Supplementary Materials

Humic acids-modified mesoporous silica encapsulating magnetite: crystal and surface characteristics

Artur Dzeranov, Denis Pankratov, Lyubov Bondarenko, Lyudmila Telegina, Gulzhian Dzhardimalieva, Daniel Saman, and Kamila Kydralieva

Fig. S1. Electron diffraction patterns of M/TA-0.5 (a), M/TAHA-0.5 (b), M/TAHA-1 (c), M/TAAA-0.5 (d) and M/TAAA-1 (e)

Sample	Interplanar spacing d, Å	h	k	I	Composition
	2.94 Å	2	2	0	γ -Fe ₂ O ₃ [amcsd 0020517]
	2.52 Å	3	1	1	Fe ₃ O ₄ [amcsd 0002400]
M/TA-0.5	2.06 Å	5	0	1	β-FeOOH [amcsd 000307]
	1.60 Å	2	3	1	α-FeOOH [amcsd 0010471]
	1.48 Å	4	4	0	Fe ₃ O ₄ [amcsd 0002400]
	2.52 Å	3	1	1	Fe ₃ O ₄ [amcsd 0002400]
	1.47 Å	1	1	0	5Fe ₂ O ₃ ·9H ₂ O [amcsd 0012029]
NA/TALLA 1	2.52 Å	3	1	1	Fe ₃ O ₄ [amcsd 0002400]
WI/ TAHA-1	1.47 Å	1	1	0	5Fe ₂ O ₃ ·9H ₂ O [amcsd 0012029]
	4.82 Å	1	1	1	γ-Fe ₂ O ₃ [amcsd 0020517]
	3.12 Å				Not identified
	2.77 Å	2	2	1	γ-Fe ₂ O ₃ [amcsd 0020517]
IVI/ I AAA-U.S	2.40 Å	2	2	2	γ-Fe ₂ O ₃ [amcsd 0020517]
	2.04 Å	1	0	5	β-FeOOH [amcsd 000307]
	1.99 Å	1	3	1	α-FeOOH [amcsd 0010471]

Table S1. Results of analysis of the phase composition of samples.

	1.90 Å	0	4	1	α-FeOOH [amcsd 0010471]
	1.72 Å	1	0	4	5Fe ₂ O ₃ ·9H ₂ O [amcsd 0012029]
	1.70 Å	4	2	2	γ-Fe ₂ O ₃ [amcsd 0020517]
	1.59 Å	0	1	8	α -Fe ₂ O ₃ [amcsd 0021166]
	1.46 Å	-4	0	6	β-FeOOH [amcsd 000307]
	1.33 Å	6	2	0	Fe ₃ O ₄ [amcsd 0002400]
	4.79 Å	1	1	1	γ-Fe ₂ O ₃ [amcsd 0020517]
	2.97 Å	2	2	0	Fe ₃ O ₄ [amcsd 0002400]
	2.53 Å	3	1	1	Fe ₃ O ₄ [amcsd 0002400]
	2.09 Å	4	0	0	Fe ₃ O ₄ [amcsd 0002400]
	1.70 Å	4	2	2	γ-Fe ₂ O ₃ [amcsd 0020517]
	1.60 Å	5	1	1	γ-Fe ₂ O ₃ [amcsd 0020517]
M/TAAA-1	1.47 Å	1	1	0	5Fe ₂ O ₃ ·9H ₂ O [amcsd 0012029]
	1.27 Å	5	3	3	γ-Fe ₂ O ₃ [amcsd 0020517]
	1.20 Å	4	4	4	γ-Fe ₂ O ₃ [amcsd 0020517]
	1.09 Å	2	2	6	Fe ₃ O ₄ [amcsd 0002400]
	0.86 Å				Not identified
	0.80 Å				Not identified

Ads

558.00

520.00

480.00

440.00

360.00

\$ 320.00

280.00 aungo 240.00

200.00

160.00

120.00

80.00

40.00

0.00

Fig. S2. Isotherms of nitrogen adsorption/desorption of samples at low temperature (77 K) and histograms of pore size distribution

Fig. S3. Magnetization curves for the powders of samples at 300 K

Table S2.	Magnetic	properties	of obtained	nanoparticle NPs.
-----------	----------	------------	-------------	-------------------

Sample	Ms (emu/g)	Mr, (emu/g)	H _c , (Oe)
Fe ₃ O ₄	31,5	2,0	39,5
TA-Fe ₃ O ₄ (1:0.5)	8,91	0,52	30,6
TA-HA-Fe ₃ O ₄ (1:0.1:0.5)	6,18	0,33	29,8
TA-HA-Fe ₃ O ₄ (1:0.1:1)	5,50	1,67	31,9
TA-AA-Fe ₃ O ₄ (1:0.1:0.5)	26,8	1,61	33,4
TA-AA-Fe ₃ O ₄ (1:0.1:1)	40,8	2,36	33,2