Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

A simple and efficient synthesis of a series of N -(thiazol-2-yl)piperidine-2,6-dione compounds and their interesting NLO properties

Mayuri Shaiwale^a, Narayan N. Som^{b, c} Prafulla K Jha^b and Amar Ballabh^a

Table 1: Crystal data and CCDC number of compounds 1-5.

	Compound-1	Compound -2	Compound -3	Compound-4	Compound -5
Empirical formula	C ₈ H ₈ N ₂ O ₂ S	$C_9H_{10}N_2O_2S$	$C_9H_{10}N_2O_2S$	$C_{10}H_{12}N_2O_2S$	$C_{12}H_{10}N_2O_2S$
Formula weight	196.22	210.25	210.25	224.28	246.28
Temperature/K	293(2)	293(2)	293(2)	293(2)	293(2)
Crystal system	orthorhombic	orthorhombic	monoclinic	orthorhombic	orthorhombic
Space group	Fdd2	Pna2 ₁	P21/c	Pbca	Pbca
a/Å	22.635(4)	17.270(2)	10.4402(13)	11.0048(7)	10.7717(9)
b/Å	18.2458(18)	6.5290(5)	9.0667(12)	9.1927(7)	9.2453(9)
c/Å	8.4549(12)	8.7853(8)	10.6841(15)	21.2407(14)	23.0901(14)
α/°	90	90	90	90	90
β/°	90	90	103.828(12)	90	90
$\gamma^{\prime \circ}$	90	90	90	90	90
Volume/Å ³	3491.9(8)	990.61(16)	982.0(2)	2148.8(2)	2299.5(3)
Ζ	16	4	4	8	8
$\rho_{calc}g/cm^3$	1.493	1.410	1.422	1.387	1.423
μ/mm^{-1}	0.336	0.301	0.304	0.282	0.272
F(000)	1632.0	440.0	440.0	944.0	1024.0
Crystal size/mm ³	$0.98 \times 0.26 \times 0.243$	0.94 imes 0.79 imes 0.6	$1.47 \times 0.8 \times 0.447$	1.177 × 0.683 × 0.301	1.26 × 0.693 × 0.346

Radiation	Mo Kα (λ = 0.71073)	Mo Kα (λ = 0.71073)	Mo Kα (λ = 0.71073)	Mo Kα (λ = 0.71073)	Mo Kα (λ = 0.71073)
2\overline range for data collection/°	7.2 to 57.668	6.672 to 57.672	7.704 to 52.74	6.94 to 58.04	6.796 to 52.744
Index ranges	$\begin{array}{l} -26 \leq h \leq 28, -16 \\ \leq k \leq 24, -11 \leq l \leq \\ 4 \end{array}$	$\begin{array}{l} -23 \leq h \leq 18, \text{-}7 \leq \\ k \leq 8, \text{-}6 \leq l \leq 11 \end{array}$	$\begin{array}{c} -13 \leq h \leq 12, -11 \\ \leq k \leq 9, -13 \leq l \leq \\ 12 \end{array}$	$\begin{array}{l} -13 \leq h \leq 14, -12 \leq \\ k \leq 12, -25 \leq l \leq 29 \end{array}$	$\begin{array}{l} -13 \leq h \leq 12, -11 \leq \\ k \leq 11, -28 \leq l \leq 28 \end{array}$
Reflections collected	2347	3049	3834	7976	12129
Independent reflections	$\begin{array}{l} 1290 \; [R_{int} = \\ 0.0159, \; R_{sigma} = \\ 0.0232] \end{array}$	$\begin{array}{l} 1505 \; [R_{int} = \\ 0.0140, \; R_{sigma} = \\ 0.0189] \end{array}$	$\begin{array}{c} 1982 \; [R_{int} = \\ 0.0148, \; R_{sigma} = \\ 0.0237] \end{array}$	2104 [$R_{int} =$ 0.0321, $R_{sigma} =$ 0.0459]	2321 [$R_{int} =$ 0.0331, $R_{sigma} =$ 0.0270]
Data/restraints/parameters	1290/1/118	1505/1/128	1982/0/138	2104/0/139	2321/0/187
Goodness-of-fit on F ²	0.961	1.075	1.060	1.022	0.715
Final R indexes [I>=2 σ (I)]	$\begin{array}{l} R_1 = 0.0347, \\ wR_2 = 0.1099 \end{array}$	$\begin{array}{l} R_1 = 0.0412, \\ wR_2 = 0.1136 \end{array}$	$\begin{array}{l} R_1 = 0.0367, \\ wR_2 = 0.0924 \end{array}$	$\begin{array}{c} R_1 = 0.0460, \ wR_2 = \\ 0.1040 \end{array}$	$\begin{array}{l} R_1 = 0.0525, wR_2 = \\ 0.1553 \end{array}$
Final R indexes [all data]	$\begin{array}{l} R_1 = 0.0379, \\ wR_2 = 0.1158 \end{array}$	$\begin{array}{l} R_1 = 0.0448, \\ wR_2 = 0.1164 \end{array}$		$\begin{array}{c} R_1 = 0.0671, \ wR_2 = \\ 0.1155 \end{array}$	$R_1 = 0.0699, wR_2 = 0.1783$
Largest diff. peak/hole / e Å ⁻³	0.16/-0.16	0.48/-0.41	0.19/-0.22	0.46/-0.15	0.37/-0.21
Flack parameter	0.32(13)	0.18(6)			
CCDC Number	1560120	1561181	2062131	2062127	1561183

Table 2: Geome	Table 2: Geometries of hydrogen bond in Compound-1 to compound-5												
	D	H	A	d(DH)/Å	d(HA)/Å	d(DA)/Å	D-HA /°	Symmetry operation for A					
Compound-1	C7	H7A	O 1 ¹	0.97	2.47	3.222(4)	133.8	¹ -7/4-X,1/4+Y,1/4+Z;					
-	C5	H5A	O1 ¹	0.97	2.48	3.234(4)	134.6						
	C3	H3	$N1^2$	0.93	2.56	3.224(4)	129.0	² -7/4-X,-1/4+Y,-1/4+					
Compound-2	C2	H2	O2 ¹	0.93	2.62	3.416(5)	143.7	¹ 3/2-X,-1/2+Y,1/2+Z					
-	C4	H4B	$O2^1$	0.96	2.57	3.412(6)	146.0						
Compound-3	C8	H8B	N1 ¹	0.97	2.54	3.399(2)	147.1	¹ 2-X,1-Y,2-Z;					
	C2	H2	O1 ²	0.93	2.56	3.084(2)	115.7						
	C4	H4B	O1 ³	0.96(4)	2.62(4)	3.562(3)	168(3)	² 1-X,1/2+Y,3/2-Z;					
								³ +X,1/2-Y,-1/2+Z					
Compound-4	C9	H9A	O1 ¹	0.97	2.56	3.433(3)	150.1	¹ 1/2+X,+Y,3/2-Z;					
	C4	H4A	$O1^2$	0.96	2.55	3.436(3)	153.2						
								² -X,-Y,1-Z					
Compound-5	C9	H9B	O2 ¹	0.93(5)	2.45(5)	3.281(4)	148(4)	¹ 1-X,-1/2+Y,3/2-Z;					
	C11	H11C	O1 ²	1.40(6)	2.65(6)	3.538(5)	119(4)	² 1/2+X,+Y,3/2-Z					
	1	1		I	I								

Compound Info.	Compound 1	Compound 2	Compound 3	Compound 4	Compound 5
	(2-A1) (2-A1-5-IVIE)		(2-AT-4-Me)	(2-AT-4,5-Dime)	(2-AT-Phenyl)
	$M.F.:C_8H_8N_2O_2S$	$M.F.:C_9H_{10}N_2O_2S$	$M.F.:C_9H_{10}N_2O_2S$	$M.F.:C_{10}H_{12}N_2O_2S$	$M.F.:C_{12}H_{10}N_2O_2S$
	CCDC: 1560120	CCDC: 1561181	CCDC: 2062131	CCDC: 2062127	CCDC: 1561183
	Fdd ₂	Pna2 ₁	P2 _{1/C}	Pbca	Pbca
NLO-Second	192 mV	60mV	10 mV	25 mV	10mV
Harmonic	3.05> Urea	0.95> Urea	0.3 > Urea	0.5> Urea	0.3 > Urea
generation	6.62> KDP	2.07> KDP	= KDP	1.13> KDP	= KDP

Table 3: SHG experimental data of compounds 1-5.

Table 4 : % (Table 4 : % Contribution of various non-covalent interactions in Compound-1to Compound-5 (calculated using Hirshfeld surface analysis)																						
%	С-Н	H-C	C-0	0-С	C-N	N-C	C-S	S-C	S-N	N-S	N-O	O-N	C-C	0-0	Н-Н	О-Н	Н-О	H-S	S-H	O-S	S-0	H-N	N-H
Compounds																							
2-AT	4.0	3.1	1.0	0.8	0.7	0.7	0.3	0.3	0.2	0.1	0.7	0.7	1.1	0.3	27.6	15.5	13.6	5.2	9.0	1.2	1.6	5.5	6.9
2-A-5-MT	5.1	4.1	0.7	0.7	0.0	0.0	0.0	0.1	0.0	0.0	0.6	0.6	0.0	0.4	36.2	13.8	11.2	3.5	6.7	1.5	2.1	5.4	7.1
2-A-4-MT	5.1	4.2	0.4	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	1.0	34.0	14.4	11.8	4.5	8.9	1.1	1.7	5.3	6.5
2-A-4,5- DMT	3.6	2.9	0.7	0.6	0.0	0.0	0.7	0.7	0.7	0.6	0.5	0.3	0.3	0.1	42.7	13.8	11.5	3.4	6.1	0.7	1.0	4.0	5.2
2-ABT	9.9	7.9	0.5	0.5	0.0	0.0	1.4	1.4	0.7	0.5	0.4	0.3	4.4	0.5	30.0	12.0	10.0	3.2	5.5	0.8	1.1	3.9	5.1

Physico-Chemical Characterization of Compounds 1-5

Data of Compound -1: Piperidine-2, 6-dione derivative of 2-Aminothiazole

Compound 1: Hirschfeld fingerprint graph and % contribution of weak interactions

Data of Compound -2: 2-Amino-5-methylthiazole derivative

2-A-5MT product: Hirschfeld fingerprint graph and % contribution of weak interactions

Data of Compound -3: 2-Amino-4-methylthiazole derivative

2-A-4-MT product: Hirschfeld fingerprint graph and % contribution of weak interactions

Data of Compound -4: 2-Amino-4,5-dimethylthiazole derivative

0.00

Wavelength (nm)

2-A-4,5-DMT product: Hirschfeld fingerprint graph and % contribution of weak interactions

Data of Compound -5: 2-Aminobenzthiazole derivative

2-ABT product: Hirschfeld fingerprint graph and % contribution of weak interactions

Compounds	s Band gap (ev) (UV- Band gap (ev) Tauc p		Band gap (ev) (Theoretical	Band gap (ev) (Theoretical		
	Spectra)		calculations in gaseous phase)	calculations in THF)		
1	5.14	4.80	5.87	5.87		
2	5.02	4.50	5.65	5.65		
3	4.93	4.46	5.58	5.58		
4	4.86	4.50	5.36	5.36		
5	4.7	4.02	5.30	5.30		

Table 5: The comparative table for band gap obtained from experiments and theoretical calculations

Figure S1: A) image of Crystals of compounds (1-5) placed on graph paper (for maximum size); (b) Crystals image in Visible light; C) Crystal image in Short UV light; D) Crystal image in long UV light

Figure S2: ORTEP (50% probability) diagram of 1–5.

Figure S3: ORTEP diagram of compounds 1–5 with crystallographic axis.

Table 6: The computed global reactivity parameters of all considered systems in the gas phase.

Syste ms/Co mpou nd	ionization potential (IP = – E _{HOMO})	electron affinity ((EA = – E _{LUMO})	electron egativity (χ = (IP + EA)/2)	chemica l potential (µ')	hardnes s (η), η = (IP– EA)/2)	softness (S), S=1/η	electroph ilicity index (ω),
				(μ ′ = -χ)			$(\omega = \mu'^2 / 2\eta)$
1	7.095	1.229	4.162	-4.162	2.933	0.341	2.953
2 3	6.810 6.764	1.156 1.182	3.983 3.973	-3.983 -3.973	2.827 2.791	0.353 0.358	2.805 2.827
4 5	6.470 6.705	1.112 1.407	3.791 4.056	-3.791 -4.056	2.679 2.649	0.373 0.377	2.682 3.105

Table 7: The computed Transition energy (E), maximum wavelength (λ), oscillation strengths (f), and MO contribution of all considered systems in THF solvent.

Compound	λ (nm)	E	F	MO contribution	
S		(eV)	(10-4)		
1	253.71	4.88	9	H -> L (66.34 %)	H-2->L (28.74 %)
2	257.51	4.82	4	H -> L (68.79%)	H-2->L (14.28%)
3	259.05	4.79	3	H -> L (66.34 %)	H-2->L (20.90 %)
4	270.99	4.58	0	H -> L (77.62 %)	H-2->L (2.86 %)
5	270.40	4.59	488	H -> L (81.09%)	H-2->L+2(10.69 %) H-1->L (4.68%)

Complex	Donor(i)	Туре	Acceptor(j)	Туре	E (2)	E(J)- $E(I)$	F(I,J)
	π	C12-N13	π*	C18-C20	17.34	0.34	0.071
	π	C18-H19	π*	S1-C18	0.51	0.28	0.056
<i>C</i> 1	σ	N13-C20	Δ *	N2-C12	7.42	1.14	0.083
CI	σ	C18-H19	σ*	S1-C18	0.51	0.78	0.018
	LP (2)	S 1	π*	C18-C20	20.38	0.26	0.068
	LP(2)	O3/05	π*	C12-N13	1.61	0.27	0.02
	π	C12-N13	-π*	C18 - C19	15.77	0.35	0.069
	π	S1-C12	π*	N2 - C4	0.5	0.28	0.057
C	σ	N13-C19	σ*	N 2 - C12	7.5	1.14	0.083
C2	σ	C 6-C 9	Δ *	C 9 - H11	0.51	1.03	0.021
	LP(1)	N2	π*	O 3 - C17	43.42	0.29	0.104
	LP(2)	O 3/O5	π*	C12 - N13	1.58	0.27	0.019
	π	C17-N27	π*	C19 - C22	13.14	0.3	0.084
	π	C19-C22	π*	C17-N27	1.61	0.28	0.029
	σ	N12-C18	σ*	N 1 - C11	4.93	1.13	0.095
	σ	C5-C8	Δ *	C 8 - H10	0.25	1.03	0.02
C5	LP (2)	O2	Δ *	N 1 - C16	14.92	0.65	0.125
05	LP*(1)	C 3	σ*	C 8 - C13	0.44	0.5	0.03
	LP*(1)	C21	π*	C19 - C22	14.49	0.13	0.085
	LP (2)	O 2	π*	C11 - N12	0.92	0.28	0.02
	LP (3)	O2	LP*(1)	C16	165.03	0.12	0.186
	LP (3)	O4	LP*(1)	C3	165.03	0.12	0.186
	π	C12-N13	π*	C18 - C19	17.79	0.35	0.074
C3	π	S1-C12	π*	N2 - C4	0.58	0.28	0.054
	σ	N13-C19	σ*	N 2 - C12	7.04	1.14	0.081

Table 8: The computed second-order perturbation energies (E2), the energy difference between donor and acceptor I and J orbitals (E(J)-E(I)), and Fock matrix element (F(I, J)) in the gas phase.

	σ	C 6 - C 9	σ*	C 9 - H11	0.51	1.03	0.021
	LP (1)	O 3	σ*	N 2 - C17	1.05	1.06	0.03
	LP (1)	N 2	π*	O 3 - C17	43.38	0.29	0.104
	LP (1)	N 2	π*	O 3 - C17	43.38	0.29	0.104
	LP (2)	S 1	π*	C12 - N13	29.83	0.25	0.078
	LP (2)	O 3	π*	C12 - N13	1.6	0.27	0.02
		-		-	-	-	-
	π	C12-N13	π*	C18-C19	16.4	0.36	0.072
	π π	C12-N13 S1-C12	π* π*	C18-C19 N2-C4	16.4 0.58	0.36 0.28	0.072 0.056
C4	π π σ	C12-N13 S1-C12 N13-C19	π* π* π*	C18-C19 N2-C4 N2-C12	16.4 0.58 7	0.36 0.28 1.14	0.072 0.056 0.08
C4	π π σ σ	C12-N13 S1-C12 N13-C19 O3-C17	π* π* π* π*	C18-C19 N2-C4 N2-C12 N2-C17	16.4 0.58 7 0.51	0.36 0.28 1.14 1.47	0.072 0.056 0.08 0.025
C4	π π σ σ LP(1)	C12-N13 S1-C12 N13-C19 O3-C17 N2	π* π* π* π* π*	C18-C19 N2-C4 N2-C12 N2-C17 O3-C17	16.4 0.58 7 0.51 43.59	0.36 0.28 1.14 1.47 0.29	0.072 0.056 0.08 0.025 0.104

Table 9: The computed Transition energy (E), maximum wavelength (λ), oscillation /strengths (f), and MO contribution of all considered systems in the Gas Phase.

Compoun	Band	μ	a_0	Δα	а	Δα	eta_{vec}	β_{HRS}	β(-	β (-2w;w,0)	γo	γ (-ω;ω,	γ (-2ω;ω,ω,0)
d in gas phase	gap	(D)	(10 ⁻²⁴	(10-2	(-w,w)	(@,@)	(10-	(10	w;w,0)	SHG	(10 ⁻³⁶	0,0)	(10 ⁻³⁶
	(eV)		esu)	4 esu)	(10 ⁻²⁴	(10 ⁻²⁴	30	30	(10 ⁻³⁰ esu)	(10-30	esu)	(10 ⁻³⁶	esu
					esu)	esu)	esu)	esu)		esu)		esu	
1	5.87	2.79	18.52	6.43	18.71	6.53	0.79	0.21	1.27	1.37	14.24	15.02	16.74
2	5.65	2.28	20.67	8.7	20.89	8.87	1.55	0.21	2.02	2.27	16.7	17.68	19.84
3	5.58	2.37	20.56	6.8	20.77	6.9	1.51	0.39	1.98	2.16	16.21	17.13	19.1
4	5.36	1.83	22.57	8.52	22.81	8.67	2.35	0.6	2.75	3.11	18.58	19.72	22.2
5	5.30	2.80	26.13	15.54	26.49	15.97	0.68	0.18	1.19	1.44	22.76	24.75	28.61

Table 10: The computed Transition energy (E), maximum wavelength (λ), oscillation /strengths (f), and MO contribution of all considered systems in THF solvent.

Compoun d in THF	Band gan	μ	a 0	∆a	а	∆a	b_0	b _{HRS}	b(- w:w ())	b(-2w;w,0)	yo	γ (ω;ω, 0 0)	γ (-2ω;ω,ω,0)
<i>u in 1111</i>	gup	(D)	(10 ⁻²⁴	(10-2	(-w,w)	(10 ⁻²⁴	(10 - 30	(10 ⁻ 30	(10-30	SHG	(10 ⁻³⁶	0,0)	(10 ⁻³⁶
	(eV)		esu) ⁴ esu		(10 ⁻²⁴ esu)			esu)		(10 ⁻³⁰	esu)	(10-30	esu
					esu)		esu)	esu)		esu)		esu	
1	5.87	3.77	23.38	6.00	20.8	6.62	0.92	0.39	1.59	1.47	26.39	22.74	23.32
2	5.65	3.24	25.99	8.12	23.18	8.99	2.65	0.12	2.75	2.79	30.39	26.56	27.27
3	5.58	3.18	25.88	6.09	23.06	6.93	2.59	0.59	2.71	2.53	29.86	25.66	26.54
4	5.36	2.6	28.37	7.89	25.32	8.82	4.3	1.03	3.97	3.98	33.59	29.32	30.43
5	5.30	3.47	33.44	17.2	29.68	17.26	0.73	0.43	1.58	1.63	45.76	39.61	42.35