Supporting Information

Palladium-catalyzed substrate-switchable C-H alkenylation and alkylation of benzoic acids using MBH alcohols

1	General Information	S2
2	Crystal Data and Structure Refinement for 30a	S2-S3
3	Optimization of Reaction Conditions	S4-S5
4	General Procedure for the Preparation of MBH Alcohols	S6-S7
5	General Procedure for the Pd-Catalyzed C-H Alkenylation of Benzoic acids with	S8-S9
	MBH Alcohols	
6	General Procedure for the Pd-Catalyzed C-H Alkylation of Benzoic acids with	S9-S10
	MBH Alcohols	
7	Procedures for the Post-Synthetic Transformations	S10-S11
8	Characterization Data	S12-S31
9	Mechanistic Investigations	S31-S44
10	References	S44-S45
11	NMR (¹ H, ¹³ Cand ¹⁹ F) Spectra	S46-S97

Table of Contents

General Information. Pd(OAc)₂, Ag₂CO₃, Ag₂O, AgOAc (≥99.99%), NaOAc (98%), KOAc (98%), Na₂CO₃, K₂CO₃, Cs₂CO₃, 2,2,2-trifluoroethanol (TFE), 2,2,2-trichloroethanol (TCE), 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and benzoic acids of Sigma-Aldrich, BLD Pharm and TCI chemicals were used as received. MeOH, CH₂Cl₂ and (CH₂Cl)₂ were dried prior as per the standard procedure. Silica gel-G/GF254 plates (Merck) were used for TLC analysis with a mixture of hexane and EtOAc as the eluent. Column chromatography was carried out using Rankem silica gel (60-120 mesh). Bruker Avance III 400, 500 and 600 MHz NMR spectrometers were used to record (¹H, ¹³C and ¹⁹F) spectra using CDCl₃ and DMSO-d₆ as the solvent and tetramethylsilane (TMS) as an internal standard. Chemical shifts (δ) and spin-spin coupling constant (J) are reported in parts per million and hertz (Hz), respectively, and to describe peak patterns following abbreviations were used when appropriate: s = singlet, d =doublet, t = triplet, dd = doublet of doublets and m = multiplet. Melting point of the products was measured on Büchi melting point apparatus, MPB-540. Open capillary tubes were used for the measurements and are uncorrected. Mestre nova software was used throughout the spectral analysis. Q-Tof ESI-MS instrument (model HAB273) was used for recording HRMS data. Infrared spectra were recorded on Perkin Elmer FT-IR instrument. Single crystal X-ray data were collected on a Bruker SMART APEX equipped with a CCD area detector using Mo/K α radiation and the structure was solved by direct method using SHELXL-18 (Göttingen, Germany).

Crystal Data and Structure Refinement for 3oa.

Sample Preparation for Crystal Growth. The compound **3oa** was dissolved in minimum volume of acetonitrile and kept at room temperature for slow evaporation (2 days). Block shaped crystals were formed. The single crystal was subjected to X-ray diffraction.

Crystal Data and Structure Refinement for 3oa.

Figure S1. ORTEP diagram of Methyl (*E*)-4,5-dimethyl-2-(3-oxoprop-1-en-1-yl)benzoate 30a (CCDC No 2368719) with 50% ellipsoid. H-Atoms are omitted for clarity.

CCDC	2368719	
Identification code	30a	
Empirical formula	$C_{13}H_{14}O_{3}$	
Formula weight	218.24	
Crystal habit, colour	Block, Colorless	
Temperature, T/K	298 K	
Wavelength, $\lambda/Å$	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 8.402(3) Å	
	b = 8.472(3) Å	
	c = 9.245(4) Å	
	$\alpha = 109.344(11)$	
	$\beta = 101.143(11)$	
	$\gamma = 100.258(11)$	
Volume, <i>V</i> /Å ³	588.0	
Ζ	2	
Calculated density, Mg·m ⁻³	1.233	
Absorption coefficient, μ/mm^{-1}	0.087	
<i>F</i> (000)	232	
θ range for data collection	2.426 to 26.001	
Limiting indices	$-10 \le h \le 10, -10 \le k \le 10, -11 \le l \le 11$	
Reflection collected / unique	2304/1770	
Completeness to θ	99.3%	
Absorption correction	Multi-scan	
Refinement method	SHELXL 2018/3 (Sheldrick, 2015)	
Data / restraints / parameters	2304/ 0/ 148	
Goodness–of–fit on F^2	1.087	
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0548, wR2 = 0.1271	
R indices (all data)	R1 = 0.0734, wR2 = 0.1416	

Table S1. Optimization of Reaction Conditions: C-H Alkenylation^a

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.11 mmol), Pd(OAc)₂ (10 mol %), Ag₂CO₃ (2 equiv), BQ (1 equiv), Solvent (1 mL), 110 °C, 12 h, then MeI (5 equiv), K₂CO₃ (3 equiv), acetone (1.5 mL) rt, 3h. ^{*b*}Isolated yield. ^{*c*}In absence of BQ. ^{*d*}In absence of Pd(OAc)₂. ^{*e*}Ag₂CO₃ (1 equiv). ^{*f*}At 80 °C. ^{*g*}Pd(TFA)₂ (10 mol %) used. ^{*h*}PdCl₂ (10 mol %) used. ^{*i*}Pd₂(dba)₃ (10 mol %) used. n.d. = not detected. TFE = 2,2,2-trifluoroethanol. TCE = 2,2,2-trichloroethanol. HFIP = 1,1,1,3,3,3-hexafluoroisopropanol. BQ = 1,4-benzoquinone.

Table S2. Optimization of Reaction Conditions: C-H Alkylation^a

entry	additive	solvent	yield of 4ab ^b (%)
1°	Ag ₂ CO ₃	HFIP	54
2	Ag ₂ CO ₃	HFIP	67
3	Ag ₂ CO ₃	TFE	77
4	Ag ₂ CO ₃	TCE	44
5	Ag ₂ CO ₃	МеОН	27
6	Ag ₂ CO ₃	EtOH	25
7	Ag ₂ CO ₃	PhCF ₃	n.d.
8	Ag ₂ CO ₃	(CH ₂ Cl) ₂	30
9	-	TFE	n.d.
10 ^d	Ag ₂ CO ₃	TFE	n.d.
11 ^e	Ag ₂ CO ₃	TFE	50
12 ^f	Ag ₂ CO ₃	TFE	41
13 ^g	Ag ₂ CO ₃	TFE	n.d.
14 ^h	Ag ₂ CO ₃	TFE	n.d.
15 ^{<i>i</i>}	Ag ₂ CO ₃	TFE	n.d.

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.11 mmol), Pd(OAc)₂ (10 mol %), Ag₂CO₃ (2 equiv), Solvent (1 mL), 110 °C, 12 h, then MeI (5 equiv), K₂CO₃ (3 equiv), acetone (1.5 mL) rt, 3h. ^{*b*}Isolated yield. ^{*c*}In presence of BQ (1 equiv). ^{*d*}In absence of Pd(OAc)₂. ^{*e*}Ag₂CO₃ (1 equiv). ^{*f*}At 80 °C. ^{*g*}Pd(TFA)₂(10 mol%) used. ^{*h*}PdCl₂ (10 mol %) used. ^{*i*}Pd₂(dba)₃ (10 mol %) used. n.d. = not detected. TFE = 2,2,2-trifluoroethanol. TCE = 2,2,2-trichloroethanol. HFIP = 1,1,1,3,3,3-hexafluoroisopropanol. BQ = 1,4-benzoquinone.

Benzoic Acids **1a-r** of Sigma-Aldrich, TCI Chemicals and BLD pharm were utilized for the reactions as received.

General Procedure for the Preparation of MBH Alcohol 2a.¹

$$(CH_2O)_n$$
 + CO_2Me
DABCO
1,4-Dioxane/Water (1:1) OH
CO_2Me

To a solution of paraformaldehyde (20 mmol, 600 mg, 1.0 equiv) in dioxane/water (1:1) (30 mL, 0.6 M), methyl acrylate (60 mmol, 1.72 g, 3.0 equiv) and DABCO (20 mmol, 2.240 g, 1.0 equiv) were added and stirred at room temperature for 12 h. After completion (monitored by TLC), the reaction mixture was diluted with EtOAc (20 mL) and washed successively with saturated solution of NaHCO₃ (2 x 20 mL) and brine (1 x 10 mL). Drying of the organic layer over Na₂SO₄ and evaporation of the solvent gave a residue that was purified on silica gel column chromatography using n-hexane and EtOAc as an eluent to afford the MBH alcohol **2a**.

General Procedure for the Preparation of MBH Alcohols 2b-o.¹

$$R-CHO + CO_2R' \xrightarrow{DABCO} (solvent free)$$

Aldehyde (20 mmol, 1.0 equiv), acrylate (60 mmol, 3.0 equiv) and DABCO (20 mmol, 2.24 g, 1.0 equiv) were stirred at room temperature under solvent free condition for 3 h to 7 days. After completion (monitored by TLC), the reaction mixture was diluted with EtOAc (20 mL) and washed successively with saturated solution of NaHCO₃ (2 x 20 mL) and brine (1 x 10 mL). Drying of the organic layer over Na₂SO₄ and evaporation of the solvent gave a residue that was purified on silica gel column chromatography using n-hexane and EtOAc as an eluent to afford the MBH alcohol **2b-o**.

Procedure for the Preparation of Deuterated MBH Alcohol 2b-d₁.²

Step 1: To a stirred solution of benzaldehyde (6.0 mmol, 636 mg, 1.0 equiv) and propane-1,3dithiol (6.0 mmol, 649 mg, 1.0 equiv) in CH_2Cl_2 (20 mL, 0.3 M) were slowly added $BF_3 \cdot Et_2O$ (3 mmol, 0.37 mL, 0.3 equiv) at 0 °C. The resulting mixture was allowed to warm to room temperature and continued to the stirring for 30 min until the disappearance of benzaldehyde was determined by TLC analysis. The reaction was quenched with H_2O (20 mL) and extracted with CH_2Cl_2 (3 x 20 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on silica gel column chromatography using n-hexane and EtOAc as an eluent to afford the corresponding 2-phenyl-1,3-dithiane in 91% (1.1 g) yield.

Step 2: To a stirred solution of 2-phenyl-1,3-dithiane (3 mmol, 589 mg, 1 equiv) in THF (15 mL, 0.2 M) was added *n*-BuLi (1.6 M in hexane solution, 6 mmol, 5.5 mL, 2 equiv) at -35 °C under N₂ atmosphere. After stirring for 3 h, D₂O (34.4 mmol, 0.6 mL, 4 equiv) was added into the reaction mixture. After completion (monitored by TLC), the mixture was diluted with H₂O (5 mL) and extracted with EtOAc (3 x 15 mL). Drying (Na₂SO₄) and evaporation of the solvent gave deuterated 2-phenyl-1,3-dithiane residue, which was used for the next step without further purification.

Step 3: To a stirred solution of deuterated 2-phenyl-1,3-dithiane (3 mmol, 592 mg, 1.0 equiv) in CH₃CN (15 mL, 0.2 M) was added DDQ (3.3 mmol, 749 mg, 1.0 equiv) and the resulting mixture was refluxed at 90 °C for 5 h. After completion, the solvent was evaporated under reduced pressure and the residue was dissolved in CH_2Cl_2 (10 mL) and passed through a short pad of celite. Evaporation of the solvent gave a residue that was purified on silica gel column chromatography using n-hexane and EtOAc as an eluent to afford the deuterated benzaldehyde in 85% (273 mg) yield.

Step 4: The deuterated benzaldehyde (step 3) was reacted with methyl acrylate as described in the general procedure for the preparation of MBH alcohol to produce the deuterated MBH alcohol $2b-d_1$.

General Procedure for the Pd-Catalyzed C-H Alkenylation of Benzoic acids with MBH Alcohols.

Benzoic acid 1 (0.1 mmol, 1.0 equiv), MBH alcohol **2a** (0.11 mmol, 1.1 equiv), Pd(OAc)₂ (0.01 mmol, 2.3 mg, 0.1 equiv), Ag₂CO₃ (0.2 mmol, 55 mg, 2.0 equiv) and 1,4-benzoquinone (0.1 mmol, 11 mg, 1.0 equiv) were stirred in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) (1 mL, 0.1 M) at 110 ° C (in a pre-heated oil bath) in a sealed tube for 12 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (5 mL) and passed through a short celite pad. Evaporation of the solvent gave a residue, which was stirred with K₂CO₃ (0.3 mmol, 41.5 mg, 3.0 equiv) and MeI (0.5 mmol, 31 µL, 5 equiv) in acetone (2 mL, 0.05 M) at room temperature for 3 h. After completion (monitored by TLC), the solvent was evaporated under reduced pressure and resulting residue was mixed with water (10 mL) and extracted with EtOAc (2 x 10 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue and EtOAc as an eluent to afford **3**.

Scale-up Synthesis of 3ba.

4-Methoxybenzoic acid **1b** (2 mmol, 304 mg, 1.0 equiv), MBH alcohol **2a** (2.2 mmol, 255 mg, 1.1 equiv), Pd(OAc)₂ (0.2 mmol, 45 mg, 0.1 equiv), Ag₂CO₃ (4 mmol, 1.1 g, 2.0 equiv) and 1,4-benzoquinone (2 mmol, 216 mg, 1.0 equiv) were stirred in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) (10 mL, 0.2 M) at 110 ° C (in a pre-heated oil bath) in a sealed tube for 12 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (20 mL) and passed through a short celite pad. Evaporation of the solvent gave a residue that was stirred with K₂CO₃ (6 mmol, 828 mg, 3.0 equiv) and MeI (10 mmol, 0.6 mL, 5.0 equiv) in acetone (20 mL, 0.1 M) at room temperature for 3 h. After completion (monitored by TLC), the solvent was evaporated under reduced pressure and resulting residue was mixed with water (30 mL) and extracted with EtOAc (2 x 30 mL). Drying (Na₂SO₄) and evaporation of the

solvent gave a residue that was purified on silica gel column chromatography using n-hexane and EtOAc as an eluent to afford **3ba** in 61% (269 mg) yield.

General Procedure for the Pd-Catalyzed C-H Alkylation of Benzoic acids with MBH Alcohols.

Benzoic acid **1** (0.1 mmol, 1.0 equiv), MBH alcohol **2b-o** (0.11 mmol, 1.1 equiv), Pd(OAc)₂ (0.01 mmol, 2.3 mg, 0.1 equiv) and Ag₂CO₃ (0.2 mmol, 55 mg, 2.0 equiv) were stirred in 2,2,2-trifluoroethanol (TFE) (1 mL, 0.1 M) at 110 °C (in a pre-heated oil bath) in a sealed tube for 12 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (5 mL) and passed through a short pad of celite. Evaporation of the solvent gave a residue that was stirred with K_2CO_3 (0.3 mmol, 41.5 mg, 3.0 equiv) and MeI (0.5 mmol, 31 µL, 5.0 equiv) in acetone (2 mL, 0.05 M) at room temperature for 3 h. After completion (monitored by TLC), the solvent was evaporated under reduced pressure and resulting residue was mixed with water (10 mL) and extracted with EtOAc (2 x 10 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on silica gel column chromatography using n-hexane and EtOAc as an eluent to afford **4**.

Scale-up Synthesis of 4bb.

4-Methoxybenzoic acid **1b** (2 mmol, 304 mg, 1.0 equiv), MBH alcohol **2b** (2.2 mmol, 384 mg, 1.1 equiv), $Pd(OAc)_2$ (0.2 mmol, 45 mg, 0.1 equiv), Ag_2CO_3 (4 mmol, 1.1 g, 2.0 equiv) were stirred in 2,2,2- trifluoroethanol (TFE) (10 mL, 0.2 M) at 110 °C (in a pre-heated oil bath) in a sealed tube for 12 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (20 mL) and passed through a small celite pad. Evaporation of the solvent gave a residue

that was stirred with K_2CO_3 (6 mmol, 828 mg, 3.0 equiv) and MeI (10 mmol, 0.6 mL, 5.0 equiv) in acetone (20 mL, 0.1 M) at room temperature for 3 h. After completion (monitored by TLC), the solvent was evaporated under reduced pressure and resulting residue was mixed with water (30 mL) and extracted with EtOAc (2 x 30 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on silica gel column chromatography using n-hexane and EtOAc as an eluent to afford **4bb** in 63% (449 mg) yield.

Synthesis of 5.

To a stirred solution of **3la** (0.1 mmol, 20.4 mg, 1.0 equiv) in MeOH (2 mL, 0.05 M) was added NaBH₄ (0.2 mmol, 7.6 mg, 2.0 equiv) at 0 °C under N₂ atmosphere. The reaction was allowed to stir for 10 minutes at room temperature. After completion (monitored by TLC), the solvent was evaporated and the residue was purified on silica gel column chromatography using n-hexane and EtOAc as an eluent to afford **5** in 93% (20.7 mg) yield.

Synthesis of 6.

To a stirred solution of 3da (0.1 mmol, 18.5 mg, 1.0 equiv) in MeOH (2 mL, 0.05 M), Pd/C (10 mol %, 1 mg) was added under hydrogen balloon and allowed to stir for 3 h at room temperature. After completion (monitored by TLC), the reaction mixture was passed through a short celite pad using EtOAc (10 mL). Evaporation of the solvent gave a residue that was purified on silica gel column chromatography to afford **6** in 89% (18.7 mg) yield.

Synthesis of 7.

To a stirred solution of **3pa** (0.1 mmol, 25 mg, 1.0 equiv) in CH_2Cl_2 (1 mL, 0.1 M), $Ph_3P=CH_2CO_2Bn$ (0.11 mmol, 45 mg, 1.1 equiv) was added and the reaction was allowed to stir for 4 h at room temperature. After completion (monitored by TLC), the solvent was evaporated under reduced pressure and the residue was purified on silica gel chromatography using n-hexane and EtOAc as an eluent to afford **7** in 87% (33 mg) yield.

Synthesis of 8.

A solution of **4ob** (0.1 mmol, 35.5 mg, 1.0 equiv) and a suspension of NaH (0.11 mmol, 4.5 mg, 60 % dispersion in mineral oil, 1.1 equiv) in THF (2 mL, 0.05 M) was stirred at 70 °C for 12 h. After completion (monitored by TLC), the reaction mixture was quenched with saturated aq. NH₄Cl (5 mL) and the aqueous layer was extracted using EtOAc (2 x 10 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on silica gel column chromatography using n-hexane and EtOAc as an eluent to afford **8** in 72% (16 mg) yield.

Synthesis of 9.

To a stirred solution of **4ab** (0.1 mmol, 34 mg, 1.0 equiv) in DMSO (1 mL, 0.1 M) and H₂O (0.5 mmol, 10 μ L, 5.0 equiv), LiCl (0.5 mmol, 21 mg, 5.0 equiv) was added. The resultant solution was stirred at 150 °C for 12 h under argon atmosphere. After completion (monitored by TLC), the reaction mixture was cooled to room temperature and extracted with EtOAc (2 x 10 mL). The organic layer was washed with brine (1 x 10 mL) and water (1 x 10 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on silica gel column chromatography using n-hexane and EtOAc as an eluent to afford **9** in 91% (25.7 mg) yield.

Characterization Data of the MBH Alcohols

Methyl 2-(hydroxymethyl)acrylate 2a.³ Analytical TLC on silica gel, 1:5 EtOAc/hexane $R_f = 0.41$; colorless liquid; yield 75% (870 mg); ¹H NMR (400 MHz, CDCl₃) δ 6.25 (s, 1H), 5.83 (s, 1H), 4.31 (s, 2H), 3.77 (s, 3H), 2.50 (bs, 1H).

Methyl 2-(hydroxy(phenyl)methyl)acrylate 2b.⁴ Analytical TLC on silica gel, 1:5 EtOAc/hexane $R_f = 0.44$; colorless liquid; yield 79% (1.52 g); ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.31 (m, 4H), 7.29-7.26 (m, 1H), 6.33 (s, 1H), 5.84 (s, 1H), 5.55 (s, 1H), 3.71 (s, 3H), 3.14 (bs, 1H).

Methyl 2-(hydroxy(phenyl)methyl-*d*)acrylate 2b- d_1 .⁵ Analytical TLC on silica gel, 1:5 EtOAc/hexane R_f = 0.44; colorless liquid; yield 71% (411 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.26 (m, 5H), 6.34 (s, 1H), 5.84 (s, 1H), 3.72 (s, 3H), 3.02 (bs, 1H).

Methyl 2-(hydroxy(p-tolyl)methyl)acrylate 2c.⁶ Analytical TLC on silica gel, 1:5 EtOAc/hexane $R_f = 0.50$; colorless liquid; yield 79% (1.63 g); ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.32 (s, 1H), 5.85 (s, 1H), 5.53-5.52 (m, 1H), 3.71 (s, 3H), 2.97 (bs, 1H), 2.33 (s, 3H).

Methyl 2-((4-chlorophenyl)(hydroxy)methyl)acrylate 2d.⁴ Analytical TLC on silica gel, 1:5 EtOAc/hexane $R_f = 0.51$; colorless liquid; yield 80% (1.81 g); ¹H NMR

(400 MHz, CDCl₃) δ 7.30 (s, 4H), 6.33 (s, 1H), 5.83 (s, 1H), 5.52-5.51 (m, 1H), 3.72 (s, 3H), 3.17 (bs, 1H).

Methyl 2-(hydroxy(4-methoxyphenyl)methyl)acrylate 2e.⁴ Analytical TLC on silica gel, 1:5 EtOAc/hexane $R_f = 0.41$; colorless liquid; yield 66% (1.47 g); ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 6.32 (s, 1H), 5.85 (s, 1H), 5.52-5.51 (m, 1H), 3.79 (s, 3H), 3.71 (s, 3H), 2.96-2.95 (m, 1H).

Methyl 2-(hydroxy(4-nitrophenyl)methyl)acrylate 2f.⁶ Analytical TLC on silica gel, 1:5 EtOAc/hexane $R_f = 0.45$; yellow liquid; yield 85% (2.0 g); ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 6.39 (s, 1H), 5.87 (s, 1H), 5.63 (s, 1H), 3.73 (s, 3H), 3.40 (bs, 1H).

Methyl 3-hydroxy-4-methyl-2-methylenepentanoate 2h.⁷ Analytical TLC on silica gel, 1:5 EtOAc/hexane $R_f = 0.50$; colorless liquid; yield 68% (1.1 g); ¹H NMR (400 MHz, CDCl₃) δ 6.18 (d, J = 6.9 Hz, 1H), 5.72 (s, 1H), 4.04 (d, J = 6.6 Hz, 1H), 3.71 (s, 3H), 2.74 (bs, 1H), 1.88-1.81 (m, 1H), 0.88-0.82 (m, 6H).

Ethyl 2-(hydroxy(phenyl)methyl)acrylate 2i.⁸ Analytical TLC on silica gel, 1:5 EtOAc/hexane $R_f = 0.44$; colorless liquid; yield 82% (1.7 g); ¹H NMR (600 MHz, CDCl₃) δ 7.37-7.32 (m, 4H), 7.29-7.26 (m, 1H), 6.33 (s, 1H), 5.82 (s, 1H), 5.55-5.54 (m, 1H), 4.16 (q, J = 7.2 Hz, 2H), 3.17 (bs, 1H), 1.23 (t, J = 7.2 Hz, 3H).

tert-Butyl 2-(hydroxy(phenyl)methyl)acrylate 2j.⁹ Analytical TLC on silica gel, 1:5 EtOAc/hexane $R_f = 0.51$; colorless liquid; yield 70% (1.64 g); ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.32 (m, 4H), 7.29-7.25 (m, 1H), 6.25 (s, 1H), 5.72 (s, 1H), 5.49 (d, J = 5.6 Hz, 1H), 3.12 (d, J = 6.0 Hz, 1H), 1.39 (s, 9H).

Benzyl 2-(hydroxy(phenyl)methyl)acrylate 2k.⁹ Analytical TLC on silica gel, 1:5 EtOAc/hexane $R_f = 0.44$; colorless liquid; yield 81% (2.17 g); ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.20 (m, 10H), 6.37 (s, 1H), 5.86 (s, 1H), 5.54 (s, 1H), 5.14-5.07 (m, 2H), 3.13 (bs, 1H).

Cyclohexyl 2-(hydroxy(phenyl)methyl)acrylate 21.¹⁰ Analytical TLC on silica gel, 1:5 EtOAc/hexane $R_f = 0.44$; colorless liquid; yield 71% (1.85 g); ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.31 (m, 4H), 7.29-7.25 (m, 1H), 6.34 (s, 1H), 5.80 (s, 1H), 5.54 (s, 1H), 4.81-4.76 (m, 1H), 3.16 (bs, 1H), 1.79-1.52 (m, 5H), 1.50-1.23 (m, 6H).

Dodecyl 2-(hydroxy(phenyl)methyl)acrylate 2m. Analytical TLC on silica gel, 1:10 EtOAc/hexane $R_f = 0.47$; colorless liquid; yield 81% (281 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.36 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.29-7.26 (m, 1H), 6.34 (s,

1H), 5.82 (s, 1H), 5.55 (s, 1H), 4.13-4.06 (m, 2H), 3.11 (bs, 1H), 1.60-1.58 (m, 2H), 1.31-1.26 (m, 18H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 166.5, 142.3, 141.5, 128.5, 127.9, 126.7, 126.0, 73.5, 65.2, 32.0, 29.8, 29.7, 29.68, 29.60, 29.5, 29.3, 28.6, 26.0, 22.8, 14.2; FT-IR (neat) 3447, 2923, 2854, 1711, 1630, 1456, 1269, 1149, 1040, 955 cm⁻¹; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₂H₃₄O₃Na 369.2400; Found 369.2399.

(**1R,2S,4R)-1,7,7-Trimethylbicyclo**[2.2.1]heptan-2-yl 2-(hydroxy-(phenyl)methyl)acrylate 2n. Analytical TLC on silica gel, 1:10 EtOAc/hexane $R_f = 0.41$; colorless liquid; yield 79% (248 mg); 1:1 mixture of diastereomers; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.31 (m, 8H), 7.29-7.25 (m, 2H), 6.38 (s, 2H), 5.85 (t, J = 1.6 Hz, 1H), 5.84 (t, J = 1.2 Hz, 1H), 5.56-5.54 (m, 2H), 4.91-4.86 (m, 2H), 3.11 (d, J = 5.6 Hz, 1H), 3.05 (d, J = 5.6 Hz, 1H), 2.36-2.24 (m, 2H), 1.84-1.61 (m, 7H), 1.32-1.23 (m, 2H), 1.18-1.05 (m, 2H), 0.93-0.88 (m, 1H), 0.87-0.84 (m, 12H), 0.77 (s, 3H), 0.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 166.6, 142.5, 142.4, 141.5, 128.6, 128.5, 128.0, 127.9, 126.8, 126.7, 126.0, 125.7, 80.9, 80.8, 73.5, 73.4, 48.9, 47.9, 44.9, 36.7, 36.6, 28.0, 27.9, 27.4, 27.3, 19.7, 18.9, 13.5, 13.4; FT-IR (neat) 3450, 2953, 2879, 1705, 1630, 1453, 1267, 1152, 1022, 955 cm⁻¹; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₀H₂₆O₃Na 337.1774; Found 337.1772.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 2-(hydroxy(phenyl)methyl)acrylate 20.¹¹ Analytical TLC on silica gel, 1:10 EtOAc/hexane $R_f = 0.40$; colorless solid; yield 74% (268 mg); 1.11:1 mixture of diastereomers; ¹H NMR (600 MHz, CDCl₃) δ 7.40-7.35 (m, 7.6H, major + minor), 7.31-7.28 (m, 1.9H, major + minor), 6.36 (s, 1H, major), 6.34 (s, 0.9H, minor), 5.85 (s, 1H, major), 5.80 (s, 0.9H, minor), 5.57-5.56 (m, 1.9H, major + minor), 4.76-4.71 (m, 1.9H, major + minor), 3.11 (d, J = 6.6 Hz, 0.9H, minor), 3.08 (d, J = 6.6Hz, 1H, major), 1.96-1.90 (m, 1.9H, major + minor), 1.69-1.65 (m, 4.9H, major + minor), 1.51-1.46 (m, 2.7H, minor), 1.38-1.32 (m, 1.9H, major + minor), 1.08-1.02 (m, 1.9H, major + minor), 1.00-0.94 (m, 1.9H, major + minor), 0.91-0.88 (m, 5.8H, major + minor), 0.83 (d, J = 7.2 Hz, 2.7H, minor), 0.78 (d, *J* = 7.2 Hz, 3H, major), 0.68 (d, *J* = 6.6 Hz, 2.7H, minor), 0.63 (d, *J* = 6.6 Hz, 3H, major).

1-Phenylprop-2-en-1-ol 2q.¹² Analytical TLC on silica gel, 1:10 EtOAc/hexane R_f = 0.35; colorless solid; yield 82% (154 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.24 (m, 5H), 6.08-6.00 (m, 1H), 5.36-5.32(m, 1H), 5.20-5.17 (m, 2H), 2.12 (bs, 1H).

Let Methyl 2-benzoylacrylate 2b'.¹³ Analytical TLC on silica gel, 1:10 EtOAc/hexane $R_f = 0.42$; colorless solid; yield 77% (231 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.4 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 6.72 (s, 1H), 6.05 (s, 1H), 3.76 (s, 3H).

Characterization Data of the Products

Methyl (*E*)-4-methyl-2-(3-oxoprop-1-en-1-yl)benzoate 3aa. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.50$; colorless solid; mp 77-78 °C; yield 72% (15 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.75 (d, J = 8.0 Hz, 1H), 8.44 (d, J = 16.0 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.44 (s, 1H), 7.29 (d, J = 8.0 Hz, 1H), 6.60 (dd, J = 16.0, 8.0 Hz, 1H), 3.93 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 167.2, 152.0, 143.5, 136.2, 131.4, 131.2, 131.1, 128.8, 126.8, 52.4, 21.7; FT-IR (neat) 2924, 1712, 1678, 1604, 1438, 1267, 1207, 1121, 1081 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₂H₁₃O₃ 205.0859; Found 205.0859.

 Methyl
 (E)-4-methoxy-2-(3-oxoprop-1-en-1-yl)benzoate
 3ba.

 Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.34$; colorless solid; mp 82-83 °C; yield
 73% (16 mg); ¹H NMR (600 MHz, CDCl₃) δ 9.77 (d, J = 7.8 Hz, 1H), 8.50 (d, J = 16.2 Hz, 1H), 8.02 (d, J = 9.0 Hz, 1H), 7.08 (d, J = 2.4 Hz, 1H), 6.98 (dd, J = 8.4, 2.4 Hz, 1H), 6.58 (dd,

J = 16.2, 7.8 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 194.3, 166.8, 162.8, 152.1, 138.5, 133.5, 131.3, 121.7, 115.6, 113.2, 55.8, 52.3; FT-IR (neat) 2925, 1704, 1678, 1594, 1440, 1332, 1238, 1123, 1031 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₂H₁₃O₄ 221.0808; Found 221.0808.

Methyl (*E*)-2-(3-oxoprop-1-en-1-yl)-4-phenoxybenzoate 3ca. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.41$; brown sticky liquid; yield 65% (18 mg); ¹H NMR (600 MHz, CDCl₃) δ 9.74 (d, *J* = 7.8 Hz, 1H), 8.46 (d, *J* = 16.2 Hz, 1H), 8.02 (d, *J* = 9.0 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.24 (t, *J* = 7.2 Hz, 1H), 7.16-7.15 (m, 1H), 7.07 (d, *J* = 7.8 Hz, 2H), 7.04-7.03 (m, 1H), 6.47 (dd, *J* = 15.6, 7.8 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 166.6, 161.5, 155.1, 151.3, 138.6, 133.6, 131.6, 130.4, 125.2, 123.4, 120.4, 118.9, 116.4, 52.5; FT-IR (neat) 2925, 2878, 1709, 1678, 1594, 1445, 1332, 1238, 1123, 1033 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₇H₁₅O₄ 283.0965; Found 283.0964.

Methyl (*E*)-4-fluoro-2-(3-oxoprop-1-en-1-yl)benzoate 3da. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.53$; colorless solid; mp 94-95 °C; yield 74% (15 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.77 (d, *J* = 7.6 Hz, 1H), 8.47-8.42 (m, 1H), 8.08 (dd, *J* = 8.8, 5.6 Hz, 1H), 7.32 (dd, *J* = 9.6, 2.8 Hz, 1H), 7.20-7.15 (m, 1H), 6.58 (dd, *J* = 15.6, 7.6 Hz, 1H), 3.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 166.3, 166.2 (*J*_{C-F} = 249.0 Hz), 150.2, 139.2 (*J*_{C-F} = 8.5 Hz), 134.0 (*J*_{C-F} = 9.2 Hz), 132.0, 125.7 (*J*_{C-F} = 3.2 Hz), 117.4 (*J*_{C-F} = 21.4 Hz), 115.1 (*J*_{C-F} = 22.9 Hz), 52.7; ¹⁹F NMR (565 MHz, CDCl₃) δ -105.18; FT-IR (neat) 2920, 1716, 1686, 1559, 1439, 1274, 1238, 1124, 1033 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₁H₁₀O₃F 209.0608; Found 209.0595.

Sea Methyl (*E*)-4-bromo-2-(3-oxoprop-1-en-1-yl)benzoate 3ea. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.48$; yellow solid; mp 127-128 °C; yield 51% (14

mg); ¹H NMR (400 MHz, CDCl₃) δ 9.76 (d, J = 7.6 Hz, 1H), 8.36 (d, J = 16.0 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 2.0 Hz, 1H), 7.63 (dd, J = 8.4, 1.6 Hz, 1H), 6.59 (dd, J = 16.0, 7.6 Hz, 1H), 3.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 166.5, 149.9, 138.1, 133.3, 132.7, 132.1, 131.1, 128.2, 127.7, 52.8; FT-IR (neat) 2922, 1714, 1686, 1557, 1438, 1274, 1238, 1123, 1030 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₁H₁₀O₃Br 268.9808; Found 268.9804.

Methyl (*E*)-4-(*tert*-butyl)-2-(3-oxoprop-1-en-1-yl)benzoate 3ga. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.55$; yellow sticky liquid; yield 45% (11 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.77 (d, *J* = 7.6 Hz, 1H), 8.47 (d, *J* = 16.0 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.64-7.63 (m, 1H), 7.52 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.63 (dd, *J* = 15.6, 7.6 Hz, 1H), 3.93 (s, 3H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 167.2, 156.5, 152.5, 136.0, 131.2, 131.1, 127.6, 126.8, 125.1, 52.5, 35.3, 31.1; FT-IR (neat) 2934, 1716, 1677, 1605, 1438, 1265, 1207, 1121, 1079 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₅H₁₉O₃ 247.1329; Found 247.1329.

Dimethyl (*E*)-2-(3-oxoprop-1-en-1-yl)terephthalate 3ha.

Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.44$; yellow solid; mp 114-115 °C; yield 75% (18.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.78 (d, J = 7.6 Hz, 1H), 8.36 (d, J = 16.0 Hz, 1H), 8.31-8.30 (m, 1H), 8.14-8.11 (m, 1H), 8.08-8.06 (m, 1H), 6.70 (dd, J = 15.6, 7.6 Hz, 1H), 3.97 (s, 3H), 3.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 166.5, 165.6, 150.1, 136.2, 133.9, 133.1, 132.1, 131.3, 130.9, 129.2, 52.9, 52.8; FT-IR (neat) 2922, 1715, 1711, 1675, 1594, 1439, 1333, 1238, 1123, 1029 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₃H₁₃O₅ 249.0757; Found 249.0767.

Methyl(E)-4-formyl-2-(3-oxoprop-1-en-1-yl)benzoate3ia.Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.43$; yellow solid; mp 79-80 °C; yield

64% (14 mg); ¹H NMR (400 MHz, CDCl₃) δ 10.12 (s, 1H), 9.80 (d, J = 7.6 Hz, 1H), 8.37 (d, J = 16.0 Hz, 1H), 8.17 (d, J = 8.0 Hz, 1H), 8.13-8.12 (m, 1H), 7.99 (dd, J = 8.0, 1.6 Hz, 1H), 6.71 (dd, J = 16.0, 7.6 Hz, 1H), 3.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.6, 190.9, 166.3, 149.7, 138.9, 137.0, 134.2, 132.4, 132.0, 130.5, 129.2, 53.1; FT-IR (neat) 2953, 1725, 1670, 1600, 1460, 1332, 1210, 1159, 1056 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₂H₁₁O₄ 219.0652; Found 219.0639.

Methyl (*E*)-2-(3-oxoprop-1-en-1-yl)benzoate 3ja. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.43$; yellow liquid; yield 66% (25 mg); ¹H NMR (500 MHz, CDCl₃) δ 9.76 (d, *J* = 7.8 Hz, 1H), 8.43 (d, *J* = 15.9 Hz, 1H), 8.02 (d, *J* = 7.8 Hz, 1H), 7.65 (d, *J* = 7.8 Hz, 1H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 1H), 6.62 (dd, *J* = 15.9, 7.8 Hz, 1H), 3.95 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 194.2, 167.2, 151.6, 136.1, 132.8, 131.3, 131.2, 130.4, 129.7, 128.1, 52.6; FT-IR (neat) 2955, 1723, 1674, 1460, 1332, 1210, 1159 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₁H₁₁O₃ 191.0703; Found 191.0703.

Methyl (*E*)-5-methyl-2-(3-oxoprop-1-en-1-yl)benzoate 3ka. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.50$; colorless solid; mp 69-70 °C; yield 70% (14 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.74 (d, *J* = 8.0 Hz, 1H), 8.38 (d, *J* = 16.0 Hz, 1H), 7.83 (s, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 9.6 Hz, 1H), 6.61 (dd, *J* = 16.0, 7.6 Hz, 1H), 3.94 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 167.4, 151.6, 141.1, 133.5, 133.1, 131.8, 130.6, 129.7, 128.0, 52.6, 21.4; FT-IR (neat) 2925, 1712, 1678, 1606, 1438, 1267, 1208, 1121, 1079 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₂H₁₃O₃ 205.0859; Found 205.0866.

Methyl (*E*)-5-methoxy-2-(3-oxoprop-1-en-1-yl)benzoate 3la. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.44$; colorless solid; mp 74-76 °C; yield 75% (16.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.70 (d, J = 8.0 Hz, 1H), 8.34 (d, J = 15.6 Hz, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.49 (d, J = 2.8 Hz, 1H), 7.10 (dd, J = 8.8, 2.8 Hz, 1H), 6.57 (dd, J = 15.6, 7.6 Hz, 1H), 3.95 (s, 3H), 3.88 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 194.3, 167.0, 161.2, 151.0, 131.4, 129.5, 128.0, 118.7, 116.0, 55.8, 52.7; FT-IR (neat) 2955, 1720, 1677, 1599, 1496, 1273, 1231, 1122, 1071 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₂H₁₃O₄ 221.0808; Found 221.0808.

Methyl (*E*)-2-fluoro-6-(3-oxoprop-1-en-1-yl)benzoate 3ma. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.54$; colorless solid; mp 87-88 °C; yield 56% (11.6 mg); ¹H NMR (500 MHz, CDCl₃) δ 9.71 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 16.0 Hz, 1H), 7.52-7.47 (m, 2H), 7.21 (t, *J* = 9.0 Hz, 1H), 6.67 (dd, *J* = 16.0, 8.0 Hz, 1H), 4.00 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 193.4, 165.2, 161.6 (*J*_{C-F} = 250.0 Hz), 148.2 (*J*_{C-F} = 3.0 Hz), 135.3 (*J*_{C-F} = 2.9 Hz), 132.4 (*J*_{C-F} = 8.8 Hz), 132.0, 123.0 (*J*_{C-F} = 3.4 Hz), 121.6 (*J*_{C-F} = 16.1 Hz), 118.4 (*J*_{C-F} = 22.2 Hz), 53.2; ¹⁹F NMR (470 MHz, CDCl₃) δ -111.71; FT-IR (neat) 2922, 1715, 1685, 1557, 1438, 1274, 1238, 1123, 1031 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₁H₁₀O₃F 209.0608; Found 209.0606.

Methyl (*E*)-4,5-dimethyl-2-(3-oxoprop-1-en-1-yl)benzoate 3oa. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.45$; yellow solid; mp 94-95 °C; yield 72% (16 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.73 (d, J = 8.0 Hz, 1H), 8.41 (d, J = 16.0 Hz, 1H), 7.80 (s, 1H), 7.43 (s, 1H), 6.60 (dd, J = 15.6, 7.6 Hz, 1H), 3.92 (s, 3H), 2.34-2.33 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 167.4, 151.9, 142.1, 139.8, 133.5, 132.4, 130.4, 129.2, 127.2, 52.4, 20.1, 19.8; FT-IR (neat) 2926, 1715, 1676, 1604, 1438, 1267, 1207, 1120, 1080 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₃H₁₅O₃ 219.1016; Found 219.1014.

Methyl (*E*)-3,5-dimethoxy-2-(3-oxoprop-1-en-1-yl)benzoate 3pa. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.31$; yellow solid; mp 104-105 °C; yield 74% (18.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.62 (d, *J* = 8.0 Hz, 1H), 7.90 (d, *J* = 16.0 Hz, 1H), 6.96-6.87 (m, 2H), 6.63 (d, *J* = 2.4 Hz, 1H), 3.93 (s, 3H), 3.89 (s, 3H), 3.88 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 196.1, 168.0, 161.9, 160.8, 147.2, 134.7, 132.4, 116.1, 106.8, 101.7, 56.0, 55.8, 52.9; FT-IR (KBr) 2953, 1722, 1672, 1597, 1460, 1330, 1209, 1159, 1057 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₃H₁₅O₅ 251.0914; Found 251.0913.

Methyl 2-(2-benzoyl-3-methoxy-3-oxopropyl)-4-methylbenzoate 4ab. Analytical TLC on silica gel, 1:9 EtOAc/hexane R_f = 0.37; colorless liquid; yield 77% (26 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.2 Hz, 2H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.40 (t, *J* = 8.0 Hz, 2H), 7.05-7.03 (m, 2H), 4.95 (t, *J* = 7.6 Hz, 1H), 3.85 (s, 3H), 3.61-3.59 (m, 5H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.3, 170.1, 167.8, 143.0, 140.4, 136.6, 133.5, 133.3, 131.4, 128.9, 128.7, 127.8, 126.6, 55.1, 52.5, 52.1, 34.3, 21.5; FT-IR (neat) 2954, 1720, 1686, 1585, 1437, 1266, 1242, 1122, 1082 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₂₀H₂₀O₅Na 363.1203; Found 363.1203.

Methyl 2-(2-benzoyl-3-methoxy-3-oxopropyl)-4-methoxybenzoate 4bb. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.30$; colorless liquid; yield 73% (26 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.94-7.92 (m, 3H), 7.53 (t, J = 7.2 Hz, 1H), 7.41 (t, J = 8.4 Hz, 2H), 6.76 (d, J = 2.4 Hz, 1H), 6.74 (dd, J = 8.4, 2.4 Hz, 1H), 4.97 (t, J = 7.8 Hz, 1H), 3.83 (s, 3H), 3.77 (s, 3H), 3.65-3.61 (m, 5H); ¹³C NMR (150 MHz, CDCl₃) δ 195.3, 170.1, 167.2, 162.4, 143.0, 136.6, 133.6, 133.5, 128.9, 128.7, 121.4, 117.6, 112.6, 55.5, 54.9, 52.6, 52.0, 34.7; FT-IR (neat) 3003, 2291, 2253, 1712, 1633, 1441, 1375, 1039 cm⁻¹; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₀H₂₀O₆Na 379.1152; Found 379.1152.

Methyl 2-(2-benzoyl-3-methoxy-3-oxopropyl)-4-fluorobenzoate 4db. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.42$; colorless liquid; yield 66% (23 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.94 (m, 3H), 7.55 (t, J = 7.6 Hz, 1H), 7.43 (t, J = 8.0 Hz, 2H), 7.02 (dd, J = 9.6, 2.4 Hz, 1H), 6.96-6.92 (m, 1H), 4.94 (t, J = 7.32 Hz, 1H), 3.86 (s, 3H), 3.68-3.57 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 194.8, 169.8, 166.8, 165.7 ($J_{C-F} = 252.0$ Hz), 144.0 ($J_{C-F} = 8.6$ Hz), 136.4, 133.9 ($J_{C-F} = 9.3$ Hz), 133.7, 128.9, 128.8, 125.6 ($J_{C-F} = 2.8$ Hz), 119.6 ($J_{C-F} = 21.7$ Hz), 114.3 ($J_{C-F} = 15.0$ Hz), 54.9, 52.7, 52.3, 34.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -106.41; FT-IR (neat) 2954, 1721, 1687, 1587, 1437, 1269, 1242, 1122, 1081 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₉H₁₈O₅F 345.1133; Found 345.1134.

Methyl 2-(2-benzoyl-3-methoxy-3-oxopropyl)benzoate 4jb. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.51$; colorless liquid; yield 70% (23 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.93 (t, J = 7.8 Hz, 3H), 7.53 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 2H), 7.36 (t, J = 7.5 Hz, 1H), 7.29-7.24 (m, 2H), 4.97 (t, J = 7.3 Hz, 1H), 3.88 (s, 3H), 3.62 (d, J = 11.4 Hz, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 195.2, 170.1, 167.8, 140.2, 136.6, 133.6, 132.6, 132.3, 131.2, 129.6, 128.9, 128.7, 127.1, 55.1, 52.6, 52.3, 34.2; FT-IR (neat) 2954, 1721, 1687, 1587, 1437, 1265, 1242, 1145, 1077 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₁₉H₁₈O₅Na 349.1046; Found 349.1051.

Methyl 2-(2-benzoyl-3-methoxy-3-oxopropyl)-5-methylbenzoate 4kb.

Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.39$; colorless liquid; yield 75% (25.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.2 Hz, 2H), 7.73 (s, 1H), 7.53 (t, J = 7.2 Hz,

1H), 7.41 (t, J = 8.0 Hz, 2H), 7.16 (s, 2H), 4.94 (t, J = 7.2 Hz, 1H), 3.86 (s, 3H), 3.61-3.53 (m, 5H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 170.1, 168.0, 137.1, 136.8, 136.6, 133.5, 133.1, 132.5, 131.7, 129.4, 128.9, 128.7, 55.3, 52.5, 52.2, 33.8, 21.0; FT-IR (neat) 2955, 1719, 1686, 1587, 1438, 1269, 1240, 1123, 1080 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₂₀H₂₀O₅Na 363.1203; Found 363.1203.

Methyl 2-(2-benzoyl-3-methoxy-3-oxopropyl)-6-fluorobenzoate 4mb. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.45$; colorless liquid; yield 55% (19 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, J = 8.5 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.43 (t, J = 8.0 Hz, 2H), 7.24-7.23 (m, 1H), 7.03 (d, J = 8.0 Hz, 1H), 6.95 (t, J = 8.5 Hz, 1H), 4.88 (t, J = 7.5 Hz, 1H), 3.92 (s, 3H), 3.63 (s, 3H), 3.38 (d, J = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 194.7, 169.6, 166.2, 161.3 ($J_{C-F} = 250.7$ Hz), 139.3 ($J_{C-F} = 2.0$ Hz), 136.3, 133.8, 131.8 ($J_{C-F} = 9.1$ Hz), 128.9, 128.8, 126.7 ($J_{C-F} = 3.2$ Hz), 121.7 ($J_{C-F} = 15.5$ Hz), 114.8 ($J_{C-F} = 21.8$ Hz), 55.0, 52.8, 52.7, 33.0; ¹⁹F NMR (470 MHz, CDCl₃) δ -113.06; FT-IR (neat) 2954, 1718, 1687, 1587, 1439, 1264, 1244, 1123, 1081 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₉H₁₈O₅F 345.1133; Found 345.1133.

Methyl 2-(2-benzoyl-3-methoxy-3-oxopropyl)-4,5-dimethylbenzo-

ate 4ob. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.44$; colorless liquid; yield 81% (29 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, J = 7.5 Hz, 2H), 7.70 (s, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.5 Hz, 2H), 7.01 (s, 1H), 4.92 (t, J = 7.5 Hz, 1H), 3.84 (s, 3H), 3.61 (s, 3H), 3.59-3.54 (m, 2H), 2.21 (s, 3H), 2.19 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.4, 170.2, 167.9, 141.6, 137.7, 136.7, 135.4, 133.9, 133.5, 132.4, 128.9, 128.7, 126.7, 55.3, 52.5, 52.0, 33.8, 19.8, 19.3; FT-IR (neat) 2958, 1721, 1687, 1587, 1437, 1269, 1242, 1123, 1081, cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₂₁H₂₃O₅ 355.1540; Found 355.1542.

Methyl 2-(3-methoxy-2-(4-methylbenzoyl)-3-oxopropyl)-4-methylbenzoate 4ac. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.44$; colorless liquid; yield 65% (23 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.84-7.82 (m, 3H), 7.19 (d, J = 8.0 Hz, 2H), 7.05-7.04 (m, 2H), 4.91 (t, J = 7.5 Hz, 1H), 3.85 (s, 3H), 3.60-3.58 (m, 5H), 2.38 (s, 3H), 2.28 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 194.8, 170.3, 167.8, 144.5, 142.9, 140.5, 134.1, 133.3, 131.4, 129.4, 129.0, 127.8, 126.6, 55.0, 52.5, 52.1, 34.2, 21.8, 21.5; FT-IR (neat) 2954, 1722, 1687, 1587, 1437, 1269, 1242, 1122, 1081, cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₂₁H₂₃O₅ 355.1540; Found 355.1538.

Methyl 2-(2-(4-chlorobenzoyl)-3-methoxy-3-oxopropyl)-4-methyl-

benzoate 4ad. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.42$; colorless liquid; yield 68% (25.5 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, J = 7.8 Hz, 2H), 7.82 (d, J = 7.8 Hz, 1H), 7.37 (d, J = 8.4 Hz, 2H), 7.06-7.04 (m, 2H), 4.92 (t, J = 7.2 Hz, 1H), 3.86 (s, 3H), 3.61 (s, 3H), 3.58-3.54 (m, 2H), 2.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 194.3, 169.9, 167.7, 143.1, 140.2, 140.1, 135.0, 133.4, 131.4, 130.3, 129.1, 127.9, 126.5, 55.1, 52.6, 52.1, 34.2, 21.5; FT-IR (neat) 2953, 1721, 1685, 1587, 1437, 1269, 1242, 1123, 1081, cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₂₀H₂₀O₅Cl 375.0994; Found 375.0994.

Methyl 2-(3-methoxy-3-oxo-2-(3-(trifluoromethyl)benzoyl)propyl)-4-

methylbenzoate 4ag. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.34$; colorless liquid; yield 55% (22.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.8 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.05-7.04 (m, 2H), 5.00 (t, J = 7.6 Hz, 1H), 3.86 (s, 3H), 3.63 (s, 3H), 3.58 (d, J = 7.6 Hz, 2H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 169.8, 167.7, 143.1, 140.1, 137.2, 134.9 ($J_{C-F}=36.3$ Hz), 133.5, 131.9, 131.5 ($J_{C-F}=271.9$ Hz), 131.4, 129.9 ($J_{C-F}=3.6$ Hz), 129.4, 128.0, 126.4, 125.8 ($J_{C-F}=3.9$ Hz), 55.0, 52.6, 52.1, 34.4, 21.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.86; FT-IR (neat) 2954, 1721, 1686, 1587, 1437, 1270, 1242, 1122, 1080, cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₂₁H₂₀O₅F₃ 409.1257; Found 409.1266.

Methyl 4-methoxy-2-(3-methoxy-3-oxo-2-(3-(trifluoromethyl)benzoyl)propyl)benzoate 4bg. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.34$; colorless liquid; yield 58% (24.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 6.77-6.73 (m, 2H), 5.02 (t, J = 7.2 Hz, 1H), 3.85 (s, 3H), 3.78 (s, 3H), 3.64-3.61 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 169.7, 167.2, 162.5, 142.7, 137.1, 135.5 ($J_{C-F} = 32.3$ Hz), 133.6, 132.0 ($J_{C-F} = 265.7$ Hz), 131.9, 129.9 ($J_{C-F} = 3.7$ Hz), 129.4, 125.9 ($J_{C-F} = 3.7$ Hz), 121.3, 118.0, 112.6, 55.5, 54.9, 52.7, 52.0, 34.8; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.87; FT-IR (neat) 3001, 2294, 2256, 1712, 1633, 1441, 1375, 1081 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₂₁H₂₀O₆F₃ 425.1206; Found 425.1205.

Methyl 2-(2-benzoyl-3-ethoxy-3-oxopropyl)-4-methylbenzoate 4ai. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.48$; colorless liquid; yield 72% (25.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.2 Hz, 2H), 7.84 (d, J = 7.9 Hz, 1H), 7.52 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 2H), 7.10-7.01 (m, 2H), 4.94-4.85 (m, 1H), 4.10-4.03 (m, 2H), 3.84 (s, 3H), 3.66-3.61 (m, 1H), 3.55 (dd, J = 13.2, 7.8 Hz, 1H), 2.29 (s, 3H), 1.08 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.3, 169.7, 167.8, 142.9, 140.5, 136.7, 133.4, 133.3, 131.4, 128.8, 128.7, 127.8, 126.6, 61.4, 55.4, 52.0, 34.2, 21.5, 14.1; FT-IR (neat) 2952, 1715, 1687, 1610, 1444, 1266, 1231, 1186, 1083 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₂₁H₂₃O₅ 355.1540; Found 355.1540.

4aj Methyl 2-(2-benzoyl-3-(*tert*-butoxy)-3-oxopropyl)-4-methylbenzoate **4aj.** Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.51$; colorless liquid; yield 75% (29 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 7.8 Hz, 2H), 7.84 (d, J = 8.0 Hz, 1H), 7.52 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 2H), 7.09 (s, 1H), 7.06 (d, J = 8.1 Hz, 1H), 4.75 (dd, J = 8.1, 6.4 Hz, 1H), 3.84 (s, 3H), 3.65 (dd, J = 13.3, 6.3 Hz, 1H), 3.47 (dd, J = 13.3, 8.3 Hz, 1H), 2.30 (s, 3H), 1.25 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 195.5, 168.8, 167.8, 142.7, 140.7, 136.9, 133.5, 133.2, 131.4, 128.8, 128.6, 127.6, 126.6, 81.9, 56.7, 52.0, 33.9, 27.8, 21.5; FT-IR (neat) 2977, 2924, 1719, 1692, 1594, 1447, 1267, 1147, 1083 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₂₃H₂₆O₅Na 405.1672; Found 405.1672.

Methyl 2-(2-benzoyl-3-(benzyloxy)-3-oxopropyl)-4-methylbenzoate

4ak. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.44$; colorless liquid; yield 72% (30 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.2 Hz, 2H), 7.82 (d, J = 8.0 Hz, 1H), 7.52 (t, J = 7.2 Hz, 1H), 7.38 (t, J = 8.0 Hz, 2H), 7.26-7.23 (m, 3H), 7.10-7.08 (m, 2H), 7.05-7.02 (m, 2H), 5.07-5.00 (m, 2H), 4.98-4.94 (m, 1H), 3.82 (s, 3H), 3.70-3.64 (m, 1H), 3.59-3.54 (m, 1H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.1, 169.5, 167.7, 143.0, 140.4, 136.6, 135.5, 133.5, 133.4, 131.4, 128.9, 128.7, 128.5, 128.3, 128.0, 127.8, 126.6, 67.0, 55.5, 52.1, 34.2, 21.5; FT-IR (neat) 2951, 1715, 1687, 1610, 1448, 1267, 1218, 1161, 1083 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₆H₂₅O₅ 417.1697; Found 417.1697.

Wethyl 2-(2-benzoyl-3-(cyclohexyloxy)-3-oxopropyl)-4-methylbenzoate 4al. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.49$; colorless liquid; yield 67% (27.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.2 Hz, 2H), 7.83 (d, J = 8.0 Hz, 1H), 7.52 (t, J = 7.2 Hz, 1H), 7.41 (t, J = 8.0 Hz, 2H), 7.08-7.05 (m, 2H), 4.86-4.83 (m, 1H), 4.72-4.66 (m, 1H), 3.84 (s, 3H), 3.71-3.66 (m, 1H), 3.52-3.47 (m, 1H), 2.29 (s, 3H), 1.53-1.14 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 169.2, 167.7, 142.8, 140.6, 136.7, 133.4, 131.4, 128.8, 128.6, 127.7, 126.6, 73.6, 55.9, 52.0, 34.0, 31.24, 31.22, 25.4, 23.45, 23.38, 21.5; FT-IR (neat) 2979, 2926, 1718, 1692, 1594, 1448, 1268, 1147, 1081 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₅H₂₉O₅ 409.2010; Found 409.2008.

Methyl2-(2-benzoyl-3-(dodecyloxy)-3-oxopropyl)-4-methyl-benzoate 4am. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.52$; colorless liquid;yield 71% (35 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 7.9 Hz, 2H), 7.84 (d, J = 7.9Hz, 1H), 7.52 (t, J = 7.0 Hz, 1H), 7.41 (t, J = 7.7 Hz, 2H), 7.09-7.03 (m, 2H), 4.90 (t, J = 7.2Hz, 1H), 3.98 (td, J = 6.5, 2.7 Hz, 2H), 3.84 (s, 3H), 3.64 (dd, J = 13.2, 6.6 Hz, 1H), 3.55 (dd,J = 13.3, 7.8 Hz, 1H), 2.29 (s, 3H), 1.45-1.41 (m, 2H), 1.25-1.09 (m, 18H), 0.88 (t, J = 7.0 Hz,3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.2, 169.7, 167.8, 142.9, 140.6, 136.7, 133.4, 133.4,131.4, 128.9, 128.7, 127.8, 126.6, 65.6, 55.5, 52.1, 34.1, 32.1, 29.8, 29.8, 29.7, 29.6, 29.5, 29.3,28.5, 25.8, 22.8, 21.5, 14.3; FT-IR (neat) 2933, 2917, 1719, 1692, 1594, 1447, 1268, 1147,1083 cm⁻¹; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₁H₄₃O₅ 495.3105; Found 495.3110.

Methyl 2-(2-benzoyl-3-oxo-3-(((18,48)-1,7,7-trimethyl-bicyclo-

[2.2.1]heptan-2-yl)oxy)propyl)-4-methylbenzoate 4an. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.44$; colorless liquid; yield 64% (29.6 mg); 1:1 mixture of diastereomers; ¹H NMR (500 MHz, CDCl₃) δ 7.97 (t, J = 7.0 Hz, 4H), 7.87-7.84 (m, 2H), 7.53 (t, J = 7.0 Hz, 2H), 7.44-7.40 (m, 4H), 7.10-7.05 (m, 4H), 4.89 (t, J = 7.0 Hz, 2H), 4.73 (t, J = 9.5 Hz, 2H), 3.85-3.83 (m, 6H), 3.74-3.68 (m, 2H), 3.53-3.47 (m, 2H), 2.30 (s, 6H), 2.24-2.12 (m, 2H), 1.66-1.63 (m, 2H), 1.56-1.51 (m, 4H), 1.15-1.02 (m, 4H), 0.90-0.84 (m, 2H), 0.80-0.78 (m, 12H), 0.72 (s, 3H), 0.50 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 194.97, 194.95, 170.0, 169.9, 167.7, 142.9, 140.7, 140.6, 136.8, 133.43, 133.38, 133.3, 131.5, 128.9, 128.8, 128.7, 127.8, 126.63, 126.60, 81.3, 81.2, 56.0, 55.8, 52.0, 48.8, 47.9, 47.8, 44.9, 44.8, 36.4, 36.3, 34.0, 33.8, 28.0, 27.8, 27.0, 21.5, 19.7, 18.9, 13.5, 13.1; FT-IR (neat) 2953, 1719, 1690, 1610, 1449, 1267, 1233, 1187, 1083 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₂₉H₃₅O₅ 463.2479; Found 463.2477.

vl 2-(2-benzoyl-3-(((1S,2R,5R)-5-isopropyl-2-methyl-

cyclohexyl)oxy)-3-oxopropyl)-4-methylbenzoate 4ao. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.44$; colorless liquid; yield 61% (28.3 mg); 1:1 mixture of diastereomers; ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 7.5 Hz, 2H), 7.92 (d, J = 7.5 Hz, 2H), 7.86 (t, J = 8.5 Hz, 2H), 7.55-7.51 (m, 2H), 7.43-7.38 (m, 4H), 7.10-7.06 (m, 4H), 4.88-4.85 (m, 2H), 4.56-4.49 (m, 2H), 3.84 (s, 6H), 3.76-3.68 (m, 2H), 3.51-3.41 (m, 2H), 2.31-2.30 (m, 6H), 1.80-1.78 (m, 1H), 1.67-1.65 (m, 1H), 1.56-1.52 (m, 6H), 1.40-1.32 (m, 2H), 1.23-1.16 (m, 4H), 0.93-0.86 (m, 4H), 0.84 (d, J = 6.5 Hz, 3H), 0.80 (d, J = 6.5 Hz, 3H), 0.72 (d, J = 7.5 Hz, 3H), 0.62 (d, J = 7.0 Hz, 3H), 0.53 (d, J = 7.0 Hz, 3H), 0.33 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.2, 194.7, 169.4, 169.1, 167.8, 167.7, 142.9, 140.6, 136.8, 136.6, 133.5, 133.43,

133.41, 133.3, 131.54, 131.46, 128.9, 128.8, 128.64, 128.58, 127.8, 127.7, 126.6, 126.5, 75.6, 75.5, 56.4, 55.8, 52.05, 52.02, 46.8, 40.7, 40.5, 34.22, 34.19, 34.16, 34.0, 31.4, 31.3, 25.73, 25.67, 23.1, 22.9, 22.11, 22.07, 21.5, 20.9, 20.8, 15.7; FT-IR (neat) 2953, 2869, 1718, 1688, 1611, 1449, 1266, 1231, 1185, 1083 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₂₉H₃₇O₅ 465.2636; Found 465.2636.

Methyl (E)-2-(3-hydroxyprop-1-en-1-yl)-5-methoxybenzoate 5.

Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.36$; colorless liquid; yield 93% (20.7 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, J = 8.5 Hz, 1H), 7.38-7.37 (m, 1H), 7.30 (d, J = 15.5 Hz, 1H), 7.04-7.02 (m, 1H), 6.20-6.15 (m, 1H), 4.32 (d, J = 6.0 Hz, 2H), 3.90 (s, 3H), 3.86-3.84 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 167.8, 158.8, 131.3, 129.8, 129.7, 129.6, 128.9, 118.8, 114.8, 64.1, 55.6, 52.3; FT-IR (neat) 3440, 2954, 1720, 1594, 1438, 1256, 1207, 1137, 1072 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₁₂H₁₄O₄Na 245.0784; Found 245.0787.

Methyl 4-fluoro-2-(3-oxopropyl)benzoate 6. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.42$; colorless liquid; yield 89% (18.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.82 (t, J = 1.2 Hz, 1H), 8.00-7.96 (m, 1H), 7.01-6.94 (m, 2H), 3.88 (s, 3H), 3.28 (t, J = 9.0 Hz, 2H), 2.84-2.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 201.3, 166.8, 166.2 ($J_{C-F} = 252.0$ Hz), 146.5 ($J_{C-F} = 8.4$ Hz), 134.0 ($J_{C-F} = 9.3$ Hz), 125.3 ($J_{C-F} = 3.0$ Hz), 118.3 ($J_{C-F} = 21.4$ Hz), 113.8 ($J_{C-F} = 21.2$ Hz), 52.2, 45.3, 27.4; ¹⁹F NMR (470 MHz, CDCl₃) δ -106.59; FT-IR (neat) 2956, 1717, 1630, 1594, 1442, 1256, 1208, 1137, 1072 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₁H₁₂O₃F 211.0765; Found 211.0761.

Methyl 2-((1*E*,3*E*)-5-(benzyloxy)-5-oxopenta-1,3-dien-1-yl)-3,5-dimethoxybenzoate 7. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.44$; yellow solid; mp 75-76 °C; yield 87% (33 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.47 (dd, J = 15.5, 11.5 Hz, 1H), 7.40-7.31 (m, 5H), 7.19 (d, J = 15.5 Hz, 1H), 6.95 (dd, J = 15.5, 11.0 Hz, 1H), 6.82-6.81 (m, 1H), 6.59-6.58 (m, 1H), 5.95 (d, J = 15.5 Hz, 1H), 5.21 (s, 2H), 3.88 (s, 3H), 3.86 (s, 3H), 3.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.9, 167.2, 160.3, 159.8, 147.1, 136.4, 134.9, 133.8, 130.5, 128.7, 128.3, 128.2, 120.1, 118.2, 105.8, 101.8, 66.2, 56.0, 55.7, 52.7; FT-IR (neat) 2949, 1712, 1596, 1457, 1327, 1241, 1210, 1125, 1058 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₂₂H₂₃O₆ 383.1489; Found 383.1489.

2-(2-Carboxyethyl)-4,5-dimethylbenzoic acid 8. Analytical TLC on silica gel, 6:4 EtOAc/hexane $R_f = 0.30$; colorless solid; mp >200 °C; yield 72% (16 mg); ¹H NMR (400 MHz, DMSO- d_6) δ 12.36 (bs, 2H), 7.60 (s, 1H), 7.09 (s, 1H), 3.06 (t, J = 7.6 Hz, 2H), 2.46 (t, J = 8.0 Hz, 2H), 2.22 (s, 3H), 2.20 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 173.9, 168.5, 140.7, 139.6, 134.2, 132.1, 131.6, 127.3, 35.5, 28.8, 19.3, 18.8; FT-IR (neat) 3440, 2954, 1710, 1594, 1438, 1256, 1207, 1137 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₂H₁₅O₄ 223.0965; Found 223.0960.

Wethyl 4-methyl-2-(3-oxo-3-phenylpropyl)benzoate 9. Analytical TLC on silica gel, 1:9 EtOAc/hexane $R_f = 0.32$; colorless liquid; yield 91% (25.7 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 7.5 Hz, 2H), 7.84 (d, J = 8.0 Hz, 1H), 7.54 (t, J = 7.0 Hz, 1H), 7.44 (t, J = 8.0 Hz, 2H), 7.15 (s, 1H), 7.08 (d, J = 8.0 Hz, 1H), 3.87 (s, 3H), 3.35-3.34 (m, 4H), 2.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 199.7, 167.9, 143.7, 143.0, 137.1, 133.1, 132.4, 131.3, 128.7, 128.3, 127.2, 126.6, 52.0, 40.8, 29.6, 21.6; FT-IR (neat) 2926, 1717, 1685, 1448, 1268, 1204, 1082, 973 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₈H₁₉O₃ 283.1329; Found 283.1328.

H/D Exchange Experiments

C-H Alkenylation

H/D Exchange Experiment of 1b with D_2O in Absence of 2a. 4-Methoxybenzoic acid 1b (0.1 mmol, 15.2 mg), $Pd(OAc)_2$ (0.01 mmol, 2.3 mg), Ag_2CO_3 (0.2 mmol, 55 mg), 1,4-benzoquinone (0.1 mmol, 11 mg) and D_2O (1 mmol, 18 µL) were stirred in HFIP (1 mL) at

110 ° C (in a pre-heated oil bath) in a sealed tube for 6 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (5 mL) and passed through a short pad of celite. Evaporation of the solvent gave a residue that was stirred with K_2CO_3 (0.3 mmol, 41.5 mg) and MeI (0.5 mmol, 31 µL) in acetone (2 mL) at room temperature for 3 h. After completion (monitored by TLC), the solvent was evaporated under reduced pressure and residue was mixed with water (10 mL) and extracted with EtOAc (2 x 10 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on silica gel column chromatography using n-hexane and EtOAc as an eluent to afford **1b**-*d*_n. The deuterium incorporation of **1b**-*d*_n was calculated based on its 400 MHz ¹H NMR spectrum (See the following ¹H NMR spectrum).

C-H Alkenylation

H/D Exchange Experiment of 1b with D_2O in Presence of 2a. 4-Methoxybenzoic acid 1b (0.1 mmol, 15.2 mg), MBH alcohol 2a (0.11 mmol, 12.8 mg), Pd(OAc)₂ (0.01 mmol, 2.3 mg), Ag₂CO₃ (0.2 mmol, 55 mg), 1,4-benzoquinone (0.1 mmol, 11 mg) and D₂O (1 mmol, 18 µL) were stirred in HFIP (1 mL) at 110 ° C (in a pre-heated oil bath) in a sealed tube for 6 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (5 mL) and passed through a short pad of celite. Evaporation of the solvent gave a residue that was stirred with K₂CO₃ (0.3 mmol, 41.5 mg) and MeI (0.5 mmol, 31 µL) in acetone (2 mL) at room temperature for 3 h. After completion (monitored by TLC), the solvent was evaporated under reduced

pressure and the residue was mixed with water (10 mL) and extracted with EtOAc (2 x 10 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on silica gel column chromatography using n-hexane and EtOAc as an eluent to afford **3ba**- d_n and **1b**- d_n . The deuterium incorporation of **1b**- d_n and **3ba**- d_n were calculated based on their respective 400 MHz ¹H NMR spectrum (See the following ¹H NMR spectrums).

-9.786

¹H NMR (400 MHz, CDCl₃)

C-H Alkylation

H/D Exchange Experiment of 1b with D_2O in Absence of 2b. 4-Methoxybenzoic acid 1b (0.1 mmol, 15.2 mg), Pd(OAc)₂ (0.01 mmol, 2.3 mg), Ag₂CO₃ (0.2 mmol, 55 mg) and D₂O (1 mmol, 18 µL) were stirred in TFE (1 mL) at 110 °C (in a pre-heated oil bath) in a sealed tube for 6 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (5 mL) and passed through a short pad of celite. Evaporation of the solvent gave a residue that was stirred with K₂CO₃ (0.3 mmol, 41.5 mg) and MeI (0.5 mmol, 31 µL) in acetone (2 mL) at room temperature for 3 h. After completion (monitored by TLC), the solvent was evaporated under reduced pressure and the residue was mixed with water (10 mL) and extracted with EtOAc (2 x 10 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on silica gel column chromatography using n-hexane and EtOAc as an eluent to afford 1b-*d*_n. The deuterium incorporation of 1b-*d*_n was calculated based on its 400 MHz ¹H NMR spectrum (See the following ¹H NMR spectrum).

C-H Alkylation

H/D Exchange Experiment of 1b with D_2O in Presence of 2b. 4-Methoxybenzoic acid 1b (0.1 mmol, 15.2 mg), MBH alcohol 2b (0.11 mmol, 21 mg), Pd(OAc)₂ (10 mol %, 0.01 mmol, 2.3 mg), Ag₂CO₃ (0.2 mmol, 55 mg) and D₂O (1 mmol, 18 µL) were stirred in TFE (1 mL) at 110 °C (in a pre-heated oil bath) in a sealed tube for 6 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (5 mL) and passed through a short celite pad. Evaporation of the solvent gave a residue that was stirred with K₂CO₃ (0.3 mmol, 41.5 mg) and MeI (0.5 mmol, 31 µL) in acetone (2 mL) at room temperature for 3 h. After completion (monitored by TLC), the solvent was evaporated under reduced pressure and the residue was mixed with water (10 mL) and extracted using EtOAc (2 x 10 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on silica gel column chromatography using n-hexane and EtOAc as an eluent to afford 4bb-*d_n* and 1b-*d_n*. The deuterium incorporation of 1b-*d_n* and 4bb-*d_n* were calculated based on their respective 400 MHz ¹H NMR spectrum (See the following ¹H NMR spectrums).

S36
Preparation of 4-Methoxylbenzoic-2,6- d_2 acid 1b- d_2 .¹⁴ 4-Methoxylbenzoic acid 1b (0.50 mmol, 68 mg), [Ru(O₂CAd)₂(*p*-cymene)] (5 mol %, 14.9 mg) and D₂O (5 mmol, 90 µL) were stirred in 1,4-dioxane (1 mL) at 100 °C for 16 h under N₂ atmosphere. After cooling to room temperature, the residue was diluted with CH₂Cl₂ (8 mL) and passed through a short pad of celite and all the volatiles were removed under reduced pressure and the residue was purified using silica gel column chromatography with n-hexane and EtOAc as an eluent to afford 1b- d_2 [91% D].

Kinetic Isotope Effect Experiments

For C-H Alkenylation

Parallel Experiment: 4-Methoxylbenzoic acid **1b** (15.2 mg) or **1b**- d_2 [91% D] (15.4 mg), 0.1 mmol), MBH alcohol **2a** (0.11 mmol, 12.8 mg), Pd(OAc)₂ (10 mol %, 0.01 mmol, 2.3 mg), Ag₂CO₃ (0.2 mmol, 55 mg) and 1,4-benzoquinone (0.1 mmol, 11 mg) were stirred in HFIP (1 mL) at 110 ° C (in a pre-heated oil bath) in a sealed tube for 2 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (10 mL) and passed through a short celite pad. Evaporation of the solvent gave a residue that was stirred with K₂CO₃ (0.3 mmol, 41.5 mg) and

MeI (0.5 mmol, 31 µL) in acetone (2 mL) at room temperature for 1 h. The solvent was removed under vacuum and purification was performed as described in the general procedure to afford **3ba** and **3ba-d**. The KIE value was determined to be $k_{\rm H}/k_{\rm D} = 2.02$ on the basis of ¹H NMR analysis.

For C-H Alkenylation

Competitive Experiment: 4-Methoxylbenzoic acid **1b** (0.05 mmol, 7.6 mg), 4methoxylbenzoic acid- d_2 **1b**- d_2 [91% D] (0.05 mmol, 7.7 mg), MBH alcohol **2a** (0.11 mmol, 12.8 mg), Pd(OAc)₂ (10 mol %, 0.01 mmol, 2.3 mg), Ag₂CO₃ (0.2 mmol, 55 mg) and 1,4benzoquinone (0.1 mmol, 11 mg) were stirred in HFIP (1 mL) at 110 °C (in a pre-heated oil bath) in a sealed tube for 2 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (10 mL) and passed through a short celite pad. Evaporation of the solvent gave a residue that was stirred with K₂CO₃ (0.3 mmol, 41.5 mg) and MeI (0.5 mmol, 31 µL) in acetone (2 mL) at room temperature for 1 h. The solvent was removed under vacuum and purification was performed as described in the general procedure to afford a mixture of **3ba/3ba-d**. The KIE value was determined to be $k_{\rm H}/k_{\rm D} = 2.46$ on the basis of ¹H NMR analysis.

For C-H Alkylation

Parallel Experiment 4-Methoxylbenzoic acid (**1b** (15.2 mg) or **1b**-*d*₂ [91% D] (15.4 mg), 0.1 mmol), MBH alcohol **2b** (0.11 mmol, 21 mg), Pd(OAc)₂ (10 mol %, 0.01 mmol, 2.3 mg) and Ag₂CO₃ (0.2 mmol, 55 mg) were stirred in TFE (1 mL) at 110 °C (in a pre-heated oil bath) in a sealed tube for 2 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (10 mL) and passed through a short celite pad. Evaporation of the solvent gave a residue that was stirred with K₂CO₃ (0.3 mmol, 41.5 mg) and MeI (0.5 mmol, 31 µL) in acetone (2 mL) at room temperature for 1 h. The solvent was removed under vacuum and purification was performed as described in the general procedure to afford **4bb** and **4bb**-*d*. The KIE value was determined to be $k_{\rm H}/k_{\rm D} = 2.56$ on the basis of ¹H NMR analysis.

For C-H Alkylation

Competitive Experiment: 4-Methoxylbenzoic acid **1b** (0.05 mmol, 7.6 mg), 4methoxylbenzoic acid- d_2 **1b**- d_2 [91% D] (0.05 mmol, 7.7 mg), MBH alcohol **2a** (0.11 mmol, 21 mg), Pd(OAc)₂ (10 mol %, 0.01 mmol, 2.3 mg) and Ag₂CO₃ (0.2 mmol, 55 mg) were stirred in TFE (1 mL) at 110 °C (in a pre-heated oil bath) in a sealed tube for 2 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (20 mL) and passed through a short celite pad. Evaporation of the solvent gave a residue that was stirred with K₂CO₃ (0.3 mmol, 41.5 mg) and MeI (0.5 mmol, 31 µL) in acetone (2 mL) at room temperature for 1 h. The solvent was removed under vacuum and purification was performed as described in the general procedure to afford a mixture of **4bb/4bb**-*d*. The KIE value was determined to be $k_{\rm H}/k_{\rm D} = 2.12$ on the basis of ¹H NMR analysis.

Control Experiment (1)

For C-H Alkenylation: 4-Methoxylbenzoic acid 1b (0.1 mmol, 15.2 mg, 1.0 equiv), prop-2en-1-ol 2p (0.11 mmol, 6.4 mg, 1.1 equiv), Pd(OAc)₂ (0.01 mmol, 2.3 mg, 0.1 equiv), Ag₂CO₃ (0.2 mmol, 55 mg, 2.0 equiv) and 1,4-benzoquinone (0.1 mmol, 11 mg, 1.0 equiv) were stirred in HFIP (1 mL) at 110 ° C (in a pre-heated oil bath) in a sealed tube for 12 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (20 mL) and passed through a short celite pad. Evaporation of the solvent gave a residue that was stirred with K₂CO₃ (0.3 mmol, 41.5 mg, 3.0 equiv) and MeI (0.5 mmol, 31 µL, 5.0 equiv) in acetone (2 mL) at room temperature for 3 h. The formation of **3ba** was not observed.

For C-H Alkylation: 4-Methoxylbenzoic acid 1b (0.1 mmol, 15.2 mg, 1.0 equiv), 1phenylprop-2-en-1-ol 2q (0.11 mmol, 14.8 mg, 1.1 equiv), $Pd(OAc)_2$ (0.01 mmol, 2.3 mg, 0.1 equiv) and Ag_2CO_3 (0.2 mmol, 55 mg, 2.0 equiv) were stirred in TFE (1 mL) at 110 °C (in a pre-heated oil bath) in a sealed tube for 12 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (20 mL) and passed through a short celite pad. Evaporation of the solvent gave a residue that was stirred with K_2CO_3 (0.3 mmol, 41.5 mg, 3.0 equiv) and MeI (0.5 mmol, 31 μ L, 5.0 equiv) in acetone (2 mL) at room temperature for 3 h. The formation of **4bq** was not observed.

This outcome highlights that the ester moiety plays an essential role of in the reaction by aiding the migratory insertion step in the catalytic cycle.

Control Experiment (2)

For C-H Alkenylation: Methyl 4-methoxybenzoate 1b' (0.1 mmol, 16.6 mg, 1.0 equiv), methyl 2-(hydroxymethyl)acrylate 2a (0.11 mmol, 12.8 mg, 1.1 equiv), $Pd(OAc)_2$ (0.01 mmol, 2.3 mg, 0.1 equiv), Ag_2CO_3 (0.2 mmol, 55 mg, 2.0 equiv) and 1,4-benzoquinone (0.1 mmol, 11 mg, 1.0 equiv) were stirred in HFIP (1 mL) at 110 ° C (in a pre-heated oil bath) in a sealed tube for 12 h. The formation of **3ba** was not observed.

For C-H Alkylation: Methyl 4-methoxybenzoate 1b' (0.1 mmol, 16.6 mg, 1.0 equiv), methyl 2-(hydroxy(phenyl)methyl)acrylate 2b (0.11 mmol, 21 mg, 1.1 equiv), $Pd(OAc)_2$ (0.01 mmol, 2.3 mg, 0.1 equiv) and Ag_2CO_3 (0.2 mmol, 55 mg, 2.0 equiv) were stirred in TFE (1 mL) at 110 °C (in a pre-heated oil bath) in a sealed tube for 12 h. The formation of 4bb was not observed.

Control Experiment (3)

4-Methylbenzoic acid **1a** (0.1 mmol, 13.6 mg, 1.0 equiv), methyl 2-benzoylacrylate **2b'** (0.11 mmol, 21mg, 1.1 equiv), $Pd(OAc)_2$ (0.01 mmol, 2.3 mg, 0.1 equiv) and Ag_2CO_3 (0.2 mmol, 55 mg, 2.0 equiv) were stirred in TFE (1 mL) at 110 °C (in a pre-heated oil bath) in a sealed tube for 12 h. The formation of alkylated **4ab** was not formed.

Control Experiment (4)

4-Methylbenzoic acid **1a** (0.1 mmol, 13.6 mg, 1.0 equiv), methyl 2-(hydroxy(phenyl)methyl-*d*) acrylate **2b**-*d*₁ (0.11 mmol, 21.2 mg, 1.1 equiv), $Pd(OAc)_2$ (0.01 mmol, 2.3 mg, 0.1 equiv) and Ag_2CO_3 (0.2 mmol, 55 mg, 2.0 equiv) were stirred in TFE (1 mL) at 110 °C (in a pre-heated oil bath) in a sealed tube for 12 h. In the isolated alkylated product **4ab**, no deuteration incorporation was observed.

Determination of CO₂ Evolution using GC Analysis. 4-Methylbenzoic acid 1a (2.0 mmol, 272 mg, 1.0 equiv), methyl 2-(hydroxymethyl)acrylate 2a (2.2 mmol, 255 mg, 1.1 equiv), $Pd(OAc)_2$ (0.2 mmol, 45 mg, 0.1 equiv), Ag_2CO_3 (4 mmol, 1.1 g, 2.0 equiv) and 1,4-benzoquinone (2 mmol, 216 mg, 1.0 equiv) were stirred in HFIP (5 mL) at 110 °C (in a preheated oil bath) in a sealed tube for 12 h. The pressure tube was cooled to 0 °C, the evolved gas was syringed out and detected by PerkinElmer clarus590 GC instrument using Elite Plot-Q column (30 m length x 530 µm x 20 µm ID) with the following conditions:

TCD starting temperature: 40 °C Oven temperature: 60 °C Time at starting temperature: 0 min Hold time: 5 min Ramp: 28 °C/ min up to 200 °C Flow rate: 5 ml/ min (N₂) Split ration: 20 Inlet temperature: 40 °C Detector temperature TCD: 200 °C

Gas Chromatograms:

References

- Bhattacharyya, H.; Saha, S.; Verma, K.; Punniyamurthy, T. Redox-Neutral Site-Selective C–H Allylation and Iodolactonization of Benzoic Acids Using Morita-Baylis-Hillman Adducts in Water. *Org. Lett.* 2023, *25*, 6830.
- Xu, X.; Li, R.-P.; Zhang, Z.; Gong, X.; Zheng, Y.; Tang, S. Regioselective Synthesis of Multisubstituted 2,3-Dihydrooxazoles by 1,3-Dithiane Umpolung. Org. Lett. 2024, 26, 6825.
- Zhang, J.; Loh, T.-P. Ruthenium- and Rhodium-Catalyzed Cross-Coupling Reaction of Acrylamides with Alkenes: Efficient Access to (*Z*,*E*)-Dienamides. *Chem. Commun.* 2012, 48, 11232.
- Latorre, A.; Sáez, J. A.; Rodríguez, S.; González, F. V. Study of the Stereoselectivity of the Nucleophilic Epoxidation of 3-Hydroxy-2-Methylene Esters. *Tetrahedron* 2014, *70*, 97.
- Santhosh Reddy, R.; Lagishetti, C.; Kiran, I. N. C.; You, H.; He, Y. Transition-Metal-Free Cascade Synthesis of 4-Quinolones: Umpolung of Michael Acceptors *via* Ene Reaction with Arynes. *Org. Lett.* 2016, *18*, 3818.
- Zhu, B.; Yan, L.; Pan, Y.; Lee, R.; Liu, H.; Han, Z.; Huang, K.-W.; Tan, C.-H.; Jiang, Z. Lewis Base Catalyzed Enantioselective Allylic Hydroxylation of Morita-Baylis-Hillman Carbonates with Water. *J. Org. Chem.* 2011, *76*, 6894.

- Bouzide, A. Magnesium Bromide Mediated Highly Diastereoselective Heterogeneous Hydrogenation of Olefins. Org. Lett. 2002, 4, 1347.
- 8. Schmidt, Y.; Breit, B. Stereoselective and Diversity-oriented Synthesis of Trisubstituted Allylic Alcohols and Amines. *Chem.-Eur. J.* **2011**, *17*, 11789.
- 9. Dočekal, V.; Šimek, M.; Dračínský, M.; Veselý, J. Decarboxylative Organocatalytic Allylic Amination of Morita-Baylis-Hillman Carbamates. *Chem.-Eur. J.* **2018**, *24*, 13441.
- Sekiguchi, Y.; Yoshikai, N. Zinc-Catalyzed β-Functionalization of Cyclopropanols via Enolized Homoenolate. J. Am. Chem. Soc. 2021, 143, 18400.
- 11. Basavaiah, D.; Gowriswari, V. V. L.; Sarma, P. K. S.; Dharma Rao, P. Chiral Acrylates as Substrates in Baylis-Hillman Reaction. *Tetrahedron Lett.* **1990**, *31*, 1621.
- 12. Tomita, D.; Wada, R.; Kanai, M.; Shibasaki, M. Enantioselective Alkenylation and Phenylation Catalyzed by a Chiral CuF Complex. *J. Am. Chem. Soc.* **2005**, *127*, 4138.
- De Fusco, C.; Fuoco, T.; Croce, G.; Lattanzi, A. Noncovalent Organocatalytic Synthesis of Enantioenriched Terminal Aziridines with a Quaternary Stereogenic Center. *Org. Lett.* 2012, 14, 4078.
- Müller, V.; Weck, R.; Derdau, V.; Ackermann, L. Ruthenium(II)-catalyzed Hydrogen Isotope Exchange of Pharmaceutical Drugs by C-H Deuteration and C-H Tritiation. *ChemCatChem* 2020, *12*, 100.

NMR (¹H, ¹³C and ¹⁹F) Spectra

HBH-282-P-1H

HBH-295-P-19F.1.fid

4 985 4 985 4 985 4 985 4 985 4 985 4 985 4 985 4 985 4 985 4 985 5 729 4 985 5 729 4 985 5 729 4 985 5 729 5

HBH-255-P-1H.1.fid

5.0 1.5 11.0 10.5 10.0 6.0 5.5 f1 (ppm) 9.5 9.0 8.5 8.0 7.5 7.0 6.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

S82

77,958 77,958 77,952 77,952 77,853 77,853 77,853 77,843 77,843 77,843 77,843 77,843 77,843 77,843 77,843 77,843 77,843 77,843 77,843 77,843 77,843 77,705 72,705 72

S92

HBH-315-A-19F.1.fid

110 100 f1 (ppm)