Electronic Supporting Information

Construction of honeycomb porous silicon as a high-capacity and long-life anode

toward Li-ion batteries

Guangrui Han, Lang Liu, Minyu Jia, Xuting Li,* Linrui Hou, Changzhou Yuan*

School of Material Science & Engineering, University of Jinan, Jinan, 250022, P. R.

China

*E-mail: mse_lixt@ujn.edu.cn (Dr. X. Li)

mse_yuancz@ujn.edu.cn; ayuancz@163.com (Prof. C. Yuan)

Fig. S1 XRD pattern of SiO₂ NSs.

Fig. S2 (a, b) FESEM images of SiO_2 NSs.

Fig. S3 (a, b) FESEM images of pristine Si and corresponding (c - h) elemental mappings of Mg, Si, Cl, O and Na.

Fig. S4 (a) FESEM, (b, c) TEM and (d) HRTEM images of Nano-Si.

Fig. S5 (a) N_2 adsorption-desorption isotherms and (b) pore size distribution plots of P-Si and Nano-Si as indicated.

Fig. S6 (a) CV curves (0.1 mV s⁻¹) and (b) charge-discharge plots (0.1 A g⁻¹) of Nano-Si.

Fig. S7 Charge and discharge plots of (a) Nano-Si and (b) P-Si under different current

densities $(0.1 - 5.0 \text{ A g}^{-1})$.

Fig. S8 Selected Charge and discharge plots of (a) Nano-Si and (b) P-Si at 0.1 A g^{-1} .

Fig. S9 Nyquist plots of P-Si and Nano-Si. The insets for the enlarged square region and corresponding equivalent circuit model for fitting, respectively.