Crystallization of High-silica Cubic and Hexagonal Faujasite Polymorphs in the

presence of the Tetraethylammonium (TEA⁺) Cation

Corentin Chatelard^a, Raquel Martinez Franco^b, Mathias Dodin^b, Alain Tuel^{a*}

Electronic Supplementary Information

 Table S1 Chemical composition of FAU zeolites obtained as intermediates in the

 crystallization of CHA with TEAOH at different temperatures

Crystallization	Crystallization time	Phases observed	SiO ₂ /Al ₂ O ₃ (XRF)
temperature (°C)	(h)	(XRD)	
130	9	FAU	8.8
110	24	FAU	8.2
90	30	FAU	9.2
80	48	FAU	8.6
70	72	FAU	9.0

Table S2 Chemical composition of **FAU** zeolites obtained as intermediates in the crystallization of **CHA** with TEAOH at different temperatures and using various amounts of CBV 720 as seeds

Crystallization	Percentage of seeds	Phases observed	SiO ₂ /Al ₂ O ₃
temperature (°C)	(CBV 720)	(XRD)	(XRF)
130	10	FAU	8.8
130	2.5	FAU	7.2
130	0	FAU	6.6
110	10	FAU	8.2
110	2.5	FAU	7.6
90	10	FAU	9.2
90	5	FAU	7.6

X TEAOH	y Na₂O	Crystallization time	Phases observed	SiO ₂ /Al ₂ O ₃
(mol) ^a	(mol) ^a	(days)	(XRD)	(XRF)
11	4.8	1	FAU	8.2
11	4.4	2	FAU	9.0
11	4.0	3	FAU	9.2
9	4.8	1	FAU + Am ^b	9.2°
9	4.4	4	FAU + Am ^b	10.2 ^c
9	4.0	5	FAU + Am ^b	-

Table S3 Chemical composition of FAU zeolites obtained as intermediates in the crystallization of CHA with TEAOH from gels with various alkalinities at 110 °C

^aThe gel composition was: 27.6 SiO₂ – 0.76 Al₂O₃ - x TEAOH - y Na₂O - 514 H₂O ^bAm = amorphous phase

°Value determined in the presence of amorphous phase

Table S4 Position and relative area of the 4 components used to decompose the ²⁹Si

NMR signal of sample 9 (FAU zeolite with $SiO_2/AI_2O_3 = 13$)	

Line	Position (ppm)	% Integral
1	-105.6	41.84
2	-100.54	34.92
3	-98.21	7.83
4	-94.65	15.41

Entry	Seeds	SiO ₂ /Al ₂ O ₃ Gelª	Product	FAU:EMT ratio
1	64	36	8.6	80:20
2	64	30	7.9	70:30
3	64	20	7.4	60:40
4	64	15	6.8	60:40
5	47.6	36	8.3	50:50
6	25.4	36	8.0	10:90
7	25.4	50	9.4	0:100 ^b
8	25.4	80	11.2	0:100 ^b
9	21.2	36	7.9	30:70
10	18.2	36	7.7	30:70
11	16	36	7.0	40:60
12	7.2	36	6.5	50:50
13	7.2	50	6.7	40:60
14	7.2	80	7.1	40:60

Table S5 SiO_2/Al_2O_3 ratios of zeolites obtained using HEMT seeds with various Al contents and corresponding proportions of FAU and EMT in the frameworks

^aRatio before addition of seeds

^bNo contribution of the FAU topology detected by standard XRD

Figure S1 Thermal analysis data for sample 4 obtained with $SiO_2/Al_2O_3 = 60$ in the gel prior to addition of the seeds

Figure S2 Decomposition of the ²⁹Si NMR signal of calcined sample 9 ($SiO_2/Al_2O_3 =$ 13) into Gaussian lines. Blue: experimental spectrum, red: simulated spectrum, black: individual components

Figure S3 Nitrogen adsorption-desorption isotherm on a calcined faujasite with $SiO_2/Al_2O_3 = 11.4$ (sample 7 in Table 1)

Figure S4 TEM image of a 60 nm thin slice of FAU zeolite with $SiO_2/Al_2O_3 = 11.4$ (determined by XRF). Data on the picture correspond to SiO_2/Al_2O_3 ratios calculated by EDX at different spots of the crystal.

Figure S5 XRD patterns of calcined zeolites obtained using HEMT seeds with various SiO_2/Al_2O_3 (left) and the corresponding simulations using the DIFFaX program developed by J.M.M. Treacy [10] (right) with the relative percentages of **FAU** and **EMT**.

Figure S6 XRD patterns of as-made solids recovered during the crystallization of a gel with $SiO_2/Al_2O_3 = 80$ and HEMT seeds ($SiO_2/Al_2O_3 = 25.4$) before the hydrothermal treatment (bottom, t = 0) and after 24 h at 110°C (top, t = 24 h).

Figure S7 XRD patterns of as-made solids collected before the hydrothermal treatment (t = 0) during the crystallization of a gel with $SiO_2/Al_2O_3 = 36$ and using HEMT seeds with various SiO_2/Al_2O_3 ratios.