyl 8-methoxy-2-oxo-5,11a-diphenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*]furo[2, 3-*e*]azocine-3-carboxylate (**3aj**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 84% yield (81.1 mg). Mp: 190 – 191 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, *J* = 7.3 Hz, 2H), 7.53 (d, *J* = 7.5 Hz, 2H), 7.49 – 7.36 (m, 5H), 7.32 (t, *J* = 7.3 Hz, 1H), 7.21 (d, *J* = 8.3 Hz, 1H), 6.68

-6.56 (m, 1H), 6.43 (s, 1H), 5.95 (s, 1H), 4.52 (dd, J = 10.3, 5.5 Hz, 1H), 4.39 -4.20 (m, 2H), 3.78 (s, 3H), 3.54 (dd, J = 12.0, 5.5 Hz, 1H), 3.06 -2.93 (m, 1H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 175.1, 167.6, 161.6, 160.5, 153.0, 142.5, 135.1, 129.5, 129.2, 128.8, 127.7, 126.2, 126.1, 125.1, 120.9, 118.8, 110.0, 98.4, 88.3, 82.9, 68.2, 61.6, 55.6, 34.6, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₆NO₆484.1755, found 484.1749.

Ethyl 2-oxo-5,11a-diphenyl-8-(trifluoromethyl)-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*] furo[2,3-*e*]azocine-3-carboxylate (**3ak**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 86% yield (89.6 mg). Mp: 186 – 187 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 7.0 Hz, 2H),

^{CF₃} 7.59 – 7.29 (m, 10H), 7.13 (s, 1H), 6.08 (s, 1H), 4.56 (dd, J = 10.3, 5.5 Hz, 1H), 4.38 – 4.19 (m, 2H), 3.58 (dd, J = 12.2, 5.6 Hz, 1H), 3.09 – 2.94 (m, 1H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.2, 167.1, 160.3, 152.0, 141.7, 134.5, 132.9 (q, ² $J_{FC} = 32.7$ Hz), 130.9, 129.8, 129.4, 129.0, 127.9, 126.1, 126.0, 125.2, 123.6 (q, ¹ $J_{FC} = 272.5$ Hz), 121.8 (q, ³ $J_{FC} = 3.5$ Hz), 121.3, 109.1, 87.6, 82.8, 68.5, 61.9, 34.6, 14.1. ¹⁹F NMR (470 MHz, CDCl₃) δ –62.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₃F₃NO₅ 522.1523, found 522.1525.

3-Ethyl 8-methyl 2-oxo-5,11a-diphenyl-4,5,11,11a-tetrahydro-2*H*-6,11-epoxybenzo[*b*] furo[2,3-*e*]azocine-3,8-dicarboxylate (**3al**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 96% yield (98.1 mg). Mp: 213 - 214 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.84 - 7.74 (m, 1H), 7.69 - 7.61 (m, 2H), 7.60 - 7.51 (m, 3H), 7.51 - 7.36 (m, 6H), 7.32 (t, *J* = 7.4 Hz,

1H), 6.06 (s, 1H), 4.56 (dd, J = 10.5, 5.5 Hz, 1H), 4.35 – 4.19 (m, 2H), 3.91 (s, 3H), 3.57 (dd, J = 12.2, 5.5 Hz, 1H), 3.02 (dd, J = 12.1, 10.6 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.5, 167.1, 166.0, 160.2, 151.7, 142.0, 134.7, 132.4, 131.8, 129.7, 129.3, 128.8, 127.8, 126.3, 126.1, 126.0, 124.6, 120.9, 113.0, 87.7, 82.8, 68.6, 61.8, 52.4, 34.5, 14.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₀H₂₆NO₇ 512.1704, found 512.1708.

2-oxo-5,12a-diphenyl-4,5,12,12a-tetrahydro-2*H*-6,12-epoxy[1,3]dioxolo[4',5':4,5] Ethyl benzo[1,2-b]furo[2,3-e]azocine-3-carboxylate (**3an**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 85% yield (82.8 mg). Mp: $163 - 164 \,^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃) δ 7.69 - 7.59 (m, 2H), 7.54 - 7.38 (m, 7H), 7.31 (t, J = 7.4 Hz, 1H), 6.74 (s, 1H), 6.40 (s, 1H), 6.00 (d, J

= 1.2 Hz, 1H), 5.97 (d, J = 1.2 Hz, 1H), 5.88 (s, 1H), 4.41 (dd, J = 10.5, 5.4 Hz, 1H), 4.38 – 4.25 (m, 2H), 3.52 (dd, J = 12.1, 5.4 Hz, 1H), 3.00 (dd, J = 11.9, 10.7 Hz, 1H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125) MHz, CDCl₃) δ 175.3, 167.7, 160.6, 149.6, 145.8, 145.0, 142.5, 135.0, 129.6, 129.2, 128.8, 127.6, 126.2, 126.0, 120.6, 118.3, 104.7, 102.1, 94.5, 88.4, 83.2, 68.0, 61.7, 34.6, 14.2. HRMS (ESI) m/z: [M + H]⁺Calcd for C₂₉H₂₄NO₇498.1547, found 498.1556.

5.3 Characterization data of transformation products

2-oxo-5,11a-diphenyl-3,3a,4,5,11,11a-hexahydro-2*H*-6,11-epoxybenzo[*b*]furo[2,3-*e*] Ethyl azocine-3-carboxylate (4). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 15/1 - 10/1) to afford a white solid in 80% yield (332.2 mg). Mp: 123 - 124 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.65 (m, 2H), 7.59 (d, J = 7.5Hz, 2H), 7.49 – 7.32(m, 8H), 7.24 – 7.18 (m, 1H), 7.04 (d, J = 7.7 Hz, 1H), 5.65 (s, 1H), 4.53 (dd, J = 9.3, 4.0 Hz, 1H), 4.08 – 3.95 (m, 2H), 3.30 – 3.20 (m, 1H), 2.62 – 2.52 (m, 1H), 2.50 (d, J = 10.3 Hz, 1H), 2.06 – 1.93 (m, 1H), 1.13 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 170.5, 166.5, 151.6, 142.8, 142.0, 130.4, 130.1, 128.9, 128.8, 128.5, 127.5, 126.4, 125.6, 125.3, 124.7, 112.5, 88.1, 87.4, 73.4, 62.2, 51.2, 49.8,

32.4, 13.9. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₈H₂₆NO₅ 456.1805, found 456.1811.

3-Ethoxy-2-(9-hydroxy-3,9a-diphenyl-2,3,9,9a-tetrahydro-1*H*-pyrolo[1,2-*a*]indol-1-yl)-3oxopropanoic acid (5). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 5/1 - 2/1) to afford a white solid in 80% yield (36.6 mg

in MeOH), 25% yield (11.5 mg in DCM). Mp: 139 – 140 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.86 – 7.79 (m, 2H), 7.47 (d, J = 7.4 Hz, 2H), 7.43 – 7.35 (m, 4H), 7.34 – 7.27 (m, 3H), 7.18 (t, J = 7.7 Hz, 1H), 6.93 – 6.86 (m, 1H), 6.56 (d, J = 7.9 Hz, 1H), 5.66 (s, 1H), 4.57 (dd, J = 11.6, 5.9 Hz, 1H), 4.30 – 4.16 (m, 2H), 3.73 – 3.64 (m, 1H), 3.56 (d, J = 11.1 Hz, 1H), 2.22 - 2.14 (m, 1H), 2.13 - 2.04 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H).¹³C{¹H} NMR (125 MHz, CDCl₃) δ 171.0, 168.3, 153.6, 143.3, 141.0, 130.8, 130.7, 128.7, 128.4, 128.0, 127.7, 127.3, 126.7, 126.2, 121.1, 110.7, 84.4, 75.7, 66.2, 62.1, 51.9, 47.2, 40.4, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₈NO₅ 458.1962, found 458.1969.

Ethyl 2-oxo-3a1,5-diphenyl-3,3a,3a1,4,5,10b-hexahydro-2*H*-benzo[*b*]pyrano[4,3,2-*gh*]pyrrolizine-3-carboxylate (6). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 10/1 - 8/1) to afford a white solid in 15% yield (6.7 mg in

MeOH), 50% yield (21.9 mg in DCM). Mp: $181 - 182 \,^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 7.5 Hz, 2H), 7.52 – 7.27 (m, 10H), 6.98 (t, J = 7.5 Hz, 1H), 6.77 (d, J = 8.2 Hz, 1H), 5.75 (s, 1H), 4.67 (dd, J = 10.9, 6.9 Hz, 1H), 4.40 - 4.23 (m, 2H), 3.48 - 3.36 (m, 1H), 3.02 (d, J = 13.1 Hz, 1H), 2.46 - 2.36 (m, 2H), 3.48 - 3.36 (m, 2H), 3.48 - 31H), 2.32 - 2.19 (m, 1H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 168.4, 167.5, 154.6, 144.8, 142.5, 131.7, 129.0, 128.8, 127.9, 127.4, 126.5, 125.8, 125.6, 125.1, 121.9, 111.1, 87.5, 78.9, 68.2, 62.1, 48.9, 46.6, 39.1, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₆NO₄ 440.1856, found 440.1861.

5,11a-Diphenyl-3,3a,4,5,11,11a-hexahydro-2*H*-6,11-epoxybenzo[*b*]furo[2,3-*e*]azocin-2-one (7). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 10/1) to afford a white solid in 89% yield (251.5 mg). Mp: 228 – 229 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, *J* = 7.7 Hz, 2H), 7.59 – 7.27 (m, 10H), 7.26 – 7.18 (m, 1H), 7.05 (d, *J* =

7.8 Hz, 1H), 5.44 (s, 1H), 4.57 (s, 1H), 2.99 – 2.85 (m, 1H), 2.51 – 2.39 (m, 1H), 2.15 – 1.99 (m, 1H), 1.94 – 1.73 (m, 2H). ${}^{13}C{}^{1}H{}$ NMR (125 MHz, CDCl₃) δ 175.8, 149.8, 144.2, 139.8, 132.8, 129.4, 128.9, 128.7, 128.1, 127.2, 127.0, 125.6, 125.5, 124.0, 113.3, 89.8, 87.3, 72.5, 43.6, 36.2, 32.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₂NO₃ 384.1594, found 384.1589.

^HO^HPh^O^HPh^O^H 2-(9-Hydroxy-3,9a-diphenyl-2,3,9,9a-tetrahydro-1*H*-pyrrolo[1,2-*a*]indol-1-yl)acetic acid (**8**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 5/1 - 2/1) to afford a white solid in 85% yield (32.7 mg in MeOH), 35% yield (13.5 mg in DCM). Mp: 121 - 122 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, J = 7.3 Hz, 2H), 7.47 (d, J = 7.7 Hz, 2H), 7.40 - 7.17 (m, 8H), 6.89 (t, J = 7.3 Hz, 1H), 6.67 (d, J = 7.9 Hz, 1H), 5.55 (s, 1H), 4.52 (dd, J = 10.7, 6.8 Hz, 1H), 3.35 - 3.22 (m, 1H), 2.66 (dd, J = 16.4, 5.6 Hz, 1H), 2.46 - 2.36 (m, 1H), 2.16 (dd, J = 16.4, 9.0 Hz, 1H), 2.11 - 2.01 (m, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 177.6, 155.2, 143.5, 141.2, 131.0, 130.7, 128.5, 128.3, 127.7, 127.4, 127.0, 126.5, 125.7, 121.0, 110.6, 84.5, 75.5, 66.3, 44.3, 40.8, 34.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₄NO₃ 386.1751, found 386.1750.

3a1,5-Diphenyl-3,3a,3a1,4,5,10b-hexahydro-2H-benzo[b]pyrano[4,3,2-gh]pyrrolizin-2-one (**9**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 10/1 - 6/1) to afford a white solid in 8% yield (3 mg in MeOH), 50% yield (18.5 mg in DeCh) by f (10.0 k) f (10

DCM). Mp: 158 – 159 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 7.6 Hz, 2H), 7.45 – 7.39 (m, 2H), 7.39 – 7.22 (m, 6H), 6.94 (t, J = 7.4 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 5.74 (s, 1H), 4.68 (dd, J = 10.7, 7.0 Hz, 1H), 3.12 – 2.99 (m, 1H), 2.57 (dd, J = 15.7, 4.2 Hz, 1H), 2.48 (dd, J = 13.2, 7.0 Hz, 1H), 2.29 – 2.16 (m, 1H), 2.03 (dd, J = 15.7, 13.8 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 171.8, 155.2, 145.4, 143.0, 131.3, 128.81, 128.75, 127.6, 127.2, 126.5, 126.0, 125.7, 125.6, 121.6, 110.8, 87.6, 79.6, 68.6, 43.9, 40.0, 32.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₂NO₂ 368.1645, found 368.1641.

5,11a-Diphenyl-3,3a,4,5,11,11a-hexahydro-2*H*-6,11-epoxybenzo[*b*]furo[2,3-*e*]azocine (11). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 10/1 - 8/1) to afford a white solid in 90% yield (33.1 mg). Mp: 177 - 178 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.84 - 7.73 (m, 2H), 7.57 - 7.44 (m, 5H), 7.39 - 7.28 (m, 4H), 7.25 - 7.16 (m, 2H), 7.03 (d, *J* = 7.8 Hz, 1H), 5.26 (s, 1H), 4.57 - 4.46 (m, 1H), 4.12 - 4.01 (m, 1H), 3.93 - 3.81 (m, 1H), 2.78 - 2.66 (m, 1H), 2.16 - 2.03 (m, 1H), 1.93 - 1.83 (m, 1H), 1.82 - 1.71 (m, 1H), 1.24 - 1.12 (m, 1H). ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃) δ 150.2, 148.6, 141.1, 135.0, 128.47, 128.45, 128.3, 127.2, 126.9, 126.8, 125.4, 124.7, 124.6, 113.1, 90.2, 88.8, 73.0, 68.7, 47.0, 32.2. HRMS (ESI) m/z: [M + H]⁺Calcd for C₂₅H₂₄NO₂ 370.1802, found 370.1808.

5,11a-Diphenyl-2,3,3a,4,5,6,11,11a-octahydrobenzo[*b*]furo[2,3-*e*]azocin-11-ol (**12**). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 8/1 - 6/1) to afford a white solid in 86% yield (90 mg). Mp: $176 - 177 \,^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃) δ 8.80 (brs, 1H), 7.87 - 7.71 (m, 1H), 7.65 (d, *J* = 7.6 Hz, 2H), 7.61 - 7.50 (m, 3H), 7.50 - 7.28 (m, 7H), 7.07 (d, *J* = 7.5 Hz, 1H), 4.62 (brs, 1H), 4.46 (brs, 1H), 3.88 - 3.59 (m, 3H), 2.84 - 2.69 (m, 1H), 2.26 - 2.11 (m, 1H), 1.61 - 1.49 (m, 1H), 1.20 - 1.11 (m, 1H), 0.95 - 0.78 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 145.8, 143.6, 141.8, 137.5, 131.0, 128.7, 128.3, 128.0, 127.4, 126.8, 126.6, 126.2, 125.5, 124.8, 91.1, 80.2, 65.2, 63.9, 37.0, 35.4, 34.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₆NO₂ 372.1958, found 372.1967.

5,11a-diphenyl-2,3,3a,4,5,6,11,11a-octahydrobenzo[b]furo[2,3-e]azocin-11-yl acetate (13). Purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate (v/v): 6/1) to afford a white solid in 76% yield (15.9 mg). Mp: 182 – 183 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.38 (m, 4H), 7.38 – 7.30 (m, 1H), 7.24 – 7.04 (m, 6H), 7.04 – 6.95 (m, 1H), 6.67 – 6.39 (m, 3H), 5.17 – 4.98 (m, 1H), 4.09 – 3.86 (m, 2H), 3.85 – 3.73 (m, 1H), 3.26 – 3.09 (m, 1H), 2.62 – 2.51 (m, 1H), 2.14 (s, 3H), 2.09 – 1.96 (m, 1H), 1.92 – 1.80 (m, 1H), 1.80 – 1.69 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 145.7, 144.8, 140.4, 129.0, 128.8, 128.2, 127.6, 127.2, 126.9, 126.8, 126.7, 119.5, 119.2, 90.2, 74.3, 64.5, 58.4, 42.7, 39.4, 32.4, 21.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₈NO₃ 414.2064, found 414.2072.

6. Copies of NMR spectra for compounds

6.1 Copies of NMR spectra for compounds 15u, 16u, 1u and 1u'

Compound 15u

Compound 15u

Compound 16u

Compound 16u

Compound 1u

¹H NMR 500 MHz, CDCl₃

6.2 Copies of NMR spectra for products 3

Compound 3aa

Compound 3da

EtO₂C

Ph

¹⁹F NMR 470 MHz, CDCl₃

O

0''

1 20 Т -100 δ (ppm) -20 -30 -40 -110 10 0 -10 -50 -60 -70 -80 -90 -120 -130 -140 -150-160-170-180-190-200 -210 -2:

Compound 3ga

Compound 3ja

546 532 179 934 935	940 935 935 935 935 935 935 935 935 935 935	538 517 517	506 287 263 242 213 213	820 556 544 531 520	067 046 022 022	599 342 313 313	002
9	් රට්ට ව	ਨ ਚੱਚੱਚੋਂ	4 4444	ന് ന്ന്ന്ന്	નં નં નં નં		0
				$ \searrow $	\checkmark	$ \vee $	

 $\begin{array}{c} 7.427\\ 7.4124\\ 7.4124\\ 7.3388\\ 7.3388\\ 7.3388\\ 7.3388\\ 7.3388\\ 7.3397\\ 7.3388\\ 7.3397\\ 7.3397\\ 7.3397\\ 7.3396\\ 7.3396\\ 7.2183\\ 7.2183\\ 7.2183\\ 7.2183\\ 7.2113\\$

¹H NMR 500 MHz, CDCl₃

-1

Compound 3ma

¹³C NMR 125 MHz, CDCl₃

EtO₂C O O O O O -100 δ (ppm) -110 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -120 -130 -140 -150-160-170-180-190-200 -210 -2:

Compound 3pa

¹⁹F NMR 470 MHz, CDCl₃

	₩
20 10 0 -10 -20 -30 -40 -50 -60	-70 - 80 - 90 - 100 - 110 - 120 - 130 - 140 - 150 - 160 - 170 - 180 - 190 - 200 - 210 - 2:

Compound 3ua

¹H NMR 500 MHz, CDCl₃

Compound 3ua'

-1.(

Г

Compound 3ac

EtO₂C~

¹⁹F NMR 470 MHz, CDCl₃ 0

0,00

`O _(,...Ph

	alpontrophysistic parately and a physical and the second of the
20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 - δ (ppm)	-120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22

Compound 3ae

Compound 3ag

Compound 3ag

Т

-100 δ (ppm) 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150-160-170-180-190-200 -210 -2:

Compound 3ai

---- 0. 006

Compound 3aj

1H NMR
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1</

Compound 3ak						
$\begin{array}{c} 664\\ 6532\\ 5532\\ 664\\ 4455\\ 3334\\ 4435\\ 3349\\ 3334\\ 3334\\ 133\\ 3319\\ 133\\ 133\\ 133\\ 133\\ 133\\ 13$	084	573 5522 5522 2563 2563 2563	599 588 574 563	029 008 984	579 336 308	001
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6.	ਚਾਂ ਚਾਂ ਚਾਂ ਚਾਂ ਚਾਂ ਚਾਂ ਚਾਂ ਚਾਂ	ന്ന്ന്	જં જં રાં		
			$\searrow$	$\leq$		ļ

¹H NMR 500 MHz, CDCl₃







Compound 3ak





kan bisken sadit a balkata anketi at bisan kati tatari at tatari at tatari	ni, di Maratina andara da ang ang ang ang ang ang ang ang ang an	R selation di activa e tra ca ca ca da activa da balla da la factoria fa a versa con la testa da	under barber alle som er en som förstatet. Som mede Breder och Belle som er Allerater i til etter	de recht Batten die bestelle te eine die bestelle voor die anteren eine eine die eine die eine die eine die ein	กรีสาว 1.50 เป็นสีประชาติสายสารการเป็นเป็นไปการสาวประกาศการ 11.21.1	en deret in oor stel hoomenfaktiver aktiven in deret använntarmentikeren.
				urvi neta alua terato al natural di Paliful dal tetat politiki kondut	) (nu de la	un vertuf verska fra statistik se statistik se statistik se statistik se statistik se statistik se statistik s Na verse se statistik
5 0 -5 -10	-15 -20 -25 -30	0 -35 -40 -45	-50 -55 -60 δ(ppm)	-65 -70 -75	-80 -85 -90	-95 -100 -105 -11







### **Compound 3an**

8.5

8.0

. 0

7.0

. 6. 5

6.0

5.5

5.0

4.5

7.5



4.0 δ(ppm)

3.5

3.0

1.5

2.5

2.0

1.0

0.5

0.0

-0.5

-1



### 6.3 Copies of NMR spectra for transformation products





---- 0. 003







## Compound 6



HNMR → CDCI → 100 CDC








# Co

45 92 18 18 18 18 18 18 18 18 18 18	5.436		$\sum_{\substack{\substack{2.945\\2.905}\\2.905}} 2.915$	2.099	0. 002
¹ H NMR 500 MHz, CDCl ₃					
Ph ¹ , Ph Ph ¹ , N Ph ¹					
		F 00.1			
.0 8.5 8.0 7.5 7.0 6.5 6.0	5.5 5.	0 4.5 4.0 δ(ppm)	3.5 3.0 2.5	2.0 1.5 1.0	0.5 0.0 -0.5 -1









072 053 045 025 025 025 025 025	$\begin{array}{c} 497 \\ 471 \\ 471 \\ 216 \\ 2187 \\ 187 \end{array}$	028 025 998	577	
ന്ന്ന്ന്ന്	പ്പ്പ്പ്പ്	1.55	_;	
		Here's		

---- 0. 003







3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9









### S117





### S119



2D COSY NMR 500 MHz, CDCl₃





2D HSQC NMR 500 MHz, CDCl₃





# Compound 12 (-50 °C)

- 8. 799	7.643 7.643 7.675 7.7416 7.4466 7.4466 7.4466 7.777 7.323 7.323 7.255 7.777 7.322 7.255 7.777 7.322 7.255 7.777 7.255 7.775 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.755 7.7557 7.7557 7.7557 7.75577 7.755777 7.75577777777	- 4.621 - 4.621	- 4. 401	- 3, 757 - 3, 758 - 3, 737 - 3, 737	- 2. 780 - 2. 768 - 2. 757 - 2. 745 - 2. 745 - 2. 212	2.190 2.172 2.181 2.172 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125 1.125	- 0. 913 - 0. 913 - 0. 887 - 0. 887 - 0. 861 - 0. 856 - 0. 845
				$\checkmark$			

¹H NMR 500 MHz, CDCl₃





# Compound 12 (-50 °C)

		- 131.05 128.68 128.30 127.40 127.40 127.40 126.59 126.59 126.51 126.16 126.16 126.16 124.77	— 91.12	80.24 77.30 77.05 76.80	<ul> <li>√ 65.16</li> <li>√ 63.92</li> </ul>	→ 36. 98 → 35. 44 34. 30
--	--	----------------------------------------------------------------------------------------------------------------------------------	---------	----------------------------------	----------------------------------------------	--------------------------------

¹³C{¹H} NMR 125 MHz, CDCl₃













Compound 13

2D COSY NMR 500 MHz, CDCl₃













#### 7. Studies on the conversion of compound 8 to compound 9



### Figure S2 ¹H NMR Studies on the conversion of compound 8 to compound 9

#### 8. Determination of the structure of 3ua' by transesterification and by comparison of HPLC

