Supplementary Information

Semimetallic electrical properties of rock-salt type LaBi thin film grown by solidphase reaction of La/Bi multilayer precursor

Kenshin Yoshikawa,^a Hideyuki Kawasoko,^{a,b,*} and Tomoteru Fukumura^{a,c,d,*}

^a Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

^b PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan

^c WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

^d Center for Science and Innovation in Spintronics, Tohoku University, Sendai 980-8577, Japan

* hideyuki.kawasoko.b7@tohoku.ac.jp

* tomoteru.fukumura.e4@tohoku.ac.jp

Fig. S1 Two-dimensional X-ray diffraction pattern for LaBi thin film with $T_{\rm g} = 800$ °C.

Fig. S2 Magnetic field dependence of Hall resistivity for LaBi thin film at 2 K. Red curve denotes the fitting result using two-carrier model.

Fig. S3 Normalized magnetoresistance (MR) at 2, 100, 200, and 300 K. Dashed curves denote fitting results with $(\mu_0 H)^{1.5}$ and $(\mu_0 H)^2$ dependence for 2 K and 100–300 K, respectively.

Table. S1 Electron carrier density (n_e), hole carrier density (n_h), electron mobility (μ_e), and hole

mobility	$(\mu_{\rm h})$	for	LaBi
----------	-----------------	-----	------

	<i>n</i> _e (/cm ³)	<i>n</i> _h (/cm ³)	$\mu_{ m e}~({ m cm^2/Vs})$	$\mu_{ m h}$ (cm²/Vs)	Ref.
This study (2K)	1.11 × 10 ²⁰	1.25×10^{20}	5.77 × 10 ²	5.26 × 10 ²	-
Bulk (2 K)	6.12×10^{19}	6.09×10^{19}	5.68 × 10 ³	5.88 × 10 ³	1
Bulk (2 K)	6.0(4) × 10 ²⁰	6.0(3) × 10 ²⁰	2.6(1) × 10 ⁴	3.1(1) × 10 ⁴	2
Bulk (2 K)	7.62×10^{20}	7.56×10^{20}	1.75 × 104	1.89×10^4	3
Bulk (5 K)	2×10^{19}	1.9×10^{19}	1.28 × 104	1.26 × 104	4

References in Supplementary Information

- F. F. Tafti, Q. D. Gibson, S. Kushwaha, J. W. Krizan, N. Haldolaarachchige, R. J. Cava, *Proc. Natl. Acad. Sci.*, 2016, **113**, E3475.
- 2 S. Sun, Q. Wang, P.-J. Guo, K. Liu, H. Lei, *New J. Phys.*, 2016, **18**, 082002.
- 3 N. Kumar, C. Shekhar, S.-C. Wu, I. Leermakers, O. Young, U. Zeitler, B. Yan, C. Felser, *Phys. Rev. B*, 2016, **93**, 241106(R).
- 4 R. Singha, B. Satpati, P. Mandal, Sci. Rep., 2017, 7, 6321.