Supporting Information

Revealing CO₂ Adsorption Blocking Mechanism in Flexible Low-Silica Small-pore Zeolites via Three-Dimensional Electron Diffraction

Jian Guo^{a,b}, Chenyang Nie^{b,c}, Shitai Li^{b,c}, Nana Yan^{b*}, Peng Guo^{b,c*}, Zhongmin Liu^{a,b,c}

- a. Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.
- b. National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.
- c. University of Chinese Academy of Sciences, Beijing 100049, China.

Materials

Aluminium hydroxide (99.6 %, Aladdin Chemistry Co., Ltd.), Ludox HS-40 (40 %, Aldrich; suspension in water), Sodium hydroxide (98 %, Aladdin Chemistry Co., Ltd.), NaY zeolites (Nankai University Catalyst Co., Ltd), Potassium hydroxide (85 %, Damao Chemical Reagent Factory), Sodium chloride (Tianjin Fuchen Chemical Reagent Factory), Potassium chloride (Guangdong Guanghua Sci-Tech Co., Ltd). All reagents were used without purification.

Zeolites synthesis and lon-exchange

The synthesis of Na-GIS was based on a reported recipe in the literature,¹ with some modifications. In the typical synthesis of Na-GIS, 0.98 g NaOH was added to 6.65 g deionized water and stirred to dissolve. Then, 0.20 g Al(OH)³ was added and stirred for 1 h. Subsequently, 1.54 g Ludox HS-40 was added and stirred overnight to form a homogeneous gel with a molar ratio of 4.68Na₂O: 1.0Al₂O₃:8 SiO₂:184 H₂O. The gel was transferred into a 50 mL Teflon-lined stainless-steel autoclave and crystallized at 100 °C under rotation at 50 rpm for 72 h. The final Na-GIS was obtained by centrifugation, repeated washing with deionized water, and drying at 100 °C overnight.

K-GIS was prepared by ion exchange of Na-GIS. Na-GIS was fully converted to the K form using 1 M KCI solution at room temperature for 4 h, repeated three times. The resulting K-GIS was obtained by centrifugation, repeated washing with deionized water, and drying at 100 °C overnight.

PHI-type zeolite was synthesized using both K⁺ and Na⁺ ions. Specifically, 0.12 g NaOH and 0.12 g KOH were dissolved in 2.28 g deionized water, followed by the addition of 0.72 g NaY zeolite. The mixture was stirred for 5 h, forming a uniform gel with a molar ratio of $1.8Na_2O$: $0.6K_2O$: $1.0Al_2O_3$:5 SiO₂:81.3 H₂O. This gel was transferred into a 50 mL Teflon-lined stainless-steel autoclave and crystallized at 100 °C for 72 h. The final product was obtained by centrifugation, repeated washing with deionized water, and drying at 100 °C overnight.

Na-PHI and K-PHI were prepared by ion exchange of the above **PHI** zeolite. The zeolite was exchanged into the Na or K form using 1 M NaCl or KCl solution, respectively. K-PHI was prepared by two exchanges at room temperature, each lasting 6 h, while Na-PHI was prepared by seven exchanges at 80 °C, each also lasting 6 h. The final products were obtained by centrifugation, repeated washing with deionized water, and drying at 100 °C overnight. After the exchange, Na-PHI still contained a small amount of K⁺ (Table S1), but all ions were treated as Na⁺ during structural refinement.

Characterization

PXRD data were collected using a PANalytical X'Pert PRO X-ray diffractometer (Cu K α , λ = 1.5418 Å) for phase analysis. SEM images were taken through a Hitachi SU8020 microscope. Chemical composition was determined using a PANalytical Axios advanced X-ray Fluorescence Spectrometer. CO₂, N₂ and CH₄ adsorption/desorption isotherms were performed on a Micrometrics 3FLEX instrument. Before tests, all the samples were degassed at 350 °C for 4 h under vacuum. Isotherms were measured at 25 °C and the equilibration interval of each point was set to 40 s.

Structural Analysis

cRED data were collected on a JEOL 2100 Plus TEM equipped with an ASI Cheetah120 detector. The raw data were analyzed using the X-ray Detector Software (XDS)². The initial structural models were solved by using SHELXT³, and the subsequent determination of cation locations and structure refinement were conducted by using SHELXL³.

Theoretical calculation

The molecular dynamics annealing simulations⁴ were performed by placing 19 CO₂ molecules into $2 \times 2 \times 2$ unit cells. The Universal Force Field was used for the simulation. The annealing process was conducted with a maximum temperature of 227 °C and a target temperature of 27 °C for a total of 50 cycles, with five ramps performed in each cycle. Each ramp allowed 100 dynamic steps, for a total of 50,000 steps.

Breakthrough experiments

Breakthrough experiments for CO_2/CH_4 and CO_2/N_2 mixtures were performed on BSD-MAB instrument from Beishide Instrument Technology (Beijing) Co., Ltd. The samples were loaded into the quartz tube with a diameter of 2 mm. Before tests, the samples were activated at 350 °C under vacuum for 4 h. All tests were carried out at 25 °C and 1bar with a flow rate of 5 mL/min. Argon (5 ml/min) was used as the reference gas to stabilize the gas flow and was directed through a separate tube, bypasses the sample bed. The outlet gas mixture was detected by a mass spectrometer.

Table of Contents

Table S1. Chemical compositions of four types of zeolites in this work	
measured by XRF.	S5
Table S2. The cRED details of structural refinement for Na-GIS-DH.	S6
Table S3. The cRED details of structural refinement for K-GIS-DH.	S7
Table S4. Breakthrough results of CO_2/CH_4 $~(5/95$, v/v $)$ $~$ and CO_2/N	2
(15/85 $$, v/v $)$ on K-GIS at 25 °C and 1 bar with a total flow	v rate of
5 ml/min.	S8
Table S5. The cRED details of structural refinement for Na-PHI-DH.	S9
Table S6. The ion occupancy and multiplicity at different 8-rings in PHI	-type
zeolites.	S10
Table S7. The cRED details of structural refinement for K-PHI-DH.	S11
Figures	
Fig. S1. (a) PXRD patterns of GIS -type zeolites. (b) SEM image of as-	
synthesized Na-GIS.	S12
Fig. S2. (a) 3D reciprocal lattice of K-GIS-DH. (b-d) Three slices hk0, 0	kl, and
hhl extracted from the reconstructed reciprocal lattice.	S12
Fig. S3. CO ₂ adsorption sites in K-GIS by theoretical calculation.	S13
Fig. S4. Experimental binary breakthrough curves for a gas mixture of	CO ₂ /N ₂
(15/85, v/v) (left) and CO ₂ /CH ₄ (5/95, v/v) (right) on K-GIS at 25	5 °C
and 1 bar with a total flow rate of 5 ml/min.	S13
Fig. S5. (a) The PXRD patterns of PHI-type zeolites. (b) SEM image of	as-
synthesized PHI.	S14
Fig. S6. The tiling structure of idealized PHI-type framework (left), oto a	and <i>phi</i>
CBUs (middle), 8-ring pore openings (right).	S14
Fig. S7. (a) 3D reciprocal lattice of Na-PHI-DH. (b-d) Three slices hk0,	0 <i>kl</i> ,
and <i>h</i> 0 <i>l</i> extracted from the reconstructed reciprocal lattice.	S15
Fig. S8. (a) 3D reciprocal lattice of K-PHI-DH. (b-d) Three slices hk0, 0	<i>kl</i> , and
h0l extracted from the reconstructed reciprocal lattice.	S15
Fig. S9. N_2 (left) and CH ₄ (right) adsorption isotherms of K-GIS (brown) and K-
PHI (red) at 25 °C.	S16

S4

Table S1. Chemical compositions of four types of zeolites in this work measured by XRF.

Samples	Unit cell compositions
Na-GIS	Na _{5.8} [Si _{10.2} Al _{5.8} O ₃₂]
K-GIS	K _{5.8} [Si _{10.2} Al _{5.8} O ₃₂]
Na-PHI*	Na _{5.5} K _{0.4} [Si _{10.1} Al _{5.9} O ₃₂]
K-PHI	K _{5.8} [Si _{10.2} Al _{5.8} O ₃₂]

* : Na-PHI contained a small amount of K⁺ ions [,] which were ignored during the structural refinement process.

Sample	Na-GIS-DH
Tilt range (°)	-43~64.9
Exposure time/frame (s)	0.3
Number of frames	244
Crystal system	Tetragonal
Space group	P4 ₁ 2 ₁ 2
<i>a</i> (Å)	9.6
b (Å)	9.6
<i>c</i> (Å)	8.9
α (°)	90.0
β (°)	90.0
γ (°)	90.0
V (ų)	823.7
Resolution (Å)	0.84
Completeness (%)	99.6
<i>R_{int}</i> (%)	16.29
Unique Reflections Fo > 4sig (Fo)	423
Parameters	67
Restraints	67
R_1	0.1292
GOF	1.111
CCDC number	2385940

Table S2. The cRED details of structural refinement for Na-GIS-DH.

Sample	K-GIS-DH
Tilt range (°)	-59.9~62.1
Exposure time/frame (s)	0.3
Number of frames	272
Crystal system	Tetragonal
Space group	14 ₁ /a
<i>a</i> (Å)	9.7
b (Å)	9.7
<i>c</i> (Å)	9.4
α (°)	90.0
β (°)	90.0
γ (°)	90.0
V (ų)	891.9
Resolution (Å)	0.84
Completeness (%)	99.5
<i>R_{int}</i> (%)	14.97
Unique Reflections Fo > 4sig (Fo)	260
Parameters	39
Restraints	1
R ₁	0.1222
GOF	1.183
CCDC number	2385938

Table S3. The cRED details of structural refinement for K-GIS-DH.

Binary	Separation				
mixture	CO ₂	N_2	CH₄	Coefficient	
CO ₂ /N ₂	1.8	0.2	-	50.7	
CO ₂ /CH ₄	1.8	-	≈0	Infinite	

Table S4. Breakthrough results of CO_2/CH_4 (5/95, v/v) and CO_2/N_2 (15/85, v/v) on K-GIS at 25 °C and 1 bar with a total flow rate of 5 ml/min.

Sample	Na-PHI-DH		
Tilt range (°)	-63.2~57.2		
Exposure time/frame (s)	0.3		
Number of frames	266		
Crystal system	Monoclinic		
Space group	P2 ₁ /m		
<i>a</i> (Å)	8.1		
b (Å)	13.1		
<i>c</i> (Å)	8.1		
α (°)	90.0		
β (°)	106.7		
γ (°)	90.0		
V (ų)	822.8		
Resolution (Å)	0.95		
Completeness (%)	86		
R _{int} (%)	18.06		
Unique Reflections Fo > 4sig (Fo)	555		
Parameters	143		
Restraints	2		
R_1	0.1695		
GOF	1.508		
CCDC number	2402481		

Table S5. The cRED details of structural refinement for Na-PHI-DH.

Samples	Sit	ie I	Sit	e II	Site	e III	Site	e IV	Total
	Occ ^[a]	Mul ^[b]	atom per unit cell						
Na-PHI-DH	0.42	2	1.00	2	0.46	4	0.61	2	5.9
K-PHI-DH	0.73	2	0.86	2	0.50	4	0.27	2	5.72

Table S6. The ion occupancy and multiplicity at different 8-rings in PHI-type zeolites.

^[a] refers to occupancy. ^[b] refers to multiplicity.

Sample	K-PHI-DH
Tilt range (°)	-69.9~37.4
Exposure time/frame (s)	0.3
Number of frames	239
Crystal system	Monoclinic
Space group	P2 ₁ /m
<i>a</i> (Å)	8.3
b (Å)	13.5
<i>c</i> (Å)	8.3
α (°)	90.0
β (°)	108.2
γ (°)	90.0
V (Å ³)	875.7
Resolution (Å)	0.84
Completeness (%)	73.3
<i>R_{int}</i> (%)	10.33
Unique Reflections Fo > 4sig (Fo)	810
Parameters	144
Restraints	1
R ₁	0.1655
GOF	1.687
CCDC number	2385939

Table S7. The cRED details of structural refinement for K-PHI-DH.

- Fig. S1. (a) PXRD patterns of **GIS**-type zeolites. (b) SEM image of assynthesized Na-GIS.
- *: The simulated PXRD pattern of Na-GIS is derived from the reported structure in the reference.⁵

Fig. S2. (a) 3D reciprocal lattice of K-GIS-DH. (b-d) Three slices of *hk*0, 0*kl*, and *hhl* extracted from the reconstructed reciprocal lattice.

Fig. S3. CO_2 adsorption sites in K-GIS by theoretical calculation.

Fig. S4. Experimental binary breakthrough curves for a gas mixture of CO_2/N_2 (15/85, v/v) (left) and CO_2/CH_4 (5/95, v/v) (right) on K-GIS at 25 °C and 1 bar with a total flow rate of 5 ml/min.

Fig. S5. (a) PXRD patterns of **PHI**-type zeolites. (b) SEM image of assynthesized PHI.

Fig. S6. The tiling structure of idealized **PHI**-type framework (left), *oto* and *phi* CBUs (middle), 8-ring pore openings (right).

Fig. S7. (a) 3D reciprocal lattice of Na-PHI-DH. (b-d) Three slices of hk0, 0kl, and h0l extracted from the reconstructed reciprocal lattice.

Fig. S8. (a) 3D reciprocal lattice of K-PHI-DH. (b-d) Three slices of hk0, 0kl, and h0l extracted from the reconstructed reciprocal lattice.

Fig. S9. N₂ (left) and CH₄ (right) adsorption isotherms of K-GIS (brown) and K-PHI (red) at 25 $^{\circ}$ C.

Reference

- 1. M. D. Oleksiak, A. Ghorbanpour, M. T. Conato, B. P. McGrail, L. C. Grabow, R. K. Motkuri and J. D. Rimer, *Chem. Eur. J*, 2016, **22**, 16078-16088.
- 2. W. Kabsch, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2010, 66, 125-132.
- 3. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2007, 64, 112-122.
- 4. P. Krokidas, E. D. Skouras, V. Nikolakis and V. N. Burganos, *Mol. Simul.*, 2008, **34**, 1299-1309.
- S. Hansen, U. Hakansson and L. Falth, Acta Crystallogr. C Struct. Chem., 1990, 46, 1361-1362.