Supporting Information

Two multifunctional Dy(III)-based metal-organic frameworks exhibiting proton conduction, magnetic properties and second-harmonic generation

Ya-Qing Liao, Tian-Zheng Xiong, Kang-Le Xie, Huan Zhang, Jun-Jie Hu* and He-Rui Wen

- Table S1. X-ray diffraction crystallographic data for 1 and 2.
- Table S2. Selected bond lengths (Å) and bond angles (°) for 1.
- Table S3. Selected bond lengths (Å) and bond angles (°) for 2.
- **Table S4.** Summary of SHAPE analysis of Dy1 and Dy2 for 1.
- **Table S5.** Summary of SHAPE analysis of Dy1 for **2**.
- Scheme 1. Synthesis of the H₄TPTC-2OMe linker.
- Figure S1. IR spectra for 1 and 2.
- Figure S2 The triangular dodecahedron (TDD-8) coordination geometry Dy^{III} in 1.
- Figure S3 The Muffin coordination geometry of Dy^{III} in 2.
- Figure S4 The 2D layer of MOF 2 from different directions.

Figure S5 The simulated and experimental PXRD patterns of as-synthesized sample of 1 (a) and 2 (b).

- Figure S6 TGA of 1 from 30 °C to 1000 °C.
- Figure S7 TGA of 2 from 30 °C to 1000 °C.
- Figure S8. Plot of proton conductivity vs. RH at 25 °C for 1 (a) and 2 (b).
- Table S6. Nyquist plots for 1 and 2 at different humid (RH%) under 25 °C.
- Table S7. The proton conductivity of 1 and 2 under variable temperature at 98% RH.
- Figure S9. PXRD of compound 1 and 2 after proton conduction.

Figure S10. Temperature dependence of the magnetic susceptibility between 2 and 300 K and χ_{M}^{-1} vs *T* plots of MOFs **1** (a) and **2** (b). Red lines for the Curie–Weiss fitting.

Figure S11. Experimental M versus HT^{-1} plots of 1 (a) and 2 (b) at 2 K.

Figure S12. The in-phase(χ') and out-of-phase (χ'') components of ac magnetic susceptibility for 1 at $H_{dc} = 0$ Oe.

Figure S13. The in-phase(χ') and out-of-phase (χ'') components of ac magnetic susceptibility for 2 at $H_{dc} = 0$ Oe.

Table S8. The fitting parameters α and τ values for 1 and 2 by using CC-FIT software from 2 to 3.5 K at $H_{dc} = 2$ kOe.

Figure 14. Temperature dependence of the in-phase (χ') (a) and out-of-phase (χ'') (b) ac susceptibility for **2** under 2 kOe applied dc field.

Figure 15. $\ln(\chi''/\chi')$ *vs.* T^{-1} of MOF **2** under different frequency.

Materials and General Methods.

Dy(NO₃)₃·6H₂O, dimethylformamide (DMF) and lactic acid adopted were commercially available without additional purification. The H₄TPTC-2OMe ligand employed was synthesized by the previous literature.¹ Elements analyses of C, H and O were performed on an Elementar Vario EL III microanalyzer. Powder X-ray diffraction (PXRD) patterns were carried out on a Rigaku D/Max-2500 diffractometer with a Cu-target tube. and the simulated PXRD patterns were acquired from the Mercury Version 1.4 software (http://www.ccdc.cam.ac.uk/products/mercury). Fourier transform infrared (FTIR) spectra were recorded on an ALPHA (Bruker) spectrophotometer with KBr pellets (400–4000 cm⁻¹). Thermogravimetric analyses (TGA) were conducted with a NETZSCH STA2500 (TG/DTA) thermal analyzer under a N₂ gas flow. The temperature varied from room temperature to 1000 °C at a heating rate of 10 °C/min. Proton conductivity measurements were tested via a quasifour-electrode AC impedance technique utilizing a Solartron 1260 impedance/gain-phase analyzer. The SHG efficiency measurements were carried out on Mini NOTS 1064VT nonlinear optical test system based on powder crystalline samples adopting a modified Kurtz Perry method. Magnetic susceptibilities were obtained using a Quantum Design PPMS model 6000 magnetometer.

Proton Conductivity Measurements.

The AC impedance measurements were carried out on a Solartron 1260 impedance/gainphase analyzer based on a quasi-four-electrode AC impedance technique. The powders of **1** and **2** were pressed into pieces under 0.1 GPa pressure and measured to be 0.63 mm for **1**, 0.86 mm for **2** in thickness and 2.5 mm in diameter by vernier calipers. Both sides of the sample are connected with gold wires through the gold paste. The proton conductivities were obtained by changing the humidity (60–98%) and the temperature (25–50 °C) over a frequency domain of 1–10⁷ Hz. The proton conductivities were obtained by fitting the Nyquist plots using ZView2 software. The proton conductivities were obtained according to the formula: $\sigma = L/(RS)$ ($\sigma =$ proton conductivity (S cm⁻¹), L = thickness (cm) of the circular pellet, S = flat surface area (cm²) of the circular pellets and R = bulk resistance (Ω)). The activation energy (E_a) was calculated according to the formula: $\sigma T = A \exp(E_a/k_BT)$, where σ , *T*, *A*, *E_a*, and *k_B* represent the proton conductivity (S cm⁻¹), absolute temperature (K), Boltzmann constant (eV/K), activation energy(eV), pre-exponential factor, respectively.

-		
	1	2
Formula	$C_{288}H_{248}Dy_{16}O_{160}$	C ₂₄ H ₂₁ DyO ₁₃
Mr	8868.85	679.92
T/K	295	297
cryst syst	Orthorhombic	Triclinic
space group	Fdd2	$P\overline{1}$
a/Å	28.3208(13)	10.0739(5)
b/Å	39.2416(17)	10.1946(5)
$c/{ m \AA}$	16.2646(6)	12.6937(6)
α/deg	90	76.507(1)
β/deg	90	86.196(2)
γ/deg	90	71.856(1)
$V/Å^3$	18075.7(13)	1204.59 (10)
Z	2	2
$D_{calcd}/g \ cm^{-3}$	1.629	1.875
$\mu/{ m mm^{-1}}$	3.338	3.17
F(000)	8624.0	670.457
Crystal size/mm ³	0.23 imes 0.23 imes 0.21	0.20 imes 0.20 imes 0.23
Reflns collected	68161	17781
GOF(F ²)	1.058	1.05
$R_1^{a}/wR_2^{b}[I > 2\sigma(I)]$	0.0256, 0.0665	0.0595, 0.0661
R_1^{a}/wR_2^{b} [all data]	0.0288, 0.0684	0.0409, 0.0646

 Table S1. X-ray diffraction crystallographic data for 1 and 2.

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, {}^{b}wR_{2} = [\sum w(F_{o}^{2} - Fc^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}$

Table S2. Selected bond lengths (Å) and bond angles (°) for 1.

Dy1—O17 ⁱ	2.301 (4)	Dy2—O11	2.286 (5)
Dy1—O6	2.312 (5)	Dy2—O15	2.288 (5)
Dy1—O12 ⁱ	2.330 (5)	Dy2—O5 ⁱⁱⁱ	2.325 (5)
Dy1—O16 ⁱⁱ	2.417 (5)	Dy2—O18 ^v	2.3376 (5)
Dy1—O7	2.420 (7)	Dy2—O13	2.436 (7)
Dy1—O8	2.449 (6)	Dy2—O14	2.487 (6)
Dy1—O4 ⁱⁱⁱ	2.463 (5)	Dy2—O15	2.288 (5)
Dy1—O1 ⁱⁱⁱ	2.607 (5)	Dy2—O18 ^v	2.376 (5)
O17 ⁱ —Dy1—O6	108.4 (2)	O11—Dy2—O15	104.3 (2)
$O17^{i}$ — $Dy1$ — $O12^{i}$	76.38 (18)	O11—Dy2—O5 ^v	80.2 (2)
O6—Dy1—O12 ⁱ	81.19 (19)	O15—Dy2—O5 ^v	78.2 (2)
O17 ⁱ —Dy1—O16 ⁱⁱ	82.10 (17)	O11—Dy2—O18vi	158.9 (2)
O6—Dy1—O16 ⁱⁱ	156.6 (2)	O15—Dy2—O18vi	82.74 (18)
O12 ⁱ —Dy1—O16 ⁱⁱ	81.16 (19)	O5 ^v —Dy2—O18 ^{vi}	81.86 (19)
O17 ⁱ —Dy1—O7	147.7 (2)	O11—Dy2—O13	88.7 (3)
O6—Dy1—O7	85.5 (3)	O15—Dy2—O13	147.2 (3)
O12 ⁱ —Dy1—O7	77.2 (2)	O5 ^{vi} —Dy2—O13	74.4 (3)
O16 ⁱⁱ —Dy1—O7	75.7 (2)	O18 ^{vi} —Dy2—O13	75.8 (3)
O17 ⁱ —Dy1—O8	67.97 (19)	O11—Dy2—O14	75.0 (3)

Symmetry codes: (i) 3/4-x, 1/4+y, 3/4+z; (ii) -1/4+x, 3/4-y, 5/4+z; (iii) 3+x, +y, 1+z; (iv) 3/4-x, -1/4+y, -3/4+z; (v) 1-x, 1/2-y, -1/2+z; (vi) 6+x, +y, -1+z; (vii) 3/2-x, 1/2-y, +z.

Table S3. Selected bond lengths (Å) and bond angles (°) for 2.

Dy1—O2 ⁱⁱ	2.454 (3)	Dy1—O6 ⁱ	2.324 (3)
Dy1—O3	2.337 (3)	Dy1—O7 ⁱⁱⁱ	2.467 (3)
Dy1—O3 ⁱ	2.600 (3)	Dy1—O8 ⁱⁱⁱ	2.494 (3)
Dy1—O4 ⁱ	2.442 (3)	Dy1—O9	2.389 (3)
Dy1—O5	2.309 (3)	$O6^{i}$ —Dy1—O3 ⁱ	70.55 (10)
$O3^{i}$ —Dy1—O2 ⁱⁱ	102.96 (11)	$O6^i$ —Dy1—O4 ⁱ	81.92 (11)
O3—Dy1—O2 ⁱⁱ	143.84 (12)	O6 ⁱ —Dy1—O5	135.42 (11)
$O4^{i}$ — $Dy1$ — $O2^{ii}$	66.53 (11)	O7 ⁱⁱⁱ —Dy1—O2 ⁱⁱ	115.82 (11)
O4 ⁱ —Dy1—O3	122.33 (10)	O7 ⁱⁱⁱ —Dy1—O3	77.95 (11)
O4 ⁱ —Dy1—O3 ⁱ	51.01 (10)	$O7^{iii}$ —Dy1—O3 ⁱ	141.16 (10)
O5—Dy1—O2 ⁱⁱ	71.61 (12)	$O7^{iii}$ — $Dy1$ — $O4^i$	144.77 (12)
O5—Dy1—O3	72.75 (12)	O7 ⁱⁱⁱ —Dy1—O5	120.48 (12)
O5—Dy1—O3 ⁱ	72.77 (11)	$O7^{iii}$ —Dy1—O6 ⁱ	77.60 (11)
O5—Dy1—O4 ⁱ	94.15 (12)	O8 ⁱⁱⁱ —Dy1—O2 ⁱⁱ	68.64 (11)
$O6^{i}$ —Dy1—O2 ⁱⁱ	141.14 (12)	O8 ⁱⁱⁱ —Dy1—O3	102.95 (11)
O6 ⁱ —Dy1—O3	72.37 (11)	$O8^{iii}$ —Dy1—O3 ⁱ	158.61 (10)
O8 ⁱⁱⁱ —Dy1—O4 ⁱ	132.58 (10)	O9—Dy1—O3	141.19 (13)
O8 ⁱⁱⁱ —Dy1—O5	85.85 (11)	O9—Dy1—O4 ⁱ	74.43 (12)
O8 ⁱⁱⁱ —Dy1—O6 ⁱ	128.61 (10)	O9—Dy1—O5	145.11 (12)
O8 ⁱⁱⁱ —Dy1—O7 ⁱⁱⁱ	52.15 (10)	O9—Dy1—O6 ⁱ	76.55 (12)
O9—Dy1—O2 ⁱⁱ	73.62 (13)	O9—Dy1—O7 ⁱⁱⁱ	73.11 (13)
O9—Dy1—O3 ⁱ	118.52 (11)	O9—Dy1—O8 ⁱⁱⁱ	78.98 (11)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) *x*, *y*+1, *z*; (iv) -*x*+1, -*y*+2, -*z*; (v) -*x*, -*y*+1, *z*; (vi) *x*+1, *y*, *z*; (vii) *x*, *y*-1, *z*.

T -11	Cl	C	Distortion (τ)	
Label	Snape	Symmetry	Dy1	Dy2
OP-8	Octagon	D_{8h}	32.723	31.584
HPY-8	Heptagonal pyramid	$C_{7\nu}$	22.986	23.020
HBPY-8	Hexagonal bipyramid	D_{6h}	13.228	12.295
CU-8	Cube	Oh	8.394	7.651
SAPR-8	Square antiprism	D_{4d}	2.792	3.424
TDD-8	Triangular dodecahedron	D_{2d}	1.511	1.169
JGBF-8	Johnson gyrobifastigium J26	D_{2d}	14.134	14.559
JETBPY-8	Johnson elongated triangular	D_{3h}	25.221	26.753
JBTPR-8	Biaugmented trigonal prism J50	C_{2v}	3.356	3.616
BTPR-8	Biaugmented trigonal prism	C_{2v}	2.804	2.958
JSD-8	Snub diphenoid J84	D_{2d}	4.102	3.876
TT-8	Triakis tetrahedron	T_d	9.080	8.349
ETBPY-8	Elongated trigonal bipyramid	D_{3h}	21.096	22.214

 Table S4. Summary of SHAPE analysis of Dy1 and Dy2 for 1.

Table S5. Summary of SHAPE analysis of Dy1 for **2**.

Labol	Shana	Symmetry	Distortion (τ)
Laber	Shape	Symmetry	Dy
EP-9	Enneagon	D_{9h}	33.125
OPY-9	Octagonal pyramid	C_{8v}	21.002
HBPY-9	Heptagonal bipyramid	D_{7h}	14.905
JTC-9	Johnson triangular cupola J3	C_{3v}	14.940
JCCU-9	CCU-9 Capped cube J8		9.857
CCU-9	Spherical-relaxed capped cube		8.691
JCSAPR-9	Capped square antiprism J10	C_{4v}	3.474
CSAPR-9	Spherical capped square antiprism	C_{4v}	2.554
JTCTPR-9	Tricapped trigonal prism J51	D_{3h}	4.209
TCTPR-9	CTPR-9 Spherical tricapped trigonal prism		3.497
JTDIC-9	Tridiminished icosahedron J63	C_{3v}	11.560
HH-9	Hula-hoop	C_{2v}	7.413
MFF-9	Muffin	C_s	1.902

Figure S2. The triangular dodecahedron (TDD-8) coordination geometry Dy^{III} in 1.

Figure S3. The Muffin coordination geometry of Dy^{III} in 2.

Figure S4. The 2D layer of MOF 2 from different directions.

Figure S5. The simulated and experimental PXRD patterns of as-synthesized sample of 1 (a) and 2 (b).

Figure S6. TGA of 1 from 30 °C to 1000 °C.

Figure S7. TGA of 2 from 30 °C to 1000 °C.

Figure S8. Plot of proton conductivity vs. RH at 25 °C for 1 (a) and 2 (b).

Table S6. Nyquist plots for 1 and 2 at different humid (RH%) under 25 °C.

Condition	$\sigma (\mathrm{S \ cm^{-1}})$		
Condition —	RE-MOF 1	RE-MOF 2	
60%-25 °С	$2.07 imes 10^{-7}$	2.54×10^{-9}	
70%-25 °C	3.72×10^{-7}	6.54×10^{-9}	
80%-25 °C	1.11×10^{-6}	1.86×10^{-8}	
90%-25 °C	$5.70 imes 10^{-6}$	$2.77 imes 10^{-7}$	
98%-25 °С	$1.45 imes 10^{-5}$	1.36×10^{-6}	

Condition	σ (S cm ⁻¹)		
Condition	RE-MOF 1	RE-MOF 2	
25 °C-98%RH	1.45×10^{-5}	1.36×10^{-6}	
30 °C-98%RH	2.57×10^{-5}	$1.99 imes 10^{-6}$	
35 °C-98%RH	4.50×10^{-5}	$2.65 imes 10^{-6}$	
40 °C-98%RH	6.98×10^{-5}	3.13×10^{-6}	
45 °C-98%RH	1.33×10^{-4}	3.34×10^{-6}	
50 °C-98%RH	1.69×10^{-4}	3.52×10^{-6}	

Table S7. The proton conductivity of 1 and 2 under variable temperature at 98% RH.

Figure S10. Temperature dependence of the magnetic susceptibility between 2 and 300 K and χ_M ¹ vs *I* plots of MOFs 1 (a) and 2 (b). Red lines for the Curie–Weiss fitting.

Figure S11. Experimental M versus HT^{-1} plots of 1 (a) and 2 (b) at 2 K.

Figure S12. The in-phase(χ') and out-of-phase (χ'') components of ac magnetic susceptibility for 1 at $H_{dc} = 0$ Oe.

Figure S13. The in-phase(χ') and out-of-phase (χ'') components of ac magnetic susceptibility for 2 at $H_{dc} = 0$ Oe.

-	Т	α_1	$ au_1$ / s	α_2 / s	$ au_2$ / s
-	2.0 K	0.38	$5.0 imes 10^{-4} \mathrm{s}$	0.12	0.32 s
	2.5 K	0.45	$4.4 imes 10^{-4} s$	0.14	0.21 s
	3.0 K	0.47	$4.2\times 10^{-4}s$	0.23	0.18 s
	3.5 K	0.47	$5.0 imes 10^{-4} s$	0.19	0.12 s

Table S8. The fitting parameters α and τ values for 1 and 2 by using CC-FIT software from 2 to 3.5 K at $H_{dc} = 2$ kOe.

Figure S14. Temperature dependence of the in-phase (χ') (a) and out-of-phase (χ'') (b) ac susceptibility for 2 under 2 kOe applied dc field.

Figure S15. $\ln(\chi''/\chi')$ *vs.* T^{-1} of MOF **2** under different frequency.

Figure S16. The measurement of ferroelectric hysteresis loops of MOF 1.

J. W Liu, X. Han, Y. T. Lu, S. Wang, D. Zhao and C. X. Li, *Inorg. Chem.*, 2021, 60, 4133–4143.