A Highly Stable Cerium-Organic Framework: Efficient Catalyst for the Cycloaddition of CO₂ and Aziridines under Mild-Pressure

Tongji Liu, Hang Xu, Ying Shi*, Bin Zhao*

Renewable Energy Conversion and Storage Center, Key Laboratory of Advanced Energy Material Chemistry, Department of Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China;

Email: zhaobin@nankai.edu.cn, yingshi@mail.nankai.edu.cn

Materials and measurements

Ce(NO₃)₃·6H₂O, CH₃COONa , Acetic acid, and *N*,*N*-dimethylacetamide (DMA) were purchased commercially and used without purification. The ligand H₂DCTP was synthesized according to our previous work.¹ The X-ray crystallography data were acquired on an Oxford Super Nova TM diffractometer equipped with Mo Ka monochromatic radiation ($\lambda = 0.71073$) (Table S1). The crystal structure of compound 1 was solved by direct methods and refined by the full-matrix least-squares technique on F^2 with the SHELXS and SHELXL crystallographic program package. All the nonhydrogen atoms were fixed by anisotropic thermal parameters. The CCDC number is 2333439. ¹H nuclear magnetic resonance (¹H NMR) spectra were conducted in a 400 MHz Bruker 400 spectrometer in CDCl₃. Fourier transform infrared (FT-IR) spectra were performed on the Nicolet IS10 instrument. Powder X-ray diffraction (PXRD) was carried out with an Ultima IV X-ray diffractometer with Cu-Ka radiation. Thermogravimetric analysis was obtained by an EVO2G-TG TG-DTA analyzer under the air atmosphere. X-ray photoelectron spectroscopy (XPS) analyses were recorded on Thermo Scientific ESCALab250xi.

Figure S1. The pore structure diagram of **1** on the (1,1,0) crystal plane.

Figure S2. Infrared spectra compound 1 and H₂DCTP.

Figure S3. The full survey XPS spectrum of compound 1.

Figure S4. Ce 3d XPS spectrum in compound 1.

Figure S5. Thermogravimetric analysis of compound 1.

Figure S6. PXRD pattern of compound 1 heating at different temperatures.

Figure S7. Powder diffraction data of compound 1.

Figure S8. PXRD pattern of compound 1 after immersing in pH solution for 72 hours.

Figure S9. Powder diffraction data of 1 after five cycles.

Figure S10. The full survey XPS spectrum of 1 before and after the reaction.

Figure S11. Ce 3d XPS spectrum of 1 before and after the reaction.

Figure S12. Thermogravimetric analysis of compound 1 before and after recycle.

Figure S13. CO_2 adsorption-desorption of compound 1.

Figure S14. Kinetic curves of compound 1 for the reaction.

Figure S15. The hot filtration experiment of 1.

Figure S16. The activation of the aziridine substrate, Ce(NO₃)₃ and ligand after 10 h by ¹H NMR spectra.

1
$C_{29}H_{25}CeN_4O_7$
681.65
293.00
monoclinic
C2/c
20.0128(4)
9.15790(10)
32.5211(8)
90
107.560(2)
90
5682.6(2)
8
1.655
2728
5.9 to 50.016
6473
4110 [$R_{(int)} = 0.0193, R_{(sigma)} = 0.0330$]
4110 / 0 / 374
1.032
$R_1 = 0.0251, wR_2 = 0.0568$
$R_1 = 0.0272, wR_2 = 0.0583$

 Table S1. Crystal data and structure refinement details for crystal 1.

		<u> </u>	
Bond	Length/Å	Bond	Length/Å
Cel-O5	2.471(2)	N3-C16	1.324(5)
Ce1-06	2.591(2)	N1-C23	1.326(5)
Ce1-O6 ¹	2.655(2)	N1-C22	1.342(4)
Ce1-O4 ²	2.447(2)	C2-C3	1.394(4)
Ce1-O2 ³	2.516(2)	C2-C7	1.387(5)
Ce1-07 ¹	2.555(2)	C2-C1	1.496(5)
Ce1-O3 ⁴	2.447(2)	C8-C4	1.503(4)
Ce1-O1 ³	2.561(2)	C14-C18	1.393(5)
Ce1-N1	2.705(3)	C14-C11	1.495(5)
O5-C26	1.244(4)	C10-C9	1.393(5)
O6-Ce11	2.655(2)	C3-C4	1.384(4)
O6-C29	1.280(4)	C4-C5	1.386(5)
O4-Ce1 ²	2.447(2)	C12-C13	1.386(5)
O4-C8	1.264(4)	C12-C20	1.493(4)
O2-Ce1 ³	2.516(2)	C5-C6	1.398(4)
O2-C1	1.269(4)	C7-C6	1.396(4)
O7-Ce11	2.555(2)	C19-C23	1.382(5)
O7-C29	1.249(4)	C19-C20	1.394(5)
O3-Ce1 ⁵	2.447(2)	C18-C17	1.380(5)
O3-C8	1.256(4)	C6-C9	1.488(5)
O1-Ce1 ³	2.561(2)	N3-C17	1.343(5)
O1-C1	1.261(4)	C21-C22	1.379(5)
N4-C24	1.447(5)	C29-C28	1.506(5)
N4-C25	1.476(5)	C27-C26	1.495(5)
N4-C26	1.317(5)	C13-C9	1.392(4)
N2-C12	1.351(4)	C16-C15	1.387(5)
N2-C11	1.341(4)	C21-C20	1.373(5)

Table S2. Bond Lengths for 1.

¹1-X,+Y,1/2-Z; ²1/2-X,1/2-Y,-Z; ³1-X,1-Y,-Z; ⁴1/2+X,1/2-Y,1/2+Z; ⁵-1/2+X,1/2-Y,-1/2+Z

Table S3. Angle for 1.

Atom	Angle/°	Atom	Angle/°	Atom	Angle/°
O5-Ce1-O6 ¹	147.14(7)	C29-O6-Ce11	91.8(2)	O2-C1-C2	118.0(3)
O5-Ce1-O6	139.22(7)	C8-O4-Ce1 ³	138.5(2)	O1-C1-O2	122.2(3)
O5-Ce1-O2 ²	85.90(8)	C1-O2-Ce1 ²	92.54(18)	O1-C1-C2	119.8(3)
O5-Ce1-O7 ¹	143.61(8)	C29-O7-Ce11	97.26(19)	O6-C29-C28	119.9(3)
O5-Ce1-O1 ²	69.02(8)	C8-O3-Ce1 ⁵	130.5(2)	O7-C29-O6	120.9(3)
O5-Ce1-N1	80.59(8)	C1-O1-Ce1 ²	90.7(2)	O7-C29-C28	119.2(3)
O6-Ce1-O6 ¹	62.68(8)	C24-N4-C25	114.1(3)	N3-C17-C18	124.3(4)
O6-Ce1-N1	139.27(8)	C26-N4-C24	127.1(4)	C12-C13-C9	119.5(3)

O6 ¹ -Ce1-N1	77.95(8)	C26-N4-C25	118.8(3)	N3-C16-C15	124.8(3)
O4 ³ -Ce1-O5	78.78(8)	C11-N2-C12	117.9(3)	N1-C23-C19	124.1(3)
O4 ³ -Ce1-O6 ¹	70.68(7)	C16-N3-C17	115.5(3)	O5-C26-N4	122.1(4)
O4 ³ -Ce1-O6	103.83(7)	C23-N1-Ce1	121.1(2)	O5-C26-C27	119.6(3)
O4 ³ -Ce1-O2 ²	155.60(7)	C23-N1-C22	116.2(3)	N4-C26-C27	118.3(4)
O4 ³ -Ce1-O7 ¹	115.19(7)	C22-N1-Ce1	122.3(2)	C20-C21-C22	120.1(3)
O4 ³ -Ce1-O3 ⁴	76.88(7)	C3-C2-C1	119.3(3)	C19-C20-C12	122.8(3)
O4 ³ -Ce1-O1 ²	135.46(7)	C7-C2-C3	119.5(3)	C21-C20-C12	120.4(3)
O4 ³ -Ce1-N1	70.17(8)	C7-C2-C1	121.2(3)	C21-C20-C19	116.8(3)
O2 ² -Ce1-O6 ¹	126.91(7)	O4-C8-C4	117.9(3)	N2-C11-C14	115.4(3)
O2 ² -Ce1-O6	75.83(7)	O3-C8-O4	124.9(3)	N2-C11-C10	122.5(3)
O2 ² -Ce1-O7 ¹	88.32(8)	O3-C8-C4	117.2(3)	C10-C11-C14	122.1(3)
O2 ² -Ce1-O1 ²	51.74(7)	C18-C14-C11	120.6(3)	N1-C22-C21	123.5(4)
O2 ² -Ce1-N1	126.08(8)	C15-C14-C18	116.9(3)	C10-C9-C6	120.4(3)
O71-Ce1-O6	72.83(7)	C15-C14-C11	122.5(3)	C13-C9-C10	117.5(3)
O7 ¹ -Ce1-O6 ¹	49.91(7)	C11-C10-C9	119.8(3)	C13-C9-C6	122.0(3)
O7 ¹ -Ce1-O1 ²	79.30(8)	C4-C3-C2	120.5(3)	C14-C15-C16	119.2(4)
O71-Ce1-N1	74.07(8)	C3-C4-C8	119.1(3)	C5-C6-C9	121.2(3)
O3 ⁴ -Ce1-O5	71.83(8)	C3-C4-C5	119.3(3)	C7-C6-C5	118.4(3)
O3 ⁴ -Ce1-O6 ¹	111.38(7)	C5-C4-C8	121.6(3)	C7-C6-C9	120.4(3)
O3 ⁴ -Ce1-O6	69.37(7)	N2-C12-C13	122.6(3)	C23-C19-C20	119.2(3)
O3 ⁴ -Ce1-O2 ²	80.37(8)	N2-C12-C20	114.4(3)	C17-C18-C14	119.3(4)
O3 ⁴ -Ce1-O7 ¹	142.12(8)	C13-C12-C20	123.0(3)	O1 ² -Ce1-O6 ¹	127.23(7)
O3 ⁴ -Ce1-O1 ²	118.51(7)	C4-C5-C6	121.2(3)	01 ² -Ce1-O6	120.68(7)
O3 ⁴ -Ce1-N1	140.39(8)	C2-C7-C6	120.8(3)	O1 ² -Ce1-N1	74.79(8)

¹1-X,+Y,1/2-Z; ²1-X,1-Y,-Z; ³1/2-X,1/2-Y,-Z; ⁴1/2+X,1/2-Y,1/2+Z; ⁵1/2+X,1/2-Y,-1/2+Z

 Table S4. ICP results of fresh catalyst

Ce-MOF	Ce ³⁺ (ppm)
Filter liquor of fresh catalyst	1.32

Table S5. ICP results of reaction filtrate

Ce-MOF	Ce ³⁺ (ppm)
Filter liquor after catalytic recycling	0.3542

1-ethyl-2-phenylaziridine

¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.27 (m, 5H), 5.61 (t, *J* = 8.1 Hz, 1H), 4.05 (t, *J* = 8.7 Hz, 1H), 3.59 – 3.36 (m, 3H), 1.31 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.18 (s), 139.37 (s), 129.35 (d, *J* = 12.7 Hz), 126.02 (s), 77.86 (s), 77.54 (s), 77.22 (s), 74.81 (s), 52.12 (s), 39.44 (s), 13.10 (s).

1-propyl-2-phenylaziridine

¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.33 (m, 5H), 5.65 – 5.61 (t, *J* = 8.1 Hz, 1H), 4.06 – 4.04 (t, *J* = 8.7 Hz, 1H), 3.57 – 3.55 (m, 1H), 3.41 – 3.40 (m, 1H), 1.75 – 1.68 (t, *J* = 7.6 Hz, 2H), 1.08 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.60 (s), 139.54 (s), 129.51 (s), 126.10 (s), 77.97 (s), 77.65 (s), 77.34 (s), 74.91 (s), 52.78 (s), 46.44 (s), 21.28 (s), 11.70 (s).

1-butyl-2-phenylaziridine

¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.32 (m, 5H), 5.62 – 5.43 (m, 1H), 3.98 (t, J =

8.7 Hz, 1H), 3.50 (dd, J = 8.6, 7.5 Hz, 1H), 3.37 (dtd, J = 21.1, 13.9, 6.9 Hz, 2H), 1.69
- 1.53 (m, 2H), 1.47 - 1.28 (m, 3H), 1.01 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.12 (s), 139.12 (s), 129.03 (d, J = 13.7 Hz), 125.70 (s), 77.55 (s), 77.23
(s), 76.92 (s), 74.51 (s), 52.38 (s), 44.13 (s), 29.62 (s), 20.04 (s), 13.90 (s).

1-amyl-2-phenylaziridine

¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.34 (m, 5H), 5.57 (t, *J* = 8.1 Hz, 1H), 3.99 (t, *J* = 8.7 Hz, 1H), 3.56 – 3.44 (m, 1H), 3.38 (ddd, *J* = 21.2, 13.8, 6.6 Hz, 2H), 1.65 (dd, *J* = 14.6, 7.3 Hz, 2H), 1.44 – 1.34 (m, 4H), 0.98 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.54 (s), 129.44 (d, *J* = 13.6 Hz), 126.10 (s), 77.94 (s), 77.62 (s), 77.31 (s), 74.91 (s), 52.79 (s), 44.80 (s), 29.36 (s), 27.64 (s), 22.90 (s), 14.57 (s).

2-(4-methphenyl)-1-ethylaziridine

¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.19 (m, 5H), 5.49 (q, J = 8.3 Hz, 1H), 3.93 (q, J = 8.8 Hz, 1H), 3.56 – 3.21 (m, 3H), 2.40 (d, J = 8.6 Hz, 3H); ¹³C NMR (101 MHz,

CDCl₃) δ 139.52 (s), 136.63 (s), 130.35 (s), 126.39 (s), 78.15 (s), 77.83 (s), 77.51 (s), 75.16 (s), 52.46 (s), 39.72 (s), 22.00 (s), 13.41 (s).

2-(4-chlorophenyl)-1-ethylaziridine

¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.32 (m, 4H), 5.65 – 5.41 (m, 1H), 4.00 (t, J = 8.7 Hz, 1H), 3.53 – 3.35 (m, 3H), 1.25 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.74 (s), 137.83 – 137.63 (m), 135.13 – 134.93 (m), 129.54 (s), 127.31 (s), 77.75 (s), 77.43 (s), 77.12 (s), 73.99 (s), 51.93 (s), 39.36 (s), 12.97 (s).

2-(4-bromophenyl)-1-ethylaziridine

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.25 (m, 4H), 5.60 – 5.36 (m, 1H), 3.95 (t, J = 8.7 Hz, 1H), 3.48 – 3.14 (m, 3H), 1.20 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.64 (s), 137.73 – 137.53 (m), 135.03 – 134.83 (m), 129.44 (s), 127.21 (s), 77.65 (s), 77.33 (s), 77.02 (s), 73.89 (s), 51.83 (s), 39.26 (s), 12.87 (s).

References

 Z. L. Wu, C. H. Wang, B. Zhao, J. Dong, F. Lu, W. H. Wang, W. C. Wang, G. J. Wu, J. Z. Cui and P. Cheng, *Angew. Chem. Int. Ed.*, 2016, 55, 4938–4942.