## Supporting information

## Gefitinib salt/cocrystal with phenolic acids as promising solid-state approach to improve solubility

Yao Zou, <sup>a</sup> Xin Meng, <sup>a</sup> Baoxi Zhang, <sup>a</sup> Hongmei Yu, <sup>a</sup> Guorong He, <sup>b</sup> Ningbo Gong, <sup>\*a</sup> Yang Lu, <sup>\*a</sup> and Guanhua Du <sup>b</sup>

<sup>a</sup> Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

<sup>b</sup> Beijing City Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing 100050, China.

## **Table and Figure of Contents**

Table S1. Hydrogen bond geometrical parameters of crystal structures.

Fig. S1 The DSC thermograms of CCFs.

Fig. S2 FT-IR spectra of GEF, CCFs, and the corresponding synthesized salts/cocrystals.

Fig. S3 Accelerated stability results of (a) GEF, (b) GEF-3-HBA, (c) GEF-FA, (d) GEF-4-HBA, (e)

GEF-35DNB, (f) GEF-SA.

Fig. S4 The PRXD patterns of GEF, GEF–3–HBA, GEF–FA, GEF–4–HBA, GEF–35DNB and GEF–SA before and after dissolution experiment.

Table S1. Hydrogen bond geometrical parameters of crystal structures.

| Connection                              | D····H∕ Å | H···A∕ Å | D····A/ Å | ∠(DHA)/ ° | Symmetry             |
|-----------------------------------------|-----------|----------|-----------|-----------|----------------------|
| GEF-3-HBA                               |           |          |           |           |                      |
| $N_1$ – $H_1$ $\cdots$ $O_4$            | 0.86      | 2.32     | 3.143     | 159       | [x, y, z]            |
| $N_4$ - $H_4$ ···O_5                    | 1.04      | 1.54     | 2.575     | 172       | [x-1, y, z]          |
| $O_6$ - $H_6$ ··· $N_3$                 | 0.82      | 1.92     | 2.715     | 164       | [x, -y+3/2, z+1/2]   |
| GEF-FA                                  |           |          |           |           |                      |
| $N_1$ – $H_1$ ···O <sub>6</sub>         | 0.86      | 2.20     | 3.011     | 157       | [x, -y+1/2, z+1/2]   |
| $N_4$ – $H_4$ ···O <sub>7</sub>         | 1.03      | 1.55     | 2.565     | 169       | [x, y, z]            |
| $O_4 – H_{4B} \cdots N_3$               | 0.82      | 2.07     | 2.874     | 165       | [-x+1, -y+1, -z]     |
| GEF-4-HBA                               |           |          |           |           |                      |
| $N_1$ – $H_{1a}$ ···O <sub>4</sub>      | 0.88      | 2.19     | 3.008     | 155       | [1+x, y-1, z]        |
| $N_1 - H_{1b} \cdots O_6$               | 0.88      | 2.15     | 2.888     | 141       | [1-x, y-1, -z+1]     |
| $O_5 - H_{5b} \cdots N_3$               | 0.84      | 1.68     | 2.492     | 161       | [-x, -y+2, -z+1]     |
| $O_6 - H_6 \cdots N_3$                  | 0.84      | 1.91     | 2.667     | 149       | [x, y, z]            |
| GEF-35DNB                               |           |          |           |           |                      |
| $N_1 – H_1 \cdots O_6$                  | 0.86      | 2.00     | 2.850     | 170       | [x, y, z]            |
| $N_4\!\!-\!\!H_4\!\cdots\!O_7$          | 0.98      | 1.72     | 2.678     | 166       | [x, y, z]            |
| $O_{11} - H_{11A} \cdots N_3$           | 0.82      | 1.72     | 2.505     | 158       | [x, y, z]            |
| GEF-SA                                  |           |          |           |           |                      |
| $N_{1A}\!\!-\!\!H_{1A}\!\cdots\!O_{4C}$ | 0.86      | 1.99     | 2.818     | 160       | [x, y, z]            |
| $N_{1B}\!\!-\!\!H_{1B}\!\cdots\!O_{5C}$ | 0.86      | 2.00     | 2.832     | 162       | [x, y, z]            |
| $N_{3B}\!\!-\!\!H_{3B}\!\cdots\!O_{4A}$ | 0.86      | 1.84     | 2.700     | 174       | [1/2-x, 1-y, -1/2+z] |
| $N_{4A}\!\!-\!\!H_{4A}\!\cdots\!O_{5A}$ | 0.98      | 1.81     | 2.778     | 170       | [1-x, 1/2+y, 1/2-z]  |
| $N_{4B}\!\!-\!\!H_{4B}\!\cdots\!O_{4B}$ | 0.98      | 1.74     | 2.695     | 165       | [x, y, z]            |
| $O_{5D}\!\!-\!\!H_{5D}\!\cdots\!N_{3A}$ | 0.82      | 1.95     | 2.732     | 159       | [1/2+x, 3/2-y, -z]   |
| $O_{6A}\!\!-\!\!H_{6A}\!\cdots\!O_{5A}$ | 0.82      | 1.92     | 2.622     | 143       | [x, y, z]            |
| $O_{6B}\!\!-\!\!H_{6B}\!\cdots\!O_{5B}$ | 0.82      | 1.79     | 2.502     | 145       | [x, y, z]            |
| $O_{6C}$ – $H_{6C}$ ··· $O_{5C}$        | 0.82      | 1.82     | 2.542     | 146       | [x, y, z]            |
| $O_{6D}\!\!-\!\!H_{6D}\!\cdots\!O_{4D}$ | 0.82      | 1.78     | 2.505     | 146       | [x, y, z]            |







Fig. S2 FT-IR spectra of GEF, CCFs, and the corresponding salts/cocrystals.



**Fig. S3** Accelerated stability results of GEF, GEF–3–HBA, GEF–FA, GEF–4–HBA, GEF–35DNB and GEF–SA. (a) high temperature ( $60 \pm 1 \degree$ C); (b) high humidity ( $90 \pm 5\%$ , 25 °C); (c) illumination ( $4500 \pm 500$  lx, 25 °C)



Fig. S4 The PRXD patterns of GEF, GEF–3–HBA, GEF–FA, GEF–4–HBA, GEF–35DNB and GEF–SA before and after dissolution experiment (a)the initial phases; (b) the bottom phases.