Host compounds based on the rigid 9,10-dihydro-9,10-ethanoanthracene framework: selectivity behaviour in mixed isomeric dichlorobenzenes

Benita Barton,** Mino R. Caira,** Ulrich Senekal,* and Eric C Hosten*

^aDepartment of Chemistry, PO Box 77000, Nelson Mandela University, Port Elizabeth, 6031, South Africa. E-mail: <u>benita.barton@mandela.ac.za</u>

^bDepartment of Chemistry, University of Cape Town, Rondebosch 7701, South Africa. E-mail: mino.caira@uct.ac.za

Figure S1. 1 H-NMR spectra of the duplicated single solvent experiments of o-DCB (a) and m-DCB(b)withH1

Figure S2. 1 H-NMR spectra of the duplicated single solvent experiments of *p*-DCB (a) with H1and*o*-DCB(b)withH2

Figure S3. ¹H-NMR spectra of the duplicated single solvent experiments of *m*-DCB (a) and *p*-DCB

(b) with H2

Figure S4. ¹H-NMR spectra of the duplicated single solvent experiments of o-DCB (a) and m-DCB(b)withH3

Figure S5. ¹H-NMR spectra of the duplicated single solvent experiment of *p*-DCB with H3

Figure S6. o-DCB/m-DCB/p-DCB ternary mixture of the three dichlorobenzene isomers; eluding in the order of m-DCB, o-DCB and p-DCB (the latter two peak overlapped)

b)

Figure S7. Overall H:G ratios for the o-DCB/m-DCB (a), o-DCB/p-DCB (b), m-DCB/p-DCB (c), o-DCB/m-DCB/p-DCB (d) with H1, o-DCB/m-DCB(e), o-DCB/p-DCB(f) competitionexperimentswithH2

DCB/p-DCB (e), o-DCB/m-DCB/p-DCB (f) competition experiments with H3

Figure S9. GC-FID chromatograms of the *o*-DCB/*m*-DCB (a) and *m*-DCB/*p*-DCB (b) binary guest mixtures with H2

Figure S10. 13C-NMR spectra of the o-DCB/p-DCB (a) binary and o-DCB/m-DCB/p-DCB ternaryguestmixtureswithH2

Figure S12. 13C-NMR spectra of the o-DCB/p-DCB (a) binary and o-DCB/m-DCB/p-DCB ternaryguestmixtureswithH3

Figure S13. GC-FID chromatogram (a) and ¹³C-NMR spectrum (b) of the *o*-DCB/*m*-DCB/*p*-DCB ternary guest mixtures with H2; showing the close agreement of the obtained G:G ratios [(6.8% *m*-DCB: 93.2% *o*-DCB/*p*-DCB from GC-FID) and (6.7% *m*-DCB: 58.6% *o*-DCB: 34.7% *p*-DCB from ¹³C-NMR spectroscopy)

b)

Table S1. Duplicate values obtained for the binary and ternary mixtures for H2 and H3, and toluene, ethylbenzene and cumene guests (H1 experiments resulted in the obtainment of vial containing only the apohost)

				H2			H3	
o-DCB	<i>m</i> -DCB	p-DCB	Duplicate #1	Duplicate #2	e.s.d.s (%)	Duplicate #1	Duplicate #2	e.s.d.s (%)
Х	Xb		71.1:28.9	70.0:30.0	(0.6)(0.6)	13.8:86.2	17.7:82.3	(2.0)(2.0)
Х		Xc	64.4:35.6	65.3:34.7	(0.5)(0.5)	43.8:56.2	43.6:56.4	(0.1)(0.1)

	Х	X ^b	49.3:50.7	49.7:50.3	(0.2)(0.2)	88.8:11.2	91.7:8.3	(1.5)(1.5)
<	Х	Xc	58.6:6.7:34.7	60.7:6.1:33.2	(1.1)(0.3)(0.8)	45.8:45.7:8.5	45.2:46.0:8.8	(0.3)(0.1)(0.2)

^aApohost was obtained, the guests were not included

^bThe o-DCB/m-DCB and m-DCB/p-DCB experiments were analyzed using GC-FID ^cThe o-DCB/p-DCB and o-DCB/m-DCB/p-DCB experiments were analyzed using ¹³C-NMR spectroscopy

d)

Figure S14. GC-FID chromatograms of the crystals (left) and mother liquor (right) for the 20:80 (a), 40:60 (b), 50:50 (c), and 60:40 (d)

o-DCB/m-DCB	binary	experiments	with	H2
,	·······			

Figure S15. ¹³C-NMR spectra of the crystals (left) and mother liquor (right) for the 20:80 (a), 40:60 (b), and 50:50 (c) o-DCB/p-DCB

binary experiments with H2

Figure S16. ¹³C-NMR spectra of the crystals (left) and mother liquor (right) for the 60:40 (a) and 80:20 (b) *o*-DCB/*p*-DCB binary experiments with H2

Figure S17. GC-FID chromatograms of the crystals (left) and mother liquor (right) for the 20:80 (a), 40:60 (b), 50:50 (c), and 60:40 (d)*m*-DCB/*p*-DCBbinaryexperimentswithH2

Figure S18. GC-FID chromatograms of the crystals (left) and mother liquor (right) for the 80:20 *m*-DCB/*p*-DCB binary experiments with H2

a)

Figure S19. GC-FID chromatograms of the crystals (left) and mother liquor (right) for the 20:80 (a) and 40:60 (b) o-DCB/m-DCB binaryexperimentswithH3

Figure S20. GC-FID chromatograms of the crystals (left) and mother liquor (right) for the 50:50 (a), 60:40 (a), and 80:20 (b) o-DCB/m-

DCB	binary	experiments	with	Н3
		•		

Figure S21. ¹³C-NMR spectra of the crystals (left) and mother liquor (right) for the 20:80 (a), 40:60 (b), and 50:50 (c) o-DCB/p-DCB

binary experiments	with	H3
--------------------	------	----

Figure S22. ¹³C-NMR spectra of the crystals (left) and mother liquor (right) for the 60:40 (a) and 80:20 (b) *o*-DCB/*p*-DCB binary experiments with H3

Figure S23. GC-FID chromatograms of the crystals (left) and mother liquor (right) for the 20:80 (a), 40:60 (b), and 50:50 (c) m-DCB/p-

DCB	binary	experiments	with	H3
DCD	billary	experiments	VVICII	115

Figure S24. GC-FID chromatograms of the crystals (left) and mother liquor (right) for the 60:40 (a) and 80:20 (b) *m*-DCB/*p*-DCB binary experiments with H3

Binary mixture	Crystal $G_A:G_B$	Mother liquor G _A :G _B	K values
20:80 <i>o</i> -DCB/ <i>m</i> -DCB	0.21:0.79	0.22:0.78	1.04
40:60 <i>o</i> -DCB/ <i>m</i> -DCB	0.41:0.59	0.43:0.57	1.12
50:50 <i>o</i> -DCB/ <i>m</i> -DCB	0.68:0.32	0.61:0.39	1.31
60:40 <i>o</i> -DCB/ <i>m</i> -DCB	0.71:0.29	0.62:0.38	1.51
80:20 <i>o</i> -DCB/ <i>m</i> -DCB	a	а	-
20:80 o-DCB/p-DCB	0.02:0.98	0.18:0.82	10.98
40:60 o-DCB/p-DCB	0.07:0.93	0.41:0.59	9.31
50:50 <i>o</i> -DCB/ <i>p</i> -DCB	0.64:0.36	0.50:0.50	1.82
60:40 <i>o</i> -DCB/ <i>p</i> -DCB	0.66:0.34	0.59:0.41	1.34
80:20 <i>o</i> -DCB/ <i>p</i> -DCB	0.68:0.32	0.80:0.20	1.87
20:80 <i>m</i> -DCB/ <i>p</i> -DCB	0.22:0.78	0.13:0.87	1.91
40:60 <i>m</i> -DCB/ <i>p</i> -DCB	0.36:0.64	0.38:0.62	1.11
50:50 <i>m</i> -DCB/ <i>p</i> -DCB	0.49:0.51	0.49:0.51	1.01
60:40 <i>m</i> -DCB/ <i>p</i> -DCB	0.62:0.38	0.60:0.40	1.10
80:20 <i>m</i> -DCB/ <i>p</i> -DCB	0.80:0.20	0.79:0.21	1.12

Table S2. Data points obtained for the guest/guest (dichlorobenzene) mixtures withcorresponding K values for H2

^aA gel remained in the vial

Binary mixture	Crystal G _A :G _B	Mother liquor G _A :G _B	K values
20:80 <i>o</i> -DCB/ <i>m</i> -DCB	0.03:0.97	0.22:0.78	7.83
40:60 <i>o</i> -DCB/ <i>m</i> -DCB	0.10:0.90	0.42:0.58	6.80
50:50 <i>o</i> -DCB/ <i>m</i> -DCB	0.14:0.86	0.56:0.44	7.89
60:40 <i>o</i> -DCB/ <i>m</i> -DCB	0.17:0.83	0.61:0.39	7.53
80:20 <i>o</i> -DCB/ <i>m</i> -DCB	0.31:0.69	0.80:0.20	8.90
20:80 o-DCB/p-DCB	0.35:0.65	0.20:0.80	2.19
40:60 <i>o</i> -DCB/ <i>p</i> -DCB	0.41:0.59	0.40:0.60	1.05
50:50 <i>o</i> -DCB/ <i>p</i> -DCB	0.44:0.56	0.50:0.50	1.26
60:40 <i>o</i> -DCB/ <i>p</i> -DCB	0.60:0.40	0.59:0.41	1.04
80:20 <i>o</i> -DCB/ <i>p</i> -DCB	0.86:0.14	0.78:0.22	1.74
20:80 <i>m</i> -DCB/ <i>p</i> -DCB	0.83:0.17	0.17:0.83	24.01
40:60 <i>m</i> -DCB/ <i>p</i> -DCB	0.83:0.17	0.37:0.63	8.63
50:50 <i>m</i> -DCB/ <i>p</i> -DCB	0.89:0.11	0.50:0.50	8.09
60:40 <i>m</i> -DCB/ <i>p</i> -DCB	0.95:0.05	0.59:0.41	13.97
80:20 <i>m</i> -DCB/ <i>p</i> -DCB	0.97:0.03	0.79:0.21	9.78

Table S3. Data points obtained for the guest/guest (dichlorobenzene) mixtures with corresponding K values for H3

Interactions	H2·o-DCB	3(H2)∙ <i>m</i> -DCB	H3· <i>m</i> -DCB	Symmetry
(host)π…π(host)	3.511(1) – 3.733(1) Å	3.572(2) Å	3.561(2) Å	
	(2 contacts)	(1 contact)	(1 contact)	
С–Н…π	(H…Cg, X–H…Cg)	(H…Cg, X–H…Cg)	(H…Cg, X–H…Cg)	
(host)C–H…π(host) ^b	2.89 Å, 136°		None	—х, —у, 1—z
(host)C–H…π(host) ^b		2.79 Å, 137°		1–x, y, 1–z
(host)C–H…π(host) ^b		2.93 Å, 137°		1-x, y, 1-z
Ο–Η…π				
(host)O–H…π(host) ^c	2.67 Å, 153°			x, y, z
(host)O–H…π(host) ^c	2.58 A, 161°	9		x, y, z
(host)O–H···π(host) ^c		2.55 A, 154°		x, y, z
$(host)O-H\cdots\pi(host)^{c}$		2.57 A, 165°		x, y, z
(host)O–H··· π (host) ^c			2.54 A, 155°	x, γ, z
(host)O–H…π(host) ^c			2.53 A, 166°	x, γ, z
C–Cl…π	(X···Cg, Y–X···Cg)	(X···Cg, Y–X···Cg)	(X···Cg, Y–X···Cg)	
(host)C–Cl…π(host) ^b	-	-	3.511(1) Å, 94.7(1)°	3/2x, y, 1z
(host)C–Cl…π(host) ^b			3.644(1) Å, 170.1(1)°	3/2x, y, 1z
(host)C–Cl…π(host) ^b			3.418(1) Å, 160.4(1)°	1/2+х, γ, –z
(host)C–Cl…π(host) ^b			3.517(1) Å, 93.8(1)°	1/2+x, y, -z
Short contacts				
(host)C–H…O(host) ^c	2.33 Å, 112°, <<			
(host)C–H…O(host) ^c	2.55 Å, 106°, <<			
(host)C–H…O(host) ^c	2.41 A, 103°, <<			
(host)C–H···O(host) ^c	2.29 A, 102°, <<			
$(host)C-H\cdots O(host)^{c}$	2.41 A, 102°, <<			
(host)C–H···O(host) ^c	2.29 A, 102°, <<			
(host)C–H···O(host) ^c		2.38 A, 111°, <<		
(nost)C–H···O(nost) ^c		2.48 A, 109°, <<		
(nost)C-H···O(nost) ^c		2.43 A, 103°, <<		
(nost)C–H···O(nost) ^c		2.32 A, 102°, <<		
(host)C-H···O(host) ^c		2.38 A, 103 , <<		
$(10st)C = G \dots C = C (host)^{k}$		2.50 A, 105 , <<	2 112 Å 102° ~	1/2_v v _7
$(10st)C = C \cdot C = C(10st)^{b}$			3.443 A, 103 , < 2 65 Å 144° <	1/2-x, y, -2 1-y, 1/2+y, 1/2-z
$(host)(-HH-C(host)^{b}$			2.03 Λ, 144 , < 2.18 Δ 156° <<	⊥─∧, ⊥/∠⊤Ÿ, ⊥/∠─∠ 1/フ+x _1/フ±v 1/フ⊥ァ
$(host)C-HO(host)^{c}$			2.10 Λ, 130 , << 2 34 Å 111° <<	⊥/∠·∧, ⊥/∠⊤¥, ⊥/Z⊤Z
(host)(-HO(host) ^c			2.34 Λ, 111 , << 2 44 Å 108° ~~	
(host)C–H…O(host) ^c			2.77Å 103° <<	
(host)C–H…O(host) ^c			2 29 Å 102° <<	
(host)C–H…O(host) ^c			2.32 Å. 102°. <<	
(host)C–H…O(host) ^c			2.35 Å, 104°, <<	
Hydrogen bonding	(H…A, D–H…A)	(H…A, D–H…A)	(H…A, D–H…A)	
	None	None	None	

Table S4. Host···host forces for the H2·o-DCB, 3(H2)·m-DCB and H3·m-DCB^a

^{*a*}< denotes contacts less than the sum of the van der Waals radii and << contacts less than this sum minus 0.2 Å ^{*b*}Intermolecular interaction

^cIntramolecular

interaction

Table S5. Host…guest and guest…guest forces for the H2·o-DCB, 3(H2)·m-DCB and H3·m-

DCB

Interactions	H2 · <i>o</i> -DCB	3(H2)∙ <i>m</i> -DCB	H3· <i>m</i> -DCB	Symmetry
(host)π…π(guest)	Not significant	Not significant	Not significant	
(guest)π…π(guest)	None	None	None	
С–Н…π	(H···Cg, X–H···Cg)	(H…Cg, X–H…Cg)	(H…Cg, X–H…Cg)	
(host)C–H…π(guest) ^b	2.91 Å, 145°		None	1x, 1y, 1z
(host)C–H…π(guest) ^b		2.75 Å, 160°		x, 1-y, 1-z
C-CI···π	(X···Cg, Y–X···Cg)	(X···Cg, Y–X···Cg)	(X····Cg, Y–X····Cg)	
(guest)C–Cl…π(host) ^D	None	None	3.864(2) A, 134.2(1)°	1/2+x, 1–y, z
Short contacts				
(host)C–H…C–Cl(guest) ^b	2.85 Å, 146°, <			x, y, z
(guest)C–H…C–C(host) ^b	2.74 Å, 133°, <			1/2-x, 1/2+y, 3/2-z
(host)C–H…H–C(guest) ^b		2.35 Å, 161°, <		x, γ, z
(host)C–H…C–Cl(guest) ^b		2.61 Å, 154°, <<		1x, y, 1z
(host)C–H…Cl–C(guest) ^b		2.75 Å, 155°, <<		1–x, 1–y, z
(host)C–H…C–C(guest) ^b		2.84 Å, 134°, <		x, 1–y, 1–z
(guest)C–H…C–C(guest) ^b		2.45 Å, 154°, <<		x, 1–y, 1–z
(guest)C–Cl…C–Cl(guest) ^b		2.51(3) Å, 156(2)°, <<		1–x, y, 2–z
(guest)C–Cl…C–Cl(guest) ^b		2.65(3) Å, 141(2)°, <<		x, 1–y, 2–z
(guest)C–H…C–C(guest) ^b		2.52 Å, 144°, <<		1–x, y, 1–z
(host)C–H…Cl(guest) ^b		2.75 Å, 123°, <<		1–x, y, 1–z
(guest)C–H…H–C(guest) ^b			2.24 Å, 148°, <	3/2-х, у, 1-z

^{*a*}< denotes contacts less than the sum of the van der Waals radii and << contacts less than this sum minus 0.2 Å ^{*b*}Intermolecular interaction