## A First-Principles Investigation of Substrate Oxidation Effects on the Catalytic Activity of Co Single-Atom Supported on C<sub>2</sub>N for Oxygen Evolution Reaction

Yifei Rao<sup>a,b</sup>, Li Sheng<sup>a</sup>, Yanan Zhou<sup>c\*</sup>, Wenhua Zhang<sup>a,b\*</sup>

<sup>a</sup> Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

<sup>b</sup> Department of Materials Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China

<sup>c</sup> School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China

## **Computational Details**

First-principles calculations are performed by using spin-polarized density functional theory (DFT) in the Perdew–Burke–Ernzerholf (PBE) generalized gradient approximation (GGA) as implemented in the Vienna ab initio simulation package (VASP).<sup>1-3</sup> The DFT + U calculations were performed and the value of U-J is 3.5 for Co.<sup>4-6</sup> The projected augmented wave method is used with a kinetic energy cutoff of 400 eV. The DFT-D3 method was used to describe van der Waals interactions.<sup>7</sup> The solvent effect was considered via implicit solvent model (VASPsol).<sup>8</sup>  $3 \times 3 \times 1$  k-point grid with Monkhorst-Pack sampling model is used for all structural optimization work.<sup>9</sup> The energy convergence limit is set to  $10^{-5}$  eV/atom, with a force convergence criterion of 0.02 eV/Å. Structures are relaxed at the same initial guess of overall magnetic moments, and the resulting minimum energy structures are used for all analyses.

The Gibbs free energy ( $\Delta G$ ) was defined as  $\Delta G = \Delta E + \Delta ZPE - T\Delta S - eU + \Delta G_{pH}$ , where  $\Delta E$ ,  $\Delta ZPE$  and  $\Delta S$  represented the reaction energy, the difference in zero-point energies (*ZPE*), the difference in entropy obtained from vibrational frequency calculations, respectively. *eU* represents the effect of the electrode potential measured against the standard hydrogen electrode (SHE).  $\Delta G_{pH}$  is the correction of free energy of H<sup>+</sup> with respect to concentration, which can be determined as  $\Delta G_{pH} = 2.303 \times k_B T \times$ *p*H, where  $k_B$  is the Boltzmann constant. Our current calculations are all based on standard conditions (T = 298.15 K, P = 1 bar, pH = 0). The entropies of gas phase H<sub>2</sub>, and H<sub>2</sub>O were obtained from the NIST database (Computational Chemistry Comparison and Benchmark Database. <u>http://cccbdb.nist.gov/</u>) with standard condition.

Under ideal conditions, the OER reaction with a total energy change of 4.92 eV can be driven at 1.23 V, while the  $\Delta G$  of each elementary reaction would be equally divided into 1.23 eV.<sup>10</sup> Therefore, the overpotential  $\eta$  is introduced to represent additional required potential and measure the catalytic activity of materials, which is defined in theoretical calculations as $\eta = \Delta G_{max}/e - 1.23$  V.

## The polarization curves simulation of OER

For a given electrochemical process  $O + ne \rightleftharpoons R$  under one electric potential U, it can be used the well-known Nerst equation to link the concentrations of the reactant and the product by the following equation:<sup>11</sup>

$$U = U_0 + \frac{RT}{nF} ln^{[f_0]} (\frac{C_0}{C_R})$$

Here,  $U_0$  refers to the equilibrium potential of the reaction at the standard state, R refers to the universal gas constant, T refers to the temperature, n refers to the electron transfer number, F refers to the Faraday constant, and  $C_0/C_R$  refers to the concentration of the reactant/product in this reaction.<sup>12</sup> Therefore, the exchange current density  $j_0$  can be calculated by the following equation:

$$j_0 = nFkC_0 \exp\left[-\frac{\alpha F}{RT}(U_{eq} - U_0)\right] = nFkC_0^{1-\alpha}C_R^{\alpha}$$

where k refers to the reaction rate constant,  $U_{eq}$  refers to the equilibrium potential, and  $\alpha$  refers to the transfer coefficient. So, the electrochemical polarization equation can be defined by equation:

$$j = j_0 \left[ \exp^{[i0]} \left( -\frac{\alpha F}{RT} \eta \right) - \exp^{[i0]} \left( \frac{(1-\alpha)F}{RT} \eta \right) \right]$$

where  $\eta = U - U_{eq}$  refers to the overpotential deviated from the equilibrium potential and *j* of the overall current density. The exchange current density  $j_0$  can be used to evaluate the catalytic activity of one catalyst. Following the electrochemical catalysis mode developed by Nørskov<sup>10</sup>, the reaction rate constant *k* can be defined as follows:

$$k = k_0 exp \left[ -\frac{\Delta G_{max}}{k_b T} \right]$$

where  $k_b$  and  $\Delta G_{\text{max}}$  refers to the Boltzmann constant and the Gibbs free energy change of the potential-determining step, respectively. In the electrochemical polarization model<sup>13</sup>,  $k_0$  is defined as the equation:

$$k_0 = \frac{k_b T}{h}$$

where *h* refers to the Planck constant. Therefore, the exchange current density  $j_0$  of the electrochemical reaction when the reaction approaches its equilibrium state can be described as the following equation:

$$j_0 = nFC_0 \frac{k_b T}{h} exp \left[ -\frac{\Delta G_{max}}{k_b T} \right]$$

Hence, the overall current density *j* can be calculated by the follows equation according to the overpotential  $\eta^{10}$ :

$$j = \mathrm{nFC}_{O} \frac{k_{b}T}{h} \exp\left[-\frac{\Delta G_{max}}{k_{b}T}\right] \left[\exp^{\frac{i\pi i}{2}}\left(-\frac{\alpha F}{RT}\eta\right) - \exp\left(\frac{(1-\alpha)F}{RT}\eta\right)\right] \approx \mathrm{nFC}_{O} \frac{k_{b}T}{h} \exp\left[-\frac{\Delta G_{max}}{k_{b}T} - \frac{\alpha F}{RT}\eta\right]$$

The OER need to overcome the reaction kinetic energy barriers, and the onset potential generally represents the reaction potential at which the current begins to deviate from the baseline.<sup>14</sup> In this work, the calculated polarization curves for the OER was calculated as literature reported.<sup>15</sup>



Fig. S1. The differential charge density maps of  $Co@C_2N$  adsorbing different intermediates. The presence of Co atoms alters the electronic structure of the C sites, and conversely, when the C sites are occupied by  $O_{bri-C}$  species, they significantly affect the electronic structure of the Co atoms.



Fig. S2. The possible evolution of intermediates  $2*OH+*OH_C$  and the corresponding free energy change.



**Fig. S3**. The formation steps of a) the first  $O_{bri-C}$  and b) the second  $O_{bri-C}$ . Their corresponding energy requirements (eV) are also given out.



**Fig. S4.** The optimized structure of 2\*OH-Co@xO-C $_2$ N (x = 4, 6, 7, 8, 12). When  $x \le 6$ , \*O<sub>bri-C</sub> exists in the form of ether oxygen. When x > 6, the additional \*O<sub>bri-C</sub> exists in the form of epoxy oxygen.



Fig. S5. The free energy required for the evolution of intermediates on the Co single atom.



**Fig. S6.** a) The variation in overpotentials for different pathways as the coverage of  $*O_{bri-C}$  increases. b) Changes in the charge state of the Co atom and the overall charge state of the Co-2\*OH cluster. c) Showing the *d*-orbital of the Co center in the 2\*OH-Co@xO-C<sub>2</sub>N system (x = 0, 4, 6, 7, 8, 12). The auxiliary lines in the figure show the changes in the *d*-band center of the Co atom.



Fig. S7. The energy profile of a) path A and b) path B in the  $2*OH-Co@xO-C_2N$  system (x = 0, 4, 6, 7, 8, 12).



Fig. S8. a) The adsorption free energy of \*OH on the C site (\*OH<sub>C</sub>). b) The evolution of \*OH<sub>C</sub> at a voltage of 1.23V.



Fig. S9. The theoretical OER polarization curves of the 2\*OH-Co@xO-C<sub>2</sub>N system.



Fig. S10. a) The linear relationship between the d-band center of Co atoms and the oxidation state of the Co-2\*OH cluster. b) The positive correlation between the difference in adsorption free energy of intermediates \*OOH and \*OH ( $\Delta G_{*OOH}$ - $\Delta G_{*OH}$ ) and the overpotential  $\eta$  in the OER cycle of Path A.

| $2*OH-Co@xO-C_2N$ | Path A | Path B | Path C |  |
|-------------------|--------|--------|--------|--|
| x=0               | 0.51   | 0.46   | 0.27   |  |
| <i>x</i> =4       | 0.37   | 0.44   | 0.44   |  |
| <i>x</i> =6       | 0.32   | 0.46   | 0.43   |  |
| <i>x</i> =7       | 0.42   | 0.40   | 0.42   |  |
| <i>x</i> =8       | 0.41   | 0.40   | 0.42   |  |
| x=12              | 0.45   | 0.47   | 0.41   |  |
|                   |        |        |        |  |

**Table S1.** The overpotentials for different pathways as the coverage of \*O<sub>bri-C</sub> increases.

| $2*OH-Co@xO-C_2N$ | $\Delta G_{*OOH}$ - $\Delta G_{*OH}$ |  |
|-------------------|--------------------------------------|--|
| <i>x</i> =0       | 3.29                                 |  |
| <i>x</i> =4       | 3.01                                 |  |
| <i>x</i> =6       | 3.00                                 |  |
| <i>x</i> =7       | 3.05                                 |  |
| <i>x</i> =8       | 3.07                                 |  |
| <i>x</i> =12      | 3.16                                 |  |

**Table S2.** The adsorption free energies between the intermediates \*OOH and \*OH  $(\Delta G_{*OOH} - \Delta G_{*OH})$  of Path A in the 2\*OH-Co@xO-C<sub>2</sub>N system.

## References

- 1. G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 2. G. Kresse and J. Furthmüller, Comp. Mater. Sci., 1996, 6, 15-50.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 4. F. Zasada, J. Gryboś, W. Piskorz and Z. Sojka, J. Phys. Chem. C, 2018, 122, 2866-2879.
- 5. I. Barlocco, L. A. Cipriano, G. Di Liberto and G. Pacchioni, *Adv. Theor. Simul.*, 2023, 6, 2200513.
- 6. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, *Phys. Rev. B*, 1998, **57**, 1505-1509.
- 7. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132.
- 8. K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias and R. G. Hennig, *J. Chem. Phys.*, 2014, **140**.
- 9. H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188-5192.
- J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, J. Phys. Chem. B, 2004, 108, 17886-17892.
- 11. A.-S. Feiner and A. McEvoy, J. Chem. Educ., 1994, 71, 493.
- 12. Y. Jiao, Y. Zheng, M. Jaroniec and S. Z. Qiao, *Chem. Soc. Rev.*, 2015, 44, 2060-2086.
- 13. H. Ma, X.-Q. Chen, R. Li, S. Wang, J. Dong and W. Ke, Acta Mater., 2017, 130, 137-146.
- 14. Z.-F. Huang, J. Wang, Y. Peng, C.-Y. Jung, A. Fisher and X. Wang, *Adv. Energy. Mater.*, 2017, 7, 1700544.
- B. Wei, Z. Fu, D. Legut, T. C. Germann, S. Du, H. Zhang, J. S. Francisco and R. Zhang, *Adv. Mater.*, 2021, 33, 2102595.