Electronic Supplementary Information

Asymmetric functionalized modification of bi(1,2,4-triazole) towards

high-energy insensitive materials

Wen-Shuai Dong, a Chao Zhang, a Mei-Qi Xu, a Zu-Jia Lu, a Zhi-Min Li, a Qi-Yao Yu *a and Jian-Guo Zhang* a

^a State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing

100081 P. R. China

Table of Contents

1 General methods	2
2. Synthesis steps	2
3. Crystallographic data	4
4 ¹ H NMR and ¹³ C NMR, and IR Spectra	6
5. DSC curve	14
6. Calculation of formation enthalpy	16

1 General methods

¹H and ¹³C spectra were recorded using a 400 MHz nuclear magnetic resonance spectrometer Bruker AVANCE NEO 400 at a frequency of 400.13 MHz and 100.62 MHz, respectively. The melting and decomposition points were obtained at a heating rate of 10°C min⁻¹ and a flow rate of dry nitrogen gas of 50 mL min⁻¹ using a Discovery DSC 25 differential scanning calorimeter from TA Instruments Co. IR spectra were recorded using a Thermoscientific Summit PRO FT-IR in KBr pellets that aim at solids. Densities were determined at 25°C by employing a Micromeritics AccuPycII 1345 gas pycnometer. Elemental analyses were carried out using a Thermo Scientific FLASH 2000 elemental analyzer. The impact and friction sensitivities were measured using a standard BAM fall hammer and a BAM friction tester, respectively.

2. Synthesis steps

Synthesis of compound **2**: At room temperature, 4.0 g ethyl-3-ethoxy-3-iminopropionate hydrochloride (EEIP) and 30 mL anhydrous acetonitrile were added to a 100 mL bottle, stir for half an hour, then 1.0 g of compound **1** and 6 mL of acetic acid were added in sequence, raise the temperature to 81°C, and reflux for another 12 hours. After the reaction was completed, it was cooled to the room temperature, and the solvent was removed under reduced pressure. 50 mL cold water is added, and the mixture was filtrated and dried to obtain yellow compound **2** (1.2 g, 69%). ¹H NMR (DMSO-d₆, 400 MHz, ppm): δ 8.74 (s, 2H, C-*H*), 4.12 (q, *J* = 8.0 Hz, 2H, C*H*₂CH₃-H), 3.94 (s, 2H, C*H*₂-H), 1.19 (t, *J* = 8.0 Hz, 3H, CH₂CH₃-H).¹³C NMR (DMSO-d₆, 100 MHz, ppm): δ 169.9, 143.9, 134.9, 121.6, 101.4, 59.6, 14.1. IR (cm⁻¹) v = 2899, 1743, 1560, 1522, 1473, 1450, 1395, 1370, 1352, 1329, 1286, 1268, 1225, 1189, 1162, 1135, 1099, 1053, 1022, 978, 962, 937, 908, 876, 839, 763, 719, 707, 688, 675, 662, 654, 646, 641, 633, 602. MS (*m*/*z*): calcd for: C₈H₁₀N₆O₂: 222.09 Found: 222.11. Elemental analysis calcd (%) for C₈H₁₀N₆O₂ (222.09): C 43.24, H 4.54, N 37.82 found: C 43.15, H 4.65, N 37.91.

Synthesis of compound **3**: At 0° C, compound **2** (1.0 g, mmol) was slowly added into 5 mL fuming nitric acid, maintained at this temperature for half an hour, and then returned to room temperature and continued reacting for 2 hours. After the reaction was completed, the reaction system was poured into ice water and large amounts of white solids are generated. Filter and

dry to obtain white solid of compound **3** (1.05 g, 75%). ¹H NMR (DMSO-d₆, 400 MHz, ppm): δ 8.86 (s, 1H, C-*H*), 4.61 (q, *J* = 8.0 Hz, 2H, C*H*₂), 1.34 (t, *J* = 8.0 Hz, 3H, C*H*₃). ¹³C NMR (DMSO-d₆, 100 MHz, ppm): δ 156.3, 151.5, 148.1, 146.5, 136.9, 113.9, 66.8, 13.6. MS (*m*/*z*): calcd for: C₈H₈N₈O₆: 312.06 Found: 312.19. Elemental analysis calcd (%) for C₈H₈N₈O₆ (312.06): C 30.78, H 2.58, N 35.89 found: C 30.55, H 2.45, N 35.91.

Synthesis of compound 4: 0.50 g compound **3** dissolved in 20 mL ethanol, methanolic ammonia (2.0 mol/L, 5 mL) solution was added, stirred for 2 hours, and filtered to obtain yellow solid (0.35 g, 85%). ¹H NMR (DMSO-d₆, 400 MHz, ppm): δ 8.40 (s, 1H, C-*H*-H), 7.19 (s, 4H, NH₄⁺-H). ¹³C NMR (DMSO-d₆, 100 MHz, ppm): δ 153.5, 149.4, 135.9, 125.6, 109.3. IR (cm⁻¹) v = 3094, 1558, 1507, 1446, 1354, 1225, 1131, 1105, 1025, 990, 824, 742, 703, 631, 562, 546, 535, 520, 508, 493, 486, 478, 470, 462, 447, 435, 428, 417, 405, MS (*m/z*): calcd for: C₅H₇N₉O₄: 257.06 Found: 257.16. Elemental analysis calcd (%) for C₅H₇N₉O₄ (257.06): C 23.35, H 2.74, N 49.02 found: C 23.25, H 2.85, N 48.91.

Synthesis of compound **5**: 0.50 g compound **3** dissolved in 20 mL ethanol, 2 mL 50% hydroxylamine solution was added, stirred for 2 hours, and filtered to obtain yellow solid (0.37 g, 86%).¹H NMR (DMSO-d₆, 400 MHz, ppm): δ 8.42 (s, 1H, C-*H*-H), 7.10(s, 4H, NH₃OH⁺-H). ¹³C NMR (DMSO-d₆, 100 MHz, ppm): δ 152.7, 150.8, 129.0, 125.0, 118.1. IR (cm⁻¹) v = 3234, 1533, 1499, 1443, 1373, 1239, 1099, 991, 742, 669, 493, 470, 447, 437, 417, 405. MS (*m*/*z*): calcd for: C₅H₇N₉O₅: 273.06. Found: 273.18. Elemental analysis calcd (%) for C₅H₇N₉O₄ (273.06): C 21.98, H 2.58, N 46.15, found: C 22.15, H 2.75, N 45.91.

Synthesis of compound **6**: 0.50 g compound **3** dissolved in 20 mL ethanol, 1 mL 85% hydrazine hydrate was added, stirred for 2 hours, and filtered to obtain yellow solid (0.38 g, 90%).¹H NMR (DMSO-d₆, 400 MHz, ppm): δ 8.37 (s, 1H, C-*H*-H). ¹³C NMR (DMSO-d₆, 100 MHz, ppm): δ 151.3, 135.1, 126.5, 124.3, 105.0. IR (cm⁻¹) ν = 3853, 3735, 3649, 3629, 3243, 1684, 1653, 1559, 1541, 1507, 1234, 1096, 989, 462. MS (*m/z*): calcd for: C₅H₇N₉O₄: 272.07 Found: 272.17. Elemental analysis calcd (%) for C₅H₈N₁₀O₄ (272.07): C 22.06, H 2.96, N 51.46, found: C 22.15, H 3.15, N 51.21.

Synthesis of compound **TNBN**: At 0°C, compound 4 (0.50 g) was dissolved in 5 mL H_2SO_4 , followed by slow addition of fuming nitric acid. After holding at this temperature for half an hour, the reaction warmed to room temperature for overnight. After the reaction was completed, the reacting

solution was poured into ice water to generate a large number of white solids. Filtered and dried to obtain compound **TNBN** (0.36 g, 72%). ¹H NMR (DMSO-d₆, 400 MHz, ppm): δ 8.89 (s, 1H, C-*H*-H). ¹³C NMR (DMSO-d₆, 100 MHz, ppm): δ 153.3, 151.0, 150.4, 148.5, 146.0. MS (*m/z*): calcd for: C₅H₃N₉O₆: 285.02 Found: 285.16. Elemental analysis calcd (%) for C₅H₃N₉O₆ (285.02): C 21.06, H 1.06, N 44.21 found: C 21.15, H 1.17, N 44.11.

3. Crystallographic data

Table S1 Crystal structure data and refined parameters of compounds TNBN.

compound	TNBN
Empirical formula	C5H3N9O6
Formula weight	285.16
Temperature / K	117.40(14)
Crystal system	triclinic
Space group	P-1
a / Å, b / Å, c / Å	9.4075(6), 10.5966(7), 10.7909(7)
$\alpha/^{\circ},\beta/^{\circ},\gamma/^{\circ}$	75.498(6), 87.290(5), 88.701(5)
Volume / Å ³	1040.21(12)
Z	4
$ ho_{calc}$ / mg mm ⁻³	1.821
μ / mm^{-1}	0.166
F(000)	576
Crystal size / mm ³	0.21 imes 0.18 imes 0.13
2θ range for data collection	5.96 to 52°
Index ranges	$-11 \le h \le 11, -12 \le k \le 12, -10 \le l \le 13$
Reflections collected	7528
Independent reflections	3978[R(int) = 0.0284 (inf-0.9Å)]
Data/restraints/parameters	3978/0/361
Goodness-of-fit on F ²	1.070
Final R indexes $[I \ge 2\sigma (I) \text{ i.e. } F_o \ge 4\sigma (F_o)]$	R1 = 0.0427, wR2 = 0.0953
Final R indexes [all data]	R1 = 0.0539, wR2 = 0.1039
Largest diff. peak/hole / e Å ⁻³	0.236/-0.330
Flack Parameters	Ν
Completeness	0.9979
CCDC	2299438

Table S2 Bond lengths for compound TNBN.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
07	N16	1.217(2)	O6	N9	1.215(2)
N13	С9	1.352(3)	O3	N8	1.214(2)
N13	C8	1.329(3)	N5	N6	1.353(2)
011	N18	1.210(2)	N5	C4	1.325(3)

compound '	TNBN					
C7	C8	1.456(3)	C3	C2	1.467(3)	
N12	C7	1.325(3)	C4	C5	1.490(3)	
N18	C10	1.547(3)	N8	C5	1.537(3)	
N11	C6	1.324(3)	N3	C2	1.320(3)	
N11	N12	1.361(2)	N7	C5	1.537(3)	
N10	C6	1.329(3)	N6	C3	1.335(3)	
N10	C7	1.362(3)	O1	N7	1.210(2)	
С9	C10	1.483(3)	N1	C2	1.362(3)	
N16	C10	1.525(3)	N1	C1	1.328(3)	
N16	08	1.210(2)	N4	C3	1.327(3)	
N17	C10	1.528(3)	N4	C4	1.355(3)	
09	N17	1.214(2)	N2	C1	1.321(3)	
012	N18	1.211(2)	N2	N3	1.361(2)	
N15	C8	1.341(2)	O4	N8	1.217(2)	
N14	С9	1.326(3)	N9	C5	1.525(3)	
N14	N15	1.347(2)	N9	05	1.212(2)	
O10	N17	1.213(2)	02	N7	1.217(2)	

Atom	Atom	Length/Å	Atom	Atom	Length/Å
07	N16	1.217(2)	O6	N9	1.215(2)
N13	C9	1.352(3)	O3	N8	1.214(2)
N13	C8	1.329(3)	N5	N6	1.353(2)
011	N18	1.210(2)	N5	C4	1.325(3)
O10	N17	1.213(2)	O2	N7	1.217(2)
N14	N15	1.347(2)	N9	05	1.212(2)
N14	С9	1.326(3)	N9	C5	1.525(3)
N15	C8	1.341(2)	O4	N8	1.217(2)
012	N18	1.211(2)	N2	N3	1.361(2)
09	N17	1.214(2)	N2	C1	1.321(3)
N17	C10	1.528(3)	N4	C4	1.355(3)
N16	08	1.210(2)	N4	C3	1.327(3)
N16	C10	1.525(3)	N1	C1	1.328(3)
С9	C10	1.483(3)	N1	C2	1.362(3)
N10	C7	1.362(3)	01	N7	1.210(2)
N10	C6	1.329(3)	N6	C3	1.335(3)
N11	N12	1.361(2)	N7	C5	1.537(3)
N11	C6	1.324(3)	N3	C2	1.320(3)
N18	C10	1.547(3)	N8	C5	1.537(3)
N12	C7	1.325(3)	C4	C5	1.490(3)
C7	C8	1.456(3)	C3	C2	1.467(3)

4¹H NMR and ¹³C NMR, and IR Spectra

Figure S2. ¹³C NMR spectrum of compound 2 in DMSO-*d*6.

Figure S4. ¹³C NMR spectrum of compound 3 in DMSO-*d*6.

Figure S6. ¹³C NMR spectrum of compound 4 in DMSO-*d*6.

Figure S8. ¹H NMR spectrum of compound 5 in DMSO-d6.

200 190 150 140 130 120 110 100 f1 (ppm)

Figure S10. IR spectrum of compound 5.

Figure S12. ¹³C NMR spectrum of compound 6 in DMSO-d6.

5. DSC curve

Figure S17. the DSC curves of compounds 4.

Figure S18. the DSC curves of compounds 5.

Figure S19. the DSC curves of compounds 6.

Figure S20. the DSC curves of compounds TNBN.

6. Calculation of formation enthalpy

Table S4 Cartesian coordinates of the optimized anions of compounds 4, 5 and 6.

atom	a/ Å	b/ Å	c/ Å
С	-1.78920400	-0.83992600 0.09039000	
С	-1.21129300	1.16843800 0.0047150	
Ν	-2.12652600	0.34058100	-0.48898300
Н	-2.33131900	-1.75890700	-0.08740800
Н	0.39634200	0.87387400	1.34004200
С	-1.04973700	2.58041100	-0.24667500
Ν	-0.11263500	3.34528800	0.27990600
Н	-2.63523100	3.00626600	-1.59696600
С	-0.37634600	4.57735700	-0.25523600
Ν	-1.84008600	3.31160800	-1.05856100
Ν	-1.42825700	4.58871800	-1.07891100
Ν	-0.38717700	0.49349000	0.82941300
Ν	-0.74058600	-0.80531900	0.90058900
С	0.40715700	5.77753000	0.03535600
Ν	0.02878400	6.54126800	1.13459600
0	0.63397700	7.56591100	1.47056200
0	-0.97181300	6.11819900	1.76359500
Ν	1.51366200	6.03273100	-0.76799600
0	1.71740800	5.19715200	-1.68245500
0	2.24657900	7.01362000	-0.59573200
Table S5 Cartesian coord	inates of TNBN.		
atom	a/ Å	b/ Å	c/ Å
0	-4.19105100	15.48673100	11.89392500
Ν	-4.72744500	16.18769000	11.06215900
0	-5.66283100	16.94306500	11.20472600
С	-4.11289400	16.06136100	9.66365200
Ν	-4.18915000	14.55588900	9.32449100
Ν	-5.00653500	16.80042500	8.64864300
С	-2.73857000	16.62149100	9.60092100
0	-5.19971400	13.99361300	9.69083300
0	-3.25019400	14.09299800	8.71559100
0	-5.65545900	16.12303700	7.88127300
0	-4.95974400	18.00770600	8.73250100
Ν	-2.02245200	16.90061100	10.68108000
Ν	-2.15067800	16.88621200	8.41083200
Ν	-0.89801200	17.36896500	10.13456700
С		17 25027000	8.78173700
П	-0.97458000	17.35927900	01/01/0/00
П	-0.97458000 -0.12392500	17.68075300	10.70489200
C H	-0.97458000 -0.12392500 0.13101900	17.33927900 17.68075300 17.82752000	10.70489200 7.96506600
H C N	-0.97458000 -0.12392500 0.13101900 1.27553100	17.33927900 17.68075300 17.82752000 18.28682100	10.70489200 7.96506600 8.55008300
n C N N	-0.97458000 -0.12392500 0.13101900 1.27553100 0.12244600	17.33927900 17.68075300 17.82752000 18.28682100 17.84786000	10.70489200 7.96506600 8.55008300 6.63980300
H C N N C	-0.97458000 -0.12392500 0.13101900 1.27553100 0.12244600 2.01688700	17.35927900 17.68075300 17.82752000 18.28682100 17.84786000 18.61009700	10.70489200 7.96506600 8.55008300 6.63980300 7.51067200

Н	3.01667900	19.02020300	7.53311400
Н	1.62248800	18.48582200	5.41487200

Both **TNBN** and the anions of compounds 4, 5 and 6 were subjected to geometric optimization and vibration analysis at the B3PW91/6-31G** level, and higher precision single point energy calculations were performed again at M062X/def2TZVP. Add the high-precision single point energy and the enthalpy correction obtained from vibration analysis to obtain the corresponding enthalpy of the structure. The calculation principle of the enthalpy of molecular formation is as follows:

$$aC + \frac{b}{2}H_2 + \frac{c}{2}N_2 + \frac{d}{2}O_2 \rightarrow C_aH_bN_cO_d$$

By definition, the enthalpy of formation is the reaction enthalpy of the above equation. The enthalpy of reaction is determined by calculating the difference between the enthalpy of the products and the enthalpy of the reactants. To calculate the enthalpy of each species involved in the reaction, quantum chemistry computational programs such as Gaussian or ORCA can be used. Carbon is a solid at room temperature, but the enthalpy value obtained from quantum chemistry calculation corresponds to its formation in the gaseous state. Subtracting the sublimation enthalpy ($H_{sub}(C)$) from the enthalpy value (H(C)) obtained from quantum chemistry calculation is necessary to determine the enthalpy of carbon in its stable phase (solid). In summary, the formula for calculating the enthalpy of formation using the definition method is as follows:

$$\Delta_{f}H_{m}^{\theta} = \Delta_{r}H_{m}^{\theta} = H(C_{a}H_{b}N_{c}O_{d}) - a[H(C) - H_{sub}(C)] - \frac{b}{2}H(H_{2}) - \frac{c}{2}H(N_{2}) - \frac{d}{2}H(O_{2})$$

All the enthalpy values provided above are enthalpies at 298 K. The enthalpy represented by $H(C_aH_bN_cO_d)$ corresponds to the enthalpy of a single molecule. Therefore, the final result denotes the gas-phase enthalpy of formation of the compound at 298 K.

The enthalpy of formation of anion is calculated using the same principle, while the enthalpy of cation formation is found in the NIST manual. Then, based on Jenkins' empirical formula, the lattice energy of the ionic salt was calculated.

$$U_{\text{POT}}/\text{kJ mol}^{-1} = \gamma (\rho_{\text{m}}/M_{\text{m}})^{1/3} + \delta$$

$$\Delta H_{\text{L}} = U_{\text{POT}} + [p(n_{\text{M}}/2 - 2) + q(n_{\text{X}}/2 - 2)]RT$$

Finally, according to the Born Haber cycle, the enthalpy of ion salt formation can be calculated using the following formula:

$\Delta_{f}H_{m}^{\theta}(salt) = \Delta_{f}H_{m}^{\theta}(cation) + \Delta_{f}H_{m}^{\theta}(anion) - \Delta H_{L}$

Compound	$\Delta_{\rm f} {\rm H}_{\rm m}^{\ \theta}({\rm cation})$	$\Delta_{\rm f} {\rm H}_{\rm m}^{\theta}$ (anion)	H_{L}	$\Delta_{\rm f} {\rm H}_{\rm m}^{\theta}({\rm cmp,air})$	$\Delta_{sub}H_m^{\theta}(kJ/mol)$	$\Delta_{\rm f} {\rm H}_{\rm m}^{\theta}({\rm cmp, solid})$
4	641.8	116.4	489.6	—	_	268.6
5	681.5	116.4	479.8	—	—	318.1
6	759.9	116.4	476.2	—	—	400.1
TNBN	_	_	_	575.8	164.1	411.7

Table S6 The enthalpy of formation of the energetic salts (4, 5 and 6) and compound TNBN.