## Crystal Engineering for Intramolecular $\pi$ — $\pi$ Stacking: Effect of Substitution of Electron Donating and Withdrawing Group on Molecular Geometry in Conformationally Flexible Sulfoesters and Sulfonamides

Samir R. Shaikh,<sup>a,b</sup> Rupesh L. Gawade,<sup>a</sup> Niteen B. Dabke,<sup>a</sup> Soumya R. Dash,<sup>a,b</sup> Kumar Vanka,<sup>a,b</sup> Rajesh G. Gonnade<sup>\*,a,b</sup>

<sup>*a*</sup>Physical and Materials Chemistry Division, CSIR–National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.

<sup>b</sup>Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh- 201 002., India.

Correspondence email: rg.gonnade@ncl.res.in

## **Contents:**

| Figure S1. Decrease in the global conformational flexibility in the descending order7                |   |
|------------------------------------------------------------------------------------------------------|---|
| 1.1 General Synthetic Procedure for the Preparation of Sulfoesters:8                                 |   |
| Figure S2. Scheme-Synthetic procedure for the preparation of Sulfoesters (1a to 7a)8                 |   |
| 1.2 Synthesis of phenethyl 4-(trifluoromethyl)benzenesulfonate (1a):9                                | 1 |
| Figure S3. <sup>1</sup> H NMR spectrum of 1a in CDCl <sub>3</sub> 10                                 |   |
| Figure S4. <sup>13</sup> C NMR spectrum of 1a in CDCl <sub>3</sub> 11                                |   |
| 1.3 Synthesis of phenethyl 4-cyanobenzenesulfonate (2a):                                             | , |
| Figure S5. <sup>1</sup> H NMR spectrum of 2a in CDCl <sub>3</sub> 13                                 |   |
| Figure S6. <sup>13</sup> C NMR spectrum of 2a in CDCl <sub>3</sub> 14                                |   |
| 1.4 Synthesis of phenethyl 4-Chlorobenzenesulfonate (3a):15                                          |   |
| Figure S7. <sup>1</sup> H NMR spectrum of <b>3a</b> in CDCl <sub>3</sub> 16                          |   |
| Figure S8. <sup>13</sup> C NMR spectrum of 3a in CDCl <sub>3</sub> 17                                |   |
| 1.5 Synthesis of phenethyl 4-Bromobenzenesulfonate (4a):                                             |   |
| Figure S9. <sup>1</sup> H NMR spectrum of 4a in CDCl <sub>3</sub> 19                                 | 1 |
| Figure S10. <sup>13</sup> C NMR spectrum of 4a in CDCl <sub>3</sub> 20                               |   |
| 1.6 Synthesis of Phenethyl benzenesulfonate (5a):21                                                  |   |
| Figure S11. <sup>1</sup> H NMR spectrum of 5a in CDCl <sub>3</sub> 22                                | , |
| Figure S12. <sup>13</sup> C NMR spectrum of 5a in CDCl <sub>3</sub> 23                               |   |
| 1.7 Synthesis of Phenethyl 4-Methylbenzenesulfonate (6a):24                                          |   |
| Figure S13. <sup>1</sup> H NMR spectrum of 6a in CDCl <sub>3</sub> 25                                |   |
| Figure S14. <sup>13</sup> C NMR spectrum of 6a in CDCl <sub>3</sub> 26                               |   |
| 1.8 Synthesis of phenethyl 4-Methoxybenzenesulfonate (7a):27                                         |   |
| Figure S15. <sup>1</sup> H NMR spectrum of 7a in CDCl <sub>3</sub> 28                                |   |
| Figure S16. <sup>13</sup> C NMR spectrum of 7a in CDCl <sub>3</sub> 29                               | 1 |
| 1.9 General Synthetic Procedure for the Preparation of Sulfonamides:                                 |   |
| Figure S17. Scheme-Synthetic procedure for the preparation of Sulfonamides (1b to 7c) and (1c to 7c) | l |
| 1.10 Synthesis of N-phenethyl-4-(trifluoromethyl) benzenesulfonamide (1b):                           |   |
| Figure S18. <sup>1</sup> H NMR spectrum of 1b in CDCl <sub>3</sub>                                   | , |
| Figure S19. <sup>13</sup> C NMR spectrum of 1b in CDCl <sub>3</sub>                                  |   |
| 1.11 Synthesis of 4-cyano-N-phenethylbenzenesulfonamide (2b):                                        |   |
| Figure S20. <sup>1</sup> H NMR spectrum of 2b in CDCl <sub>3</sub>                                   |   |

| Figure S21. <sup>13</sup> C NMR spectrum of 2b in CDCl <sub>3</sub>                     | 36 |
|-----------------------------------------------------------------------------------------|----|
| 1.12 Synthesis of 4-chloro-N-phenethylbenzenesulfonamide (3b):                          | 37 |
| Figure S22. <sup>1</sup> H NMR spectrum of 3b in CDCl <sub>3</sub>                      | 38 |
| Figure S23. <sup>13</sup> C NMR spectrum of 3b in CDCl <sub>3</sub>                     | 39 |
| 1.13 Synthesis of 4-Bromo-N-phenethylbenzenesulfonamide (4b):                           | 40 |
| Figure S24. <sup>1</sup> H NMR spectrum of 4b in CDCl <sub>3.</sub>                     | 41 |
| Figure S25. <sup>13</sup> C NMR spectrum of 4b in CDCl <sub>3</sub>                     | 42 |
| 1.14 Synthesis of N-phenethylbenzenesulfonamide (5b):                                   | 43 |
| Figure S26. <sup>1</sup> H NMR spectrum of 5b in CDCl <sub>3</sub>                      | 44 |
| Figure S27. <sup>13</sup> C NMR spectrum of <b>5b</b> in CDCl <sub>3</sub>              | 45 |
| 1.15 Synthesis of 4-Methyl-N-phenethylbenzenesulfonamide (6b):                          | 46 |
| Figure S28. <sup>1</sup> H NMR spectrum of 6b in CDCl <sub>3</sub>                      | 47 |
| Figure S29. <sup>13</sup> C NMR spectrum of 6b in CDCl <sub>3</sub>                     | 48 |
| 1.16 Synthesis of 4-Methoxy-N-phenethylbenzenesulfonamide (7b):                         | 49 |
| Figure S30. <sup>1</sup> H NMR spectrum of 7b in CDCl <sub>3</sub>                      | 50 |
| Figure S31. <sup>13</sup> C NMR spectrum of 7b in CDCl <sub>3</sub>                     | 51 |
| 1.17 Synthesis of N-(2-(pyridin-2-yl)ethyl)-4-(trifluoromethyl)benzenesulfonamide (1c): | 52 |
| Figure S32. <sup>1</sup> H NMR spectrum of 1c in CDCl <sub>3</sub>                      | 53 |
| Figure S33. <sup>13</sup> C NMR spectrum of 1c in CDCl <sub>3</sub>                     | 54 |
| 1.18 Synthesis of 4-cyano-N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide (2c):             | 55 |
| Figure S34. <sup>1</sup> H NMR spectrum of 2c in CDCl <sub>3</sub> .                    | 56 |
| Figure S35. <sup>13</sup> C NMR spectrum of 2c in CDCl <sub>3</sub>                     | 57 |
| 1.19 Synthesis of 4-chloro-N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide (3c):            | 58 |
| Figure S36. <sup>1</sup> H NMR spectrum of 3c in CDCl <sub>3</sub>                      | 59 |
| Figure S37. <sup>13</sup> C NMR spectrum of 3c in CDCl <sub>3</sub>                     | 60 |
| 1.20 Synthesis of 4-Bromo-N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide (4c):             | 61 |
| Figure S38. <sup>1</sup> H NMR spectrum of 4c in CDCl <sub>3</sub> .                    | 62 |
| Figure S39. <sup>13</sup> C NMR spectrum of 4c in CDCl <sub>3</sub>                     | 63 |
| 1.21 Synthesis of N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide (5c):                     | 64 |
| Figure S40. <sup>1</sup> H NMR spectrum of 5c in CDCl <sub>3</sub> .                    | 65 |
| Figure S41. <sup>13</sup> C NMR spectrum of 5c in CDCl <sub>3</sub>                     | 66 |
| 1.22 Synthesis of 4-Methyl-N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide (6c):            | 67 |
| Figure S42. <sup>1</sup> H NMR spectrum of 6c in CDCl <sub>3</sub> .                    | 68 |

| Figure S43. <sup>13</sup> C NMR spectrum of 6c in CDCl <sub>3</sub>                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.23 Synthesis of 4-Methoxy-N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide (7c):70                                                                                     |
| Figure S44. <sup>1</sup> H NMR spectrum of 7c in CDCl <sub>3</sub>                                                                                                  |
| Figure S45. <sup>13</sup> C NMR spectrum of 7c in CDCl <sub>3</sub>                                                                                                 |
| <b>Table S1.</b> Summary of the crystallographic data for phenethyl benzenesulfonate (1a, 3a, 4a,6a)                                                                |
| <b>Table S2.</b> Summary of the crystallographic data for phenethyl benzenesulfonate (1b to 7b).                                                                    |
| <b>Table S3.</b> Summary of the crystallographic data for N-(pyridin-2 yl)ethyl)benzenesulfonamide (1c to 7c)                                                       |
| Figure S46. Structure overlay for molecules in (a) 1a series, (b) 1b series and (c) 1c series. 78                                                                   |
| <b>Figure S47.</b> Intramolecular $\pi \cdots \pi$ stacking interactions in <b>1a</b> series of molecules                                                           |
| <b>Figure S48.</b> Syn geometry in <b>6c</b> facilitated by C-H <sup><math>\dots</math></sup> $\pi$ interactions80                                                  |
| <b>Table S4.</b> Intramolecular $\pi$ -stacking in sulphoester (1a, 3a, 4a, 6a), sulfonamide benzene (1b to 7b) and sulfonamide pyridine (1c to 7c) derivatives     |
| Figure S49. Description of conformations about a single bond                                                                                                        |
| Table S5. Torsion angles (°) for sulfoester derivatives (1a, 3a, 4a, 6a).       84                                                                                  |
| Table S6. Torsion angles (°) for sulfonamide benzene derivatives (1b to 7b).       85                                                                               |
| Table S7. Torsion angles (°) for sulfonamide pyridine derivatives (1c to 7c)                                                                                        |
| Figure S50. A diagram showing the distortion of the N-H bond for 5b                                                                                                 |
| Table S8. The angles around N atoms and total sum.    88                                                                                                            |
| <b>Table S9.</b> Geometrical parameters of intermolecular interactions in Phenethylbenzenesulfonate (1a, 3a, 4a, 6a).89                                             |
| <b>Table S10.</b> Geometrical parameters of intermolecular interactions in N-Phenethylbenzenesulfonamide (1b to 7b)                                                 |
| Figure S51. Different hydrogen bonding motifs observed in sulphonamides (1b to 7b)92                                                                                |
| <b>Table S11.</b> Geometrical parameters of intermolecular interactions inN-(pyridin-2 yl)ethyl)benzenesulfonamide (1c to 7c)                                       |
| Figure S52. Different hydrogen bonding motifs observed in sulphonamides pyridine derivatives (1c to 7c)                                                             |
| Figure S53. Overlay of DSC profiles                                                                                                                                 |
| <b>Figure S54.</b> The geometry of sulphonamide and sulfoester derivatives with –NO2 substitution                                                                   |
| <b>Figure S55</b> . Molecules in compounds <b>i</b> , <b>ii</b> and <b>iii</b> linked via extended chains of parallel displaced $\pi$ — $\pi$ stacking interactions |

Figure S56. (a) The ORTEP presentation illustrates the molecules of sulfonamide 1b in an Figure S57. (a) The ORTEP presentation illustrates the molecules of sulfonamide 2b in an Figure S58. (a) and (b) ORTEPs display molecules of sulfonamide 3b and 4b .....101 Figure S59. ORTEP of a molecule of compound 5b with the atom numbering scheme.....102 Figure S60. View of molecular packing along the c-axis in 5b......103 Figure S61. ORTEP of a molecule of compound 6b with the atom numbering scheme.....104 Figure S62. (a) ORTEP of a molecule of compound 7b with the atom numbering scheme.105 Figure S63. ORTEP of a molecule of compound 1c with the atom numbering scheme. .....106 Figure S64. ORTEP of a molecule of compound 2c with the atom numbering scheme. ..... 107 Figure S65. ORTEP of a molecule of compound 3c with the atom numbering scheme. .....108 Figure S66. (a) ORTEP of a molecule of compound 4c with the atom numbering scheme. 109 Figure S67. ORTEP of a molecule of compound 5c with the atom numbering scheme. .....110 Figure S68. ORTEP of a molecule of compound 6c with the atom numbering scheme. .....111 Figure S69. ORTEP of a molecule of compound 7c with the atom numbering scheme. .....112 
**Table S12.** Comparative analysis of Packing energy and density parameters.

 Table S13. Intermolecular interactions and potentials values.

 Figure S70. Hirshfeld surfaces, fingerprint plots and the contributions of various intermolecular interactions to Hirshfield surface areas for sulfoester derivatives 1a to 6a...116 Figure S71. Hirshfeld surfaces, fingerprint plots and the contributions of various intermolecular interactions to Hirshfield surface areas for sulphonamide derivatives 1b to 7b. Figure S72. Hirshfeld surfaces, fingerprint plots and the contributions of various intermolecular interactions to Hirshfield surface areas for sulphonamide derivatives 1c to 7c. Figure S73. The interaction energy is based on energy frameworks for compound 1a ......119 Figure S74. The interaction energy is based on energy frameworks for compound 3a ......120 Figure S75. The interaction energy is based on energy frameworks for compound 4a ......121 Figure S76. The interaction energy is based on energy frameworks for compound 6a (a) and (b) that show electrostatic and dispersion energy contributions to the total energy......122 Figure S77. The interaction energy is based on energy frameworks for compound 1b ......123 Figure S78. The interaction energy is based on energy frameworks for compound 2b ......124 Figure S79. The interaction energy is based on energy frameworks for compound 3b ......125 Figure S80. The interaction energy is based on energy frameworks for compound 4b ......126

| Figure S81. The interaction energy is based on energy frameworks for compound 5b127                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure S82. The interaction energy is based on energy frameworks for compound 6b128                                                                                                  |
| Figure S83. The interaction energy is based on energy frameworks for compound 7b129                                                                                                  |
| Figure S84. The interaction energy is based on energy frameworks for compound130                                                                                                     |
| Figure S85. The interaction energy is based on energy frameworks for compound 2c131                                                                                                  |
| Figure S86. The interaction energy is based on energy frameworks for compound 3c132                                                                                                  |
| Figure S87. The interaction energy is based on energy frameworks for compound 4c133                                                                                                  |
| Figure S88. The interaction energy is based on energy frameworks for compound 5c134                                                                                                  |
| Figure S89. The interaction energy is based on energy frameworks for compound 6c135                                                                                                  |
| Figure S90. The interaction energy is based on energy frameworks for compound 7c136                                                                                                  |
| Figure S91. The molecular electrostatic potential (MEP) mapped onto the molecular van der Waals surface                                                                              |
| DFT Studies                                                                                                                                                                          |
| <b>Table S14</b> . Energy difference between different conformations ( $\Delta E$ , in kcal/mol)139                                                                                  |
| <b>Figure S92</b> . DFT optimized (M06-2X/6-31+g*) conformers in <i>syn</i> , <i>midway</i> and <i>anti</i> geometries for sulfonyl compounds ( <b>1a</b> to <b>6a</b> )             |
| <b>Figure S93</b> . DFT optimized (M06-2X/6-31+g*) conformers in <i>syn</i> , <i>midway</i> and <i>anti</i> geometries for benzene sulfonamide compounds ( <b>1b</b> to <b>7b</b> )  |
| <b>Figure S94</b> . DFT optimized (M06-2X/6-31+g*) conformers in <i>syn</i> , <i>midway</i> and <i>anti</i> geometries for pyridine sulfonamide compounds ( <b>1c</b> to <b>7c</b> ) |
| <b>Figure S95</b> . DFT optimized (M06-2X/6-31+g*) conformers in midway geometries for pyridine sulfonamide compounds ( <b>1c</b> to <b>7c</b> )                                     |



Figure S1. Decrease in the global conformational flexibility in the descending order.

## **1. Experimental Methods:**

**1.1 General Synthetic Procedure for the Preparation of Sulfoesters:** To the cooled solution of 1.0 eq. of 2-phenylethan-1-ol in dry DCM, 1.2 eq. of dry Et<sub>3</sub>N was added in dropwise manner in presence of catalytic amount of DMAP (dimethylaminopyridine) followed by slow addition of 1.2 eq. of *p*-substituted benzene sulfonyl chloride in dry DCM at 0  $^{\circ}$ C to yield corresponding dimeric sulfonamides. The reaction mixture was allowed to reach room temperature and was further stirred. After the reaction (monitored by TLC), the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane. The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: ethyl acetate/pet ether), yielded pure product. The purified sulfoester derivatives (**1a** to **7a**) were crystallized from organic solvents or a mixture of organic solvents by slow evaporation.



Figure S2. Scheme-Synthetic procedure for the preparation of Sulfoesters (1a, 2a, 3a, 4a, 5a, 6a, 7a).

1.2 Synthesis of phenethyl 4-(trifluoromethyl)benzenesulfonate (1a): To a solution of 2phenylethan-1-ol (150 mg, 1.23 mmol, 1.0eq) in dry DCM (10 mL), dry Et<sub>3</sub>N (0.21 mL, 1.48 mmol, 1.2 eq) was added in dropwise manner in presence of catalytic amount of DMAP (dimethylaminopyridine) (15 mg, 0.123 mmol, 0.1eq) followed by slow addition of 4trifluoromethyl benzenesulfonyl chloride (362 mg, 1.48 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded (1a). Solid; yield = 210 mg, 52%;  $R_f = 0.54$  (ethyl acetate/petroleum ether = 30/70); mp = 65-67 °C, <sup>1</sup>**H** NMR (200MHz, CDCl<sub>3</sub>)  $\delta$  = 7.84 - 7.73 (m, J = 8.3 Hz, 2 H), 7.69 - 7.57 (m, J = 8.5 Hz, 2 H), 7.23 - 7.10 (m, 4 H), 7.07 - 6.95 (m, 2 H), 4.22 (t, J = 6.8 Hz, 2 H), 2.90 (t, J = 6.8 Hz, 2 H), <sup>13</sup>C NMR (50MHz, CDCl<sub>3</sub>)  $\delta = 139.4, 135.9, 128.8, 128.6, 128.2, 127.0, 126.3, 126.3,$ 126.2, 126.1, 77.6, 76.4, 71.5, 35.3 ppm. **HRMS** (ESI) calcd. for C<sub>15</sub>H<sub>13</sub>O<sub>3</sub>F<sub>3</sub>S<sub>1</sub>Na [M+ Na]<sup>+</sup> 353.31, found 353.0385.



Figure S3. <sup>1</sup>H NMR spectrum of 1a in CDCl<sub>3</sub>.



Figure S4. <sup>13</sup>C NMR spectrum of 1a in CDCl<sub>3</sub>.

1.3 Synthesis of phenethyl 4-cyanobenzenesulfonate (2a): To a solution of 2-phenylethan-1-ol (100 mg, 0.82 mmol, 1.0 eq) in dry DCM (10 mL), dry Et<sub>3</sub>N (0.14 mL, 0.98 mmol, 1.2 eq) was added in dropwise manner in presence of catalytic amount of DMAP (dimethylaminopyridine) (10 mg, 0.082 mmol, 0.1 eq) followed by slow addition of 4cyanobenzenesulfonyl chloride (198 mg, 0.98 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which yielded on purification by flash column chromatography (eluent: pet ether/ethyl acetate) (2a), liquid; yield = 160 mg, 68%;  $R_f = 0.56$  (ethyl acetate/petroleum ether = 30/70); <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>)  $\delta = 7.82 - 7.59$  (m, 4 H), 7.25 - 7.11 (m, 3 H), 7.08 - 6.94 (m, 2 H), 4.23 (t, J = 6.7 Hz, 2 H), 2.91 (t, J = 6.7 Hz, 2 H), <sup>13</sup>C NMR (50MHz, CDCl<sub>3</sub>)  $\delta = 140.1, 135.9, 132.8, 128.9, 128.7,$ 128.3, 127.1, 117.3, 117.0, 71.8, 35.3 ppm. **HRMS** (ESI) calcd. for C<sub>15</sub>H<sub>13</sub>N<sub>1</sub>O<sub>3</sub>S<sub>1</sub>Na [M+ Na]<sup>+</sup> 310.0508, found 310.0509.



Figure S5. <sup>1</sup>H NMR spectrum of 2a in CDCl<sub>3</sub>.



Figure S6. <sup>13</sup>C NMR spectrum of 2a in CDCl<sub>3</sub>.

1.4 Synthesis of phenethyl 4-Chlorobenzenesulfonate (3a): To a solution of 2-phenylethan-1-ol (200 mg, 1.64 mmol, 1.0 eq) in dry DCM (10 ml), dry Et<sub>3</sub>N (0.27 mL, 1.97 mmol, 1.2 eq) added in dropwise manner in presence of catalytic amount of DMAP was (dimethylaminopyridine) (20 mg, 0.164mmol, 0.1 eq) followed by slow addition of 4-Chlorobenzenesulfonyl chloride (416 mg, 1.97 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded (3a). Solid; yield = 390 mg, 80%;  $R_f = 0.59$  (ethyl acetate/petroleum ether = 30/70); mp = 50-52 °C, <sup>1</sup>**H NMR (200MHz, CDCl**<sub>3</sub>)  $\delta$  = 7.68 - 7.54 (m, 2 H), 7.42 - 7.29 (m, 2 H), 7.25 - 7.10 (m, 3 H), 7.08 - 6.95 (m, 2 H), 4.17 (t, J = 6.9 Hz, 2 H), 2.89 (t, J = 6.8 Hz, 2 H), <sup>13</sup>C NMR (50MHz, **CDCl**<sub>3</sub>)  $\delta = 140.3, 136.0, 134.4, 129.5, 129.2, 128.9, 128.6, 127.0, 77.6, 76.4, 71.1, 35.3 ppm.$ **HRMS** (ESI) calcd. for  $C_{14}H_{13}ClO_3S_1Na [M + Na]^+ 319.0166$ , found 319.0170.



Figure S7. <sup>1</sup>H NMR spectrum of 3a in CDCl<sub>3</sub>.



Figure S8. <sup>13</sup>C NMR spectrum of 3a in CDCl<sub>3</sub>.

1.5 Synthesis of phenethyl 4-Bromobenzenesulfonate (4a): To a solution of 2-phenylethan-1-ol (150 mg, 1.23 mmol, 1.0 eq) in dry DCM (10 mL), dry Et<sub>3</sub>N (0.21 mL, 1.48 mmol, 1.2 eq) added in dropwise manner in presence of catalytic amount of DMAP was (dimethylaminopyridine) (15 mg, 0.123 mmol, 0.1 eq) followed by slow addition of 4bromobenzene sulfonyl chloride (378 mg, 1.48 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded (4a). Solid; yield = 270 mg, 64%;  $R_f = 0.55$  (ethyl acetate/petroleum ether = 30/70); mp = 60-62 °C, <sup>1</sup>**H NMR (200MHz, CDCl**<sub>3</sub>)  $\delta$  = 7.64 (s, 4 H), 7.36 - 7.21 (m, 3 H), 7.20 - 7.06 (m, 2 H), 4.29 (t, J = 6.8 Hz, 2 H), 3.00 (t, J = 6.8 Hz, 2 H), <sup>13</sup>C NMR (50MHz, CDCl<sub>3</sub>)  $\delta = 136.0, 135.0,$ 132.5, 129.2, 128.9, 128.6, 127.0, 77.6, 76.4, 71.1, 35.3 ppm. HRMS (ESI) calcd. for  $C_{14}H_{13}Br_1O_3S_1Na [M+Na]^+ 364.9641$ , found 364.9636.



Figure S9. <sup>1</sup>H NMR spectrum of 4a in CDCl<sub>3</sub>.



Figure S10. <sup>13</sup>C NMR spectrum of 4a in CDCl<sub>3</sub>.

**1.6 Synthesis of Phenethyl benzenesulfonate (5a):** To a solution of 2-phenylethan-1-ol (150 mg, 1.23 mmol, 1.0 eq) in dry DCM (10 mL), dry Et<sub>3</sub>N (0.21 mL, 1.48 mmol, 1.2 eq) was added in a dropwise manner in the presence of the catalytic amount of DMAP (dimethylaminopyridine) (15 mg, 0.123 mmol, 0.1 eq) followed by slow addition of benzenesulfonyl chloride (0.19 mL, 1.48 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate) yielded (**5a**), liquid; yield = 230 mg, 71%;  $R_f = 0.63$ (ethyl acetate/petroleum ether = 30/70); <sup>1</sup>H NMR (**200MHz, CDCl**<sub>3</sub>)  $\delta = 7.95 - 7.78$  (m, 2 H), 7.73 - 7.46 (m, 3 H), 7.38 - 7.07 (m, 5 H), 4.27 (t, J = 7.0 Hz, 2 H), 3.00 (t, J = 7.0 Hz, 2 H), <sup>13</sup>C NMR (**50MHz, CDCl**<sub>3</sub>)  $\delta = 136.1$ , 135.9, 133.6, 129.1, 128.8, 128.6, 127.7, 126.9, 77.6, 76.4, 70.8, 35.3 ppm. HRMS (ESI) calcd. for  $C_{14}H_{14}O_{3}S_{1}Na$  [M+Na]<sup>+</sup> 285.0556, found 285.0556.



Figure S11. <sup>1</sup>H NMR spectrum of 5a in CDCl<sub>3</sub>.



Figure S12. <sup>13</sup>C NMR spectrum of 5a in CDCl<sub>3</sub>.

**1.7** Synthesis of Phenethyl 4-Methylbenzenesulfonate (6a): To a solution of 2-phenylethan-1-ol (100 mg, 0.82 mmol, 1.0 eq) in dry DCM (10 mL), dry Et<sub>3</sub>N (0.14 mL, 0.98 mmol, 1.2 eq) was added in dropwise manner in presence of catalytic amount of DMAP (dimethylaminopyridine) (10mg, 0.082 mmol, 0.1 eq) followed by slow addition of p-toulenesulfonyl chloride (188 mg, 0.98 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded (**6a**). Solid; yield = 205 mg, 90%;  $R_f$  = 0.61 (ethyl acetate/petroleum ether = 30/70); mp = 39-41 °C, <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>)  $\delta$  = 7.72 (d, *J* = 7.9 Hz, 2 H), 7.39 - 7.22 (m, 5 H), 7.14 (d, *J* = 6.7 Hz, 2 H), 4.24 (t, *J* = 7.3 Hz, 2 H), 2.99 (t, *J* = 7.0 Hz, 2 H), 2.46 (s, 3 H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 144.6, 136.2, 132.9, 128.8, 128.9, 128.6, 127.8, 126.8, 77.3, 76.7, 70.6, 35.3, 21.6 ppm. HRMS (ESI) calcd. for C<sub>15</sub>H<sub>16</sub>O<sub>3</sub>S<sub>1</sub>Na [M+Na]<sup>+</sup> 299.0712, found 299.0712.



Figure S13. <sup>1</sup>H NMR spectrum of 6a in CDCl<sub>3</sub>.



Figure S14. <sup>13</sup>C NMR spectrum of 6a in CDCl<sub>3</sub>.

1.8 Synthesis of phenethyl 4-Methoxybenzenesulfonate (7a): To a solution of 2phenylethan-1-ol (100 mg, 0.82 mmol, 1.0 eq) in dry DCM (10 mL), dry Et<sub>3</sub>N (0.14 mL, 0.98 mmol, 1.2 eq) was added in dropwise manner in the presence of the catalytic amount of DMAP (dimethylaminopyridine) (10 mg, 0.082 mmol, 0.1 eq) followed by slow addition of 4methoxybenzenesulfonyl chloride (203 mg, 0.98 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded (7a), liquid; yield = 210 mg, 87%;  $R_f = 0.55$ (ethyl acetate/petroleum ether = 30/70); <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>)  $\delta$  = 7.83 - 7.72 (m, 2 H), 7.32 - 7.23 (m, 3 H), 7.20 - 7.10 (m, 2 H), 7.04 -6.92 (m, 2 H), 4.23 (t, J = 7.1 Hz, 2 H), 3.91 (s, 3 H), 2.99 (t, J = 7.1 Hz, 2 H), <sup>13</sup>C NMR  $(50MHz, CDCl_3) \delta = 163.6, 136.2, 129.9, 128.8, 128.5, 127.3, 126.8, 114.3, 77.6, 76.4, 70.4, 128.8, 128.5, 127.3, 126.8, 114.3, 128.8, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.$ 55.6, 35.3 ppm.



Figure S15. <sup>1</sup>H NMR spectrum of 7a in CDCl<sub>3</sub>.



Figure S16. <sup>13</sup>C NMR spectrum of 7a in CDCl<sub>3</sub>.

**1.9 General Synthetic Procedure for the Preparation of Sulfonamides:** To the cooled solution of 1.0 eq. of 2- phenylethanamine/2-(pyridin-2-yl)ethan-1-amine in dry DCM, 1.2 eq. of dry Et<sub>3</sub>N was added in dropwise manner in the presence of the catalytic amount of DMAP (dimethylaminopyridine) followed by slow addition of 1.2 eq. of *p*-substituted benzene sulfonyl chloride in dry DCM at 0  $^{\circ}$ C to yield corresponding dimeric sulfonamides. The reaction mixture was allowed to reach room temperature and was further stirred. After the reaction (monitored by TLC), the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane. The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: ethyl acetate/pet ether), yielded pure product. The purified products were crystallized from organic solvents or a mixture of organic solvents by slow evaporation.

A similar reaction procedure has been followed for the synthesis of sulfonamide-like sulfoesters. The crude organic product has been purified by flash column chromatography (eluent: ethyl acetate/pet ether). The Purified products were crystallized from organic solvents or a mixture of organic solvents by slow evaporation. Here in sulfonamide synthesis 2-phenylethanamine used as a limiting reactant in synthesis of (1b, 2b, 3b, 4b, 5b, 6b, 7b) and 2-(pyridin-2-yl)ethan-1-amine for (1c, 2c, 3c, 4c, 5c, 6c, 7c) instead of 2-phenylethan-1-ol which is used as a limiting reactant in sulfoester synthesis.



Figure S17. Scheme-Synthetic procedure for the preparation of Sulfonamides (1b, 2b, 3b, 4b, 5b, 6b, 7b) and (1c, 2c, 3c, 4c, 5c, 6c, 7c).

1.10 Synthesis of N-phenethyl-4-(trifluoromethyl) benzenesulfonamide (1b): To a solution of 2- phenylethanamine (100 mg, 0.83 mmol, 1.0eq) in dry DCM (10 mL), dry Et<sub>3</sub>N (0.14 mL, 0.99 mmol, 1.2 eq) was added in dropwise manner in presence of catalytic amount of DMAP (dimethylaminopyridine) (10 mg, 0.083 mmol, 0.1eq) followed by slow addition of 4trifluoromethylbenzenesulfonyl chloride (240 mg, 0.99 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded (1b). Solid; yield = 140mg, 53%;  $R_f = 0.56$  (ethyl acetate/petroleum ether = 30/70); mp = 112-114 °C, <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>)  $\delta$  = 7.96 - 7.85 (m, J = 8.2 Hz, 2 H), 7.80 - 7.69 (m, J = 8.3 Hz, 2 H), 7.34 -7.21 (m, 4 H), 7.13 - 7.02 (m, 2 H), 4.55 (t, J = 5.9 Hz, 1 H), 3.29 (q, J = 6.6 Hz, 2 H), 2.80 $(t, J = 6.8 \text{ Hz}, 2 \text{ H}), {}^{13}\text{C}$  NMR (50MHz, CDCl<sub>3</sub>)  $\delta = 143.4, 137.3, 128.8, 128.7, 127.5, 126.9, 128.8, 128.7, 127.5, 126.9, 128.8, 128.7, 127.5, 126.9, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.8, 128.7, 128.7, 128.8, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 1$ 126.3, 126.3, 126.2, 126.1, 77.6, 76.4, 44.2, 35.8 ppm. HRMS (ESI) calcd. for C<sub>15</sub>H<sub>14</sub>NO<sub>2</sub>F<sub>3</sub>SNa [M+Na]<sup>+</sup> 352.0590, found 352.0580.



Figure S18. <sup>1</sup>H NMR spectrum of 1b in CDCl<sub>3</sub>.



Figure S19. <sup>13</sup>C NMR spectrum of 1b in CDCl<sub>3</sub>.

1.11 Synthesis of 4-cyano-N-phenethylbenzenesulfonamide (2b): To a solution of 2phenylethanamine (100 mg, 0.83 mmol, 1.0 eq) in dry DCM (10 mL), dry Et<sub>3</sub>N (0.14 mL, 0.99 mmol, 1.2 eq) was added in a dropwise manner in presence of the catalytic amount of DMAP (dimethylaminopyridine) (10 mg, 0.083 mmol, 0.1 eq) followed by slow addition of 4cyanobenzenesulfonyl chloride (198 mg, 0.99 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded (2b). Solid; yield = 145 mg, 62%;  $R_f = 0.35$  (ethyl acetate/petroleum ether = 30/70); mp = 118-119 °C, <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>)  $\delta$  = 7.94 - 7.83 (m, 2 H), 7.82 - 7.71 (m, 2 H), 7.34 - 7.19 (m, 4 H), 7.13 -7.02 (m, 2 H), 4.61 (t, J = 5.9 Hz, 1 H), 3.29 (q, J = 6.6 Hz, 2 H), 2.80 (t, J = 6.8 Hz, 2 H), <sup>13</sup>C **NMR (50MHz, CDCl**<sub>3</sub>) δ = 144.2, 137.2, 132.9, 128.8, 128.6, 127.6, 127.0, 117.3, 116.3, 77.6, 76.4, 44.3, 35.8 ppm. HRMS (ESI) calcd. for C<sub>15</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub>S [M+H]<sup>+</sup> 287.0849, found 287.0849.



Figure S20. <sup>1</sup>H NMR spectrum of 2b in CDCl<sub>3</sub>.



Figure S21. <sup>13</sup>C NMR spectrum of 2b in CDCl<sub>3</sub>.
**1.12** Synthesis of 4-chloro-N-phenethylbenzenesulfonamide (3b): To a solution of 2phenylethanamine (150 mg, 1.24 mmol, 1.0 eq) in dry DCM (10 mL), dry Et<sub>3</sub>N (0.21 mL, 1.49 mmol, 1.2 eq) was added in dropwise manner in the presence of the catalytic amount of DMAP (dimethylaminopyridine) (15 mg, 0.124mmol, 0.1 eq) followed by slow addition of 4chlorobenzenesulfonyl chloride (314 mg, 1.49 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO3 and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded(**3b**). Solid; yield = 318mg, 88%; R<sub>f</sub> = 0.50 (ethyl acetate/petroleum ether = 30/70); mp = 89-91 °C, <sup>1</sup>**H NMR** (**200MHz, CDCI**<sub>3</sub>)  $\delta$  = 7.72 - 7.59 (m, 4 H), 7.36 - 7.20 (m, 3 H), 7.17 - 7.03 (m, 2 H), 4.68 (br. s., 1 H), 3.34 - 3.17 (m, 2 H), 2.87 - 2.72 (m, 2 H), <sup>13</sup>C NMR (**50MHz, CDCI**<sub>3</sub>)  $\delta$  = 138.8, 137.4, 132.3, 128.8, 128.7, 128.5, 127.5, 126.8, 77.6, 76.4, 44.2, 35.7 ppm. HRMS (ESI) calcd. for C<sub>14</sub>H<sub>14</sub>ClNO<sub>2</sub>SNa [M+Na]<sup>+</sup> 318.0326, found 318.0323.



Figure S22. <sup>1</sup>H NMR spectrum of 3b in CDCl<sub>3</sub>.



Figure S23. <sup>13</sup>C NMR spectrum of 3b in CDCl<sub>3</sub>.

1.13 Synthesis of 4-Bromo-N-phenethylbenzenesulfonamide (4b): To a solution of 2phenylethanamine (100 mg, 0.83 mmol, 1.0 eq) in dry DCM (10 mL), dry Et<sub>3</sub>N (0.14 ml, 0.99 mmol, 1.2 eq) was added in a dropwise manner in the presence of the catalytic amount of DMAP (dimethylaminopyridine) (10 mg, 0.083mmol, 0.1 eq) followed by slow addition of 4bromobenzenesulfonyl chloride (250 mg, 0.99 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded (4b). Solid; yield = 210 mg, 76%;  $R_f = 0.50$  (ethyl acetate/petroleum ether = 30/70); mp = 88-90 °C, <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>)  $\delta$  = 7.77 - 7.65 (m, 2 H), 7.51 - 7.39 (m, 2 H), 7.34 - 7.18 (m, 4 H), 7.07 (dd, J = 2.0, 7.3 Hz, 2 H), 4.45 (t, J = 5.9 Hz, 1 H), 3.24 (q, J = 6.6 Hz, 2 H), 2.78 (t, J = 6.8 Hz, 2 H), <sup>13</sup>C NMR (50MHz, CDCl<sub>3</sub>)  $\delta$  = 139.1, 138.3, 137.4, 129.3, 128.7, 128.7, 128.4, 126.8, 44.2, 35.7 ppm. **HRMS** (ESI) calcd. for C<sub>14</sub>H<sub>15</sub>BrNO<sub>2</sub>S [M+H]<sup>+</sup> 340.0001, found 340.0002.



Figure S24. <sup>1</sup>H NMR spectrum of 4b in CDCl<sub>3.</sub>



Figure S25. <sup>13</sup>C NMR spectrum of 4b in CDCl<sub>3</sub>.

Synthesis of N-phenethylbenzenesulfonamide (5b): To a solution of 2-1.14 phenylethanamine (50 mg, 0.41 mmol, 1.0 eq) in dry DCM (5 mL), dry Et<sub>3</sub>N (0.07 mL, 0.49 mmol, 1.2 eq) was added in dropwise manner in presence of catalytic amount of DMAP (dimethylamino pyridine) (5 mg, 0.041mmol, 0.1 eq) followed by slow addition of benzenesulfonyl chloride (0.06 mL, 0.99 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO3 and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded (5b). Solid; yield = 90mg, 84%;  $R_f = 0.46$  (ethyl acetate/petroleum ether = 30/70); mp = 65-67 °C, <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>)  $\delta$  = 7.89 - 7.79 (m, 2 H), 7.66 - 7.46 (m, 3 H), 7.36 - 7.20 (m, 4 H), 7.10 (dd, *J* = 1.9, 7.5 Hz, 2 H), 4.49 (br. s., 1 H), 3.27 (t, J = 6.8 Hz, 2 H), 2.79 (t, J = 6.9 Hz, 2 H), <sup>13</sup>C NMR (50MHz, CDCl<sub>3</sub>)  $\delta =$ 139.8, 137.6, 132.6, 129.1, 128.7, 128.7, 127.0, 126.8, 77.6, 76.4, 44.2, 35.7 ppm. HRMS (ESI) calcd. for C<sub>14</sub>H<sub>16</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> 262.0896, found 262.0894.



Figure S26. <sup>1</sup>H NMR spectrum of 5b in CDCl<sub>3</sub>.



Figure S27. <sup>13</sup>C NMR spectrum of 5b in CDCl<sub>3</sub>.

1.15 Synthesis of 4-Methyl-N-phenethylbenzenesulfonamide (6b): To a solution of 2phenylethanamine (150 mg, 1.24 mmol, 1.0 eq) in dry DCM (10 mL), dry Et3N (0.21 mL, 1.49 mmol, 1.2 eq) was added in dropwise manner in the presence of the catalytic amount of DMAP(dimethylaminopyridine) (15 mg, 0.124mmol, 0.1 eq) followed by slow addition of p-Toulenesulfonyl chloride (284 mg, 1.49 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na2SO4 and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded (**6b**). Solid; yield = 270 mg, 80%;  $R_f = 0.46$ (ethyl acetate/petroleum ether = 30/70); mp = 64-66 °C, <sup>1</sup>H NMR (200MHz, CDCl3)  $\delta$  = 7.78 - 7.66 (m, 2 H), 7.38 - 7.22 (m, 5 H), 7.11 (dd, J = 1.9, 7.5 Hz, 2 H), 4.54 (br. s., 1 H), 3.24 (t, J = 6.9 Hz, 2 H), 2.79 (t, J = 6.9 Hz, 2 H), 2.46 (s, 3 H), <sup>13</sup>C NMR (50MHz, CDCl3)  $\delta = 143.4, 137.7, 136.8,$ 129.7, 128.7, 127.0, 126.7, 77.6, 76.4, 44.2, 35.7, 21.5 ppm. HRMS (ESI) calcd. for C<sub>15</sub>H<sub>18</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> 276.1053, found 276.1048.



Figure S28. <sup>1</sup>H NMR spectrum of 6b in CDCl<sub>3</sub>.



Figure S29. <sup>13</sup>C NMR spectrum of 6b in CDCl<sub>3</sub>.

**1.16** Synthesis of 4-Methoxy-N-phenethylbenzenesulfonamide (7b): To a solution of 2phenylethanamine (100 mg, 0.83 mmol, 1.0 eq) in dry DCM (10 mL), dry Et<sub>3</sub>N (0.14 mL, 0.99 mmol, 1.2 eq) was added in a dropwise manner in the presence of the catalytic amount of DMAP (dimethylaminopyridine) (10 mg, 0.083 mmol, 0.1 eq) followed by slow addition of 4methoxybenzenesulfonyl chloride (202 mg, 0.99 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO3 and extracted with dichloromethane (3 x 10 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded (7b). Solid; yield = 200 mg, 84%;  $R_f = 0.32$  (ethyl acetate/petroleum ether = 30/70); mp = 41-43 °C, <sup>1</sup>H NMR (**200MHz, CDCl**<sub>3</sub>)  $\delta$  = 7.83 - 7.71 (m, 2 H), 7.36 - 7.19 (m, 3 H), 7.11 (dd, *J* = 1.8, 7.5 Hz, 2 H), 7.04 - 6.93 (m, 2 H), 3.90 (s, 3 H), 3.23 (t, *J* = 7.0 Hz, 2 H), 2.79 (t, *J* = 7.0 Hz, 2 H), <sup>13</sup>C NMR (**50MHz, CDCl**<sub>3</sub>)  $\delta$  = 162.8, 137.7, 131.4, 129.2, 128.7, 126.7, 114.2, 77.6, 76.4, 55.6, 44.1, 35.7 ppm. HRMS (ESI) calcd. for C<sub>15</sub>H<sub>17</sub>NO<sub>3</sub>SNa [M+Na]<sup>+</sup> 314.0821, found 314.0818.



Figure S30. <sup>1</sup>H NMR spectrum of 7b in CDCl<sub>3</sub>.



Figure S31. <sup>13</sup>C NMR spectrum of 7b in CDCl<sub>3</sub>.

1.17 Synthesis of N-(2-(pyridin-2-yl)ethyl)-4-(trifluoromethyl)benzenesulfonamide (1c): To a solution of 2-(2-Pyridyl)ethylamine (75 mg, 0.61 mmol, 1.0 eq) in dry DCM (10 mL), dry Et<sub>3</sub>N (0.10 mL, 0.73mmol, 1.2 eq) was added in a dropwise manner in the presence of the catalytic amount of DMAP (dimethylaminopyridine) (8 mg, 0.061 mmol, 0.1eq) followed by slow addition of 4-trifluoromethylbenzenesulfonyl chloride (179 mg, 0.73 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded(1c). Solid; yield = 155 mg, 77%;  $R_f = 0.24$  (ethyl acetate/petroleum ether = 40/60); mp = 102-104 °C, <sup>1</sup>H **NMR** (200MHz, CDCl<sub>3</sub>)  $\delta = 8.55 - 8.33$  (m, 1 H), 7.98 (d, J = 8.2 Hz, 2 H), 7.74 (d, J = 8.3Hz, 2 H), 7.59 (dt, J = 1.8, 7.7 Hz, 1 H), 7.22 - 6.97 (m, 2 H), 6.55 (br. s., 1 H), 3.53 - 3.27 (m, 2 H), 2.96 (t, J = 5.9 Hz, 2 H), <sup>13</sup>C NMR (50MHz, CDCl<sub>3</sub>)  $\delta = 158.7$ , 148.9, 143.8, 136.8, 127.4, 126.2, 126.2, 126.1, 126.0, 125.9, 123.5, 121.9, 77.6, 76.4, 42.2, 35.9 ppm. HRMS (ESI) calcd. for C<sub>14</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub>F<sub>3</sub>S [M+H]<sup>+</sup> 287.0849, found 287.0849.



Figure S32. <sup>1</sup>H NMR spectrum of 1c in CDCl<sub>3</sub>.



Figure S33. <sup>13</sup>C NMR spectrum of 1c in CDCl<sub>3</sub>.

1.18 Synthesis of 4-cyano-N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide (2c): To a solution of 2-(2-Pyridyl)ethylamine (150 mg, 1.23 mmol, 1.0 eq)in dry DCM (10 mL), dry Et<sub>3</sub>N (0.21 mL, 1.48 mmol, 1.2 eq) was added in a dropwise manner in presence of catalytic amount of DMAP(dimethylaminopyridine) (15 mg, 0.12 mmol, 0.1 eq) followed by slow addition of 4cyanobenzenesulfonyl chloride (298 mg, 1.48 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded (2c). Solid; yield = 195mg, 56%;  $R_f = 0.17$  (ethyl acetate/petroleum ether = 40/60); mp = 147-149 °C, <sup>1</sup>H NMR  $(200 \text{ MHz}, \text{ CDCl}_3) \delta = 8.51 - 8.39 \text{ (m, 1 H)}, 8.03 - 7.90 \text{ (m, 2 H)}, 7.84 - 7.71 \text{ (m, 2 H)}, 7.60 \text{ (dt, 1)}$ J = 1.9, 7.7 Hz, 1 H), 7.22 - 7.02 (m, 2 H), 6.72 (br. s., 1 H), 3.40 (br. s., 2 H), 2.95 (t, J = 5.9Hz, 2 H), <sup>13</sup>C NMR (50MHz, CDCl<sub>3</sub>)  $\delta$  = 158.6, 148.8, 144.6, 137.0, 132.8, 127.6, 123.6, 121.9, 117.3, 116.0, 77.6, 76.4, 42.2, 35.7 ppm. HRMS (ESI) calcd. for C<sub>14</sub>H<sub>14</sub>N<sub>3</sub>O<sub>2</sub>S [M+H]<sup>+</sup> 288.0801, found 288.0799.



Figure S34. <sup>1</sup>H NMR spectrum of 2c in CDCl<sub>3</sub>.



Figure S35. <sup>13</sup>C NMR spectrum of 2c in CDCl<sub>3</sub>.

1.19 Synthesis of 4-chloro-N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide (3c): To a solution of 2-(2-Pyridyl)ethylamine (100 mg, 0.83 mmol, 1.0 eq) in dry DCM (10 mL), dry Et<sub>3</sub>N (0.14 mL, 0.99 mmol, 1.2 eq) was added in a dropwise manner in presence of catalytic amount of DMAP (dimethylaminopyridine) (10 mg, 0.083 mmol, 0.1 eq) followed by slow addition of 4chlorobenzenesulfonyl chloride (206 mg, 0.99mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded (3c). Solid; yield = 190 mg, 78%;  $R_f = 0.29$  (ethyl acetate/petroleum ether = 40/60); mp = 110-112 °C, <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>)  $\delta = 8.48$  (d, J = 4.2 Hz, 1 H), 7.83 - 7.75 (m, 2 H), 7.67 (dt, J = 1.8, 7.7 Hz, 1 H), 7.49 - 7.39 (m, 2 H), 7.26 - 7.10 (m, 2 H), 6.47 (t, J = 5.6 Hz, 1 H), 3.39 (q, J = 5.9 Hz, 2 H), 3.06 - 2.95 (m, 2 H), <sup>13</sup>C NMR (50MHz, CDCl<sub>3</sub>)  $\delta$  = 158.5, 148.3, 138.8, 138.7, 137.4, 129.3, 128.5, 123.8, 122.0, 42.2, 35.7 ppm. **HRMS** (ESI) calcd. for C<sub>13</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub>ClS [M+H]<sup>+</sup> 297.0459, found 297.0467.



Figure S36. <sup>1</sup>H NMR spectrum of 3c in CDCl<sub>3</sub>.



Figure S37. <sup>13</sup>C NMR spectrum of 3c in CDCl<sub>3</sub>.

**1.20** Synthesis of 4-Bromo-N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide (4c): To a solution of 2-(2-Pyridyl)ethylamine (75 mg, 0.61 mmol, 1.0 eq) in dry DCM (10 mL), dry Et<sub>3</sub>N (0.10 mL, 0.73 mmol, 1.2 eq) was added in a dropwise manner in presence of catalytic amount of DMAP (dimethylaminopyridine) (8 mg, 0.061 mmol, 0.1 eq) followed by slow addition of 4-bromobenzenesulfonyl chloride (187 mg, 0.73 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded (4c). Solid; yield = 110mg, 53%;  $\mathbf{R}_f = 0.24$  (ethyl acetate/petroleum ether = 40/60); mp = 100-102 °C, <sup>1</sup>**H NMR** (200MHz, CDCl<sub>3</sub>)  $\delta = 8.45$  (d, J = 4.2 Hz, 1 H), 7.75 - 7.55 (m, 5 H), 7.23 - 7.06 (m, 2 H), 6.52 (t, J = 5.2 Hz, 1 H), 3.37 (q, J = 5.8 Hz, 2 H), 3.03 - 2.90 (m, 2 H) <sup>13</sup>C NMR (50MHz, CDCl<sub>3</sub>)  $\delta = 158.4$ , 148.4, 139.2, 137.4, 132.2, 128.5, 127.2, 123.8, 122.0, 77.6, 76.4, 42.2, 35.7 ppm. HRMS (ESI) calcd. for C<sub>13</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub>BrS [M+H]<sup>+</sup> 342.9933, found 342.9930.



Figure S38. <sup>1</sup>H NMR spectrum of 4c in CDCl<sub>3</sub>.



Figure S39. <sup>13</sup>C NMR spectrum of 4c in CDCl<sub>3</sub>.

**1.21 Synthesis of N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide (5c):** To a solution of 2-(2-Pyridyl)ethylamine (100 mg, 0.83 mmol, 1.0 eq) in dry DCM (10 mL), dry Et3N (0.14 mL, 0.99 mmol, 1.2 eq) was added in a dropwise manner in presence of catalytic amount of DMAP (dimethylaminopyridine) (10mg, 0.083mmol, 0.1 eq) followed by slow addition of Benzenesulfonyl chloride (125 mg, 0.99 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded (**5c**). Solid; yield = 140 mg, 65%;  $R_f$  = 0.20 (ethyl acetate/petroleum ether = 40/60); mp = 97-99 °C, <sup>1</sup>H NMR (200MHz, CDCI3)  $\delta$  = 8.51 - 8.40 (m, 1 H), 7.91 - 7.78 (m, 2 H), 7.64 - 7.42 (m, 4 H), 7.19 - 7.01 (m, 2 H), 6.20 (br. s., 1 H), 3.45 - 3.30 (m, 2 H), 2.94 (t, *J* = 6.1 Hz, 2 H), <sup>13</sup>C NMR(50MHz, CDCI3) $\delta$  = 158.5, 148.3, 140.1, 137.4, 132.4, 129.0, 126.9, 123.8, 122.0, 77.6, 76.4, 42.2, 35.8 ppm. HRMS (ESI) calcd. for C<sub>13</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub>S [M+H]<sup>+</sup>263.0849, found 263.0847.



Figure S40. <sup>1</sup>H NMR spectrum of 5c in CDCl<sub>3</sub>.



Figure S41. <sup>13</sup>C NMR spectrum of 5c in CDCl<sub>3</sub>.

1.22 Synthesis of 4-Methyl-N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide (6c): To a solution of 2-(2-Pyridyl)ethylamine (100 mg, 0.83 mmol, 1.0 eq) in dry DCM (10 mL), dry Et3N (0.14 mL, 0.99 mmol, 1.2 eq) was added in a dropwise in the manner in the presence of catalytic amount of DMAP (dimethylaminopyridine) (10 mg, 0.0.83mmol, 0.1 eq) followed by slow addition of p-toulenesulfonyl chloride (187 mg, 0.99 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded (6c). Solid; yield = 160 mg, 71%;  $R_f = 0.18$  (ethyl acetate/petroleum ether = 40/60); mp = 120-122 °C, <sup>1</sup>H NMR  $(200 \text{ MHz}, \text{ CDCl}_3) \delta = 8.49 \text{ (d, } J = 4.3 \text{ Hz}, 1 \text{ H}), 7.78 \text{ - } 7.59 \text{ (m, 3 H)}, 7.29 \text{ (s, 1 H)}, 7.26 \text{ - } 7.10 \text{ H})$ (m, 3 H), 6.16 (br. s., 1 H), 3.37 (q, J = 6.0 Hz, 2 H), 3.00 (t, J = 6.1 Hz, 2 H), 2.41 (s, 3 H), <sup>13</sup>C NMR (50MHz, CDCl<sub>3</sub>)  $\delta = 158.6, 148.5, 143.1, 137.2, 137.0, 129.6, 127.0, 123.7, 121.9,$ 77.6, 76.4, 42.2, 36.0, 21.4 ppm. **HRMS** (ESI) calcd. for  $C_{14}H_{17}N_2O_2S$  [M+H]<sup>+</sup> 277.1005, found 277.1001.



Figure S42. <sup>1</sup>H NMR spectrum of 6c in CDCl<sub>3</sub>.



Figure S43. <sup>13</sup>C NMR spectrum of 6c in CDCl<sub>3</sub>.

1.23 Synthesis of 4-Methoxy-N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide (7c): To a solution of 2-(2-Pyridyl)ethylamine (100 mg, 0.83 mmol, 1.0 eq) in dry DCM (10 mL), dry Et3N (0.14mL, 0.99 mmol, 1.2 eq) was added in a dropwise manner in the presence of catalytic amount of DMAP (dimethylaminopyridine) (10 mg, 0.083 mmol, 0.1 eq) followed by slow addition of 4-methoxybenzenesulfonyl chloride (203mg, 0.99 mmol, 1.2 eq) in dry DCM at 0 °C. The reaction mixture was allowed to reach room temperature and was further stirred for 8 h. After the reaction (monitored by TLC) was completed, the mixture was poured into a saturated solution of NaHCO<sub>3</sub> and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under vacuum to get the crude product, which, on purification by flash column chromatography (eluent: pet ether/ethyl acetate), yielded(7c). Solid; yield = 184 mg, 77%;  $R_f = 0.12$  (ethyl acetate/petroleum ether = 40/60); mp = 106-108 °C, <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>)  $\delta$  = 8.51 - 8.42 (m, 1 H), 7.84 - 7.71 (m, 2 H), 7.65 - 7.51 (m, 1 H), 7.19 -7.02 (m, 2 H), 7.00 - 6.88 (m, 2 H), 6.05 (br. s., 1 H), 3.86 (s, 3 H), 3.35 (q, J = 5.9 Hz, 2 H), 2.99 - 2.88 (m, 2 H), <sup>13</sup>C NMR (50MHz, CDCl<sub>3</sub>)  $\delta$  = 162.6, 158.8, 149.0, 136.6, 131.7, 129.1, 123.5, 121.7, 114.1, 77.6, 76.4, 55.5, 42.2, 36.2 ppm. HRMS (ESI) calcd. for C<sub>14</sub>H<sub>17</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>293.0954, found 293.0950.



Figure S44. <sup>1</sup>H NMR spectrum of 7c in CDCl<sub>3</sub>.



Figure S45. <sup>13</sup>C NMR spectrum of 7c in CDCl<sub>3</sub>.
Table S1. Summary of the crystallographic data for phenethyl benzenesulfonate (1a, 3a, 4a, 6a).

| Crystal Data                                                            | Crystal Data 1a 3a 4a |                      | 6a                   |                      |
|-------------------------------------------------------------------------|-----------------------|----------------------|----------------------|----------------------|
| Formula                                                                 | $C_{15}H_{13}F_3O_3S$ | $C_{14}H_{13}ClO_3S$ | $C_{14}H_{13}BrO_3S$ | $C_{15}H_{16}O_{3}S$ |
| M <sub>r</sub>                                                          | 330.31                | 296.75               | 341.21               | 276.34               |
| Crystal Size, mm                                                        | 0.20×0.13×0.08        | 0.24×0.14×0.09       | 0.21×0.13×0.07       | 0.24×0.15×0.09       |
| Temperature (K)                                                         | 296(2)                | 293(2)               | 296(2)               | 296(2)               |
| Crystal Syst.                                                           | Monoclinic            | monoclinic           | monoclinic           | triclinic            |
| Space Group                                                             | $P2_{1}/c$            | $P2_{1}/c$           | P2 <sub>1</sub>      | <i>P</i> -1          |
| a/Å                                                                     | 16.719(6)             | 15.5325(8)           | 7.5635(5)            | 7.3793(6)            |
| b/Å                                                                     | 7.935(3)              | 7.7124(3)            | 24.1053(16)          | 8.1389(7)            |
| c/Å                                                                     | 11.680(4)             | 11.711(16)           | 8.0213(5)            | 24.315(2)            |
| $\alpha / 0$                                                            | 90                    | 90                   | 90                   | 85.636(5)            |
| $\beta^{\prime 0}$                                                      | 101.248(6)            | 100.106(4)           | 104.6860(10)         | 89.814(5)            |
| $\gamma^{0}$                                                            | 90                    | 90                   | 90                   | 74.498(4)            |
| V/Å <sup>3</sup>                                                        | 1519.8(9)             | 1381.10(11)          | 1414.67(16)          | 1402.9(2)            |
| Z                                                                       | 4                     | 4                    | 4                    | 4                    |
| $D_{\rm calc}/{ m g~cm^{-3}}$                                           | 1.444                 | 1.427                | 1.602                | 1.308                |
| <i>m</i> /mm <sup>-1</sup>                                              | 0.254                 | 0.428                | 3.053                | 0.232                |
| F(000)                                                                  | 680                   | 616                  | 688                  | 584                  |
| Ab. Correct.                                                            | multi-scan            | multi-scan           | multi-scan           | multi-scan           |
| $T_{min}/T_{max}$                                                       | 0.951/0.980           | 0.904/0.963          | 0.566/0.815          | 0.947/0.979          |
| $2 \theta_{max}$                                                        | 51                    | 56                   | 56                   | 52                   |
| Total reflns.                                                           | 9953                  | 12254                | 10556                | 9648                 |
| Unique reflns.                                                          | 2991                  | 3292                 | 6162                 | 4877                 |
| Obs. reflns.                                                            | 2356                  | 3000                 | 4339                 | 3911                 |
|                                                                         | (-20, 18),            | (-18, 20),           | (-9, 9),             | (-9, 9),             |
| <i>h, k, l</i> (min, max)                                               | (-8, 9),              | (-10, 10),           | (-29, 31),           | (-10, 8),            |
|                                                                         | (-14, 13)             | (-15, 15)            | (-10, 9)             | (-29, 24)            |
| R <sub>int</sub> /R <sub>sig</sub>                                      | 0.0872/0.0746         | 0.0234/0.0238        | 0.0793/0.1720        | 0.0546/0.0734        |
| No. of Para/Restraints                                                  | 208/1                 | 172/0                | 344/1                | 345/0                |
| <i>R1</i> [ <i>I</i> > 2 <i>σ</i> ( <i>I</i> )]                         | 0.0815                | 0.0320               | 0.0497               | 0.1224               |
| $wR2[I > 2\sigma(I)]$                                                   | 0.1986                | 0.0852               | 0.1328               | 0.3000               |
| <i>R1</i> [all data]                                                    | 0.1001                | 0.0354               | 0.0931               | 0.1373               |
| wR2 [all data]                                                          | 0.2126                | 0.0882               | 0.1596               | 0.3076               |
| goodness-of-fit                                                         | 1.068                 | 1.025                | 0.940                | 1.103                |
| $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}(e \text{\AA}^{-3})$ | +0.372, -0.309        | +0.362, -0.377       | +0.510, -0.415       | +0.970, -0.520       |
| CCDC No.                                                                | 2337437               | 2337438              | 2337439              | 2337440              |

| Crystal Data                                              | 1b                      | 2b                    | 3b                    | 4b                                                  | 5b                  |
|-----------------------------------------------------------|-------------------------|-----------------------|-----------------------|-----------------------------------------------------|---------------------|
| Formula                                                   | $C_{15}H_{14}NO_2SF3$   | $C_{15}H_{14}N_2O_2S$ | $C_{14}H_{14}ClNO_2S$ | C <sub>14</sub> H <sub>14</sub> BrNO <sub>2</sub> S | $C_{14}H_{15}NO_2S$ |
| Mr                                                        | 329.33                  | 286.34                | 295.77                | 340.23                                              | 261.33              |
| Crystal Size, mm                                          | 0.24×0.13×0.09          | 0.16×0.14×0.03        | 0.28×0.07×0.04        | 0.18×0.10×0.07                                      | 0.28×0.16×0.03      |
| Temperature (K)                                           | 100(2)                  | 100(2)                | 100(2)                | 110(2)                                              | 100(2)              |
| Crystal Syst.                                             | Monoclinic              | Orthorhombic          | Monoclinic            | Monoclinic                                          | Orthorhombic        |
| Space Group                                               | <i>P</i> 2 <sub>1</sub> | $Pca2_1$              | Pc                    | Pc                                                  | $Pca2_1$            |
| a/Å                                                       | 10.1905(6)              | 9.1812(6)             | 26.5795(11)           | 26.8683(14)                                         | 9.1017(4)           |
| b/Å                                                       | 26.3756(19)             | 5.7029(5)             | 5.7691(2)             | 5.8303(3)                                           | 5.7077(2)           |
| $c/{ m \AA}$                                              | 11.0620(8)              | 53.043(5)             | 9.0833(4)             | 9.0640(5)                                           | 25.1568(11)         |
| $\alpha / 0$                                              | 90                      | 90                    | 90                    | 90                                                  | 90                  |
| $\beta^{\prime 0}$                                        | 94.342(2)               | 90                    | 98.9910(10)           | 98.976(2)                                           | 90                  |
| $\gamma^{0}$                                              | 90                      | 90                    | 90                    | 90                                                  | 90                  |
| V/Å <sup>3</sup>                                          | 2964.7(3)               | 2770.7(4)             | 1375.72(10)           | 1402.49(13)                                         | 1306.89(9)          |
| Z                                                         | 8                       | 8                     | 4                     | 4                                                   | 4                   |
| $D_{\rm calc}/{ m g~cm^{-3}}$                             | 1.476                   | 1.373                 | 1.428                 | 1.611                                               | 1.328               |
| $m/\mathrm{mm}^{-1}$                                      | 0.257                   | 0.236                 | 0.426                 | 3.076                                               | 0.241               |
| F(000)                                                    | 1360                    | 1200                  | 616                   | 688                                                 | 552                 |
| Ab. Correct.                                              | multi-scan              | multi-scan            | Multi-scan            | multi-scan                                          | multi-scan          |
| $T_{min}/T_{max}$                                         | 0.941/0.977             | 0.962/0.993           | 0.890/0.983           | 0.607/0.813                                         | 0.936/0.993         |
| $2 \theta_{max}$                                          | 56                      | 56                    | 56                    | 56                                                  | 54                  |
| Total reflns.                                             | 42830                   | 14214                 | 15835                 | 27785                                               | 15214               |
| Unique reflns.                                            | 13377                   | 5863                  | 8669                  | 6645                                                | 2829                |
| Obs. reflns.                                              | 11918                   | 5488                  | 7973                  | 6299                                                | 2802                |
|                                                           | (-13, 12),              | (-11, 11),            | (-37, 39),            | (-35, 35),                                          | (-11, 11),          |
| <i>h</i> , <i>k</i> , <i>l</i> (min, max)                 | (-34, 34),              | (-7, 7),              | (-8, 7),              | (-7, 7),                                            | (-7, 7),            |
|                                                           | (-14, 14)               | (-68, 69)             | (-13, 13)             | (-11, 11)                                           | (-32, 32)           |
| $R_{int}/R_{sig}$                                         | 0.0332/0.0388           | 0.0445                | 0.0241/0.0400         | 0.0323/0.0416                                       | 0.0202/0.0153       |
| No. of<br>Para/Restraints                                 | 810                     | 370                   | 352/2                 | 352/4                                               | 167/1               |
| $R1 [I > 2\sigma(I)]$                                     | 0.0559                  | 0.0886                | 0.0335                | 0.0312                                              | 0.0241              |
| $wR2[I>2\sigma(I)]$                                       | 0.1515                  | 0.2034                | 0.0759                | 0.0746                                              | 0.0624              |
| <i>R1</i> [all data]                                      | 0.0642                  | 0.0903                | 0.0385                | 0.0341                                              | 0.0244              |
| wR2 [all data]                                            | 0.1585                  | 0.2042                | 0.0783                | 0.0759                                              | 0.0626              |
| goodness-of-fit                                           | 1.048                   | 1.166                 | 1.029                 | 1.101                                               | 1.083               |
| $\Delta \rho_{max}, \Delta \rho_{min}(e \text{\AA}^{-3})$ | +0.662, -0.758          | +1.108, -2.184        | +0.456, -0.345        | +0.974, -0.562                                      | +0.313, -0.271      |
| CCDC No.                                                  | 2337441                 | 2337442               | 2337443               | 2337444                                             | 2337445             |

 Table S2. Summary of the crystallographic data for phenethyl benzenesulfonate (1b to 7b).

## Table S2 continued…

| Crystal Data                                                            | 6b                  | 7b                  |  |
|-------------------------------------------------------------------------|---------------------|---------------------|--|
| Formula                                                                 | $C_{15}H_{17}NO_2S$ | $C_{15}H_{17}NO_3S$ |  |
| M <sub>r</sub>                                                          | 275.35              | 291.35              |  |
| Crystal Size, mm                                                        | 0.21×0.16×0.11      | 0.18×0.12×0.08      |  |
| Temp. (K)                                                               | 100(2)              | 100(2)              |  |
| Crystal Syst.                                                           | Monoclinic          | Triclinic           |  |
| Space Group                                                             | $P2_{1}/n$          | <i>P</i> -1         |  |
| a/Å                                                                     | 15.270(4)           | 7.6373(3)           |  |
| b/Å                                                                     | 5.4721(15)          | 11.5197(4)          |  |
| c/Å                                                                     | 17.456(5)           | 16.1227(6)          |  |
| $\alpha / ^{0}$                                                         | 90                  | 89.7740(10)         |  |
| $\beta^{\prime 0}$                                                      | 109.587(8)          | 80.1100(10)         |  |
| $\gamma^{0}$                                                            | 90                  | 85.6640(10)         |  |
| V/Å <sup>3</sup>                                                        | 1374.2(7)           | 1393.33(9)          |  |
| Z                                                                       | 4                   | 4                   |  |
| $D_{ m calc}/ m g~ m cm^{-3}$                                           | 1.331               | 1.389               |  |
| <i>m</i> /mm <sup>-1</sup>                                              | 0.233               | 0.239               |  |
| F(000)                                                                  | 584                 | 616                 |  |
| Ab. Correct.                                                            | multi-scan          | multi-scan          |  |
| T <sub>min</sub> / T <sub>max</sub>                                     | 0.953/0.975         | 0.958/0.981         |  |
| $2 \theta_{max}$                                                        | 50                  | 60                  |  |
| Total reflns.                                                           | 9936                | 64204               |  |
| Unique reflns.                                                          | 2360                | 8038                |  |
| Obs. reflns.                                                            | 2052                | 7689                |  |
|                                                                         | (-18, 17),          | (-10, 10),          |  |
| <i>h, k, l</i> (min, max)                                               | (-6, 6),            | (-16, 16),          |  |
|                                                                         | (-20, 20)           | (-22, 22)           |  |
| $R_{int}/R_{sig}$                                                       | 0.0455/0.0462       | 0.0218/0.0117       |  |
| No. of<br>Para/Restraints                                               | 254/169             | 371/0               |  |
| <i>R1</i> [ <i>I</i> > 2 <i>σ</i> ( <i>I</i> )]                         | 0.1141              | 0.0299              |  |
| $wR2[I>2\sigma(I)]$                                                     | 0.3133              | 0.0826              |  |
| <i>R1</i> [all data]                                                    | 0.1268              | 0.0311              |  |
| wR2 [all data]                                                          | 0.3314              | 0.0838              |  |
| goodness-of-fit                                                         | 1.071               | 1.040               |  |
| $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}(e \text{\AA}^{-3})$ | +1.599, -0.479      | +0.463, -0.370      |  |
| CCDC No.                                                                | 2337446             | 2337447             |  |

| Crystal Data                                                            | 1c                       | 2c                    | 3c                                                                | 4c                      | 5c                    |
|-------------------------------------------------------------------------|--------------------------|-----------------------|-------------------------------------------------------------------|-------------------------|-----------------------|
| Formula                                                                 | $C_{14}H_{13}F_3N_2O_2S$ | $C_{14}H_{13}N_3O_2S$ | C <sub>13</sub> H <sub>13</sub> ClN <sub>2</sub> O <sub>2</sub> S | $C_{13}H_{13}BrN_2O_2S$ | $C_{13}H_{14}N_2O_2S$ |
| M <sub>r</sub>                                                          | 330.32                   | 287.33                | 296.76                                                            | 341.22                  | 262.32                |
| Crystal Size, mm                                                        | 0.33×0.13×0.08           | 0.16×0.14×0.03        | 0.40×0.34×0.23                                                    | 0.21×0.10×0.04          | 0.30×0.19×0.12        |
| Temp. (K)                                                               | 100(2)                   | 100 (2)               | 100(2)                                                            | 100(2)                  | 100(2)                |
| Crystal Syst.                                                           | Monoclinic               | Monoclinic            | Monoclinic                                                        | Triclinic               | Monoclinic            |
| Space Group                                                             | C2/c                     | P21/c                 | $P2_{1}/c$                                                        | <i>P</i> -1             | $P2_{1}/c$            |
| a/Å                                                                     | 25.3896(8)               | 14.7745(4)            | 14.225(3)                                                         | 5.5952(2)               | 5.4885(3)             |
| b/Å                                                                     | 5.0011(2)                | 6.9327(2)             | 7.0381(14)                                                        | 12.3194(4)              | 9.4202(5)             |
| c/Å                                                                     | 22.3676(8)               | 14.9312(4)            | 14.882(3)                                                         | 20.3022(7)              | 24.6029(14)           |
| $\alpha^{\prime 0}$                                                     | 90                       | 90                    | 90                                                                | 88.8110(10)             | 90                    |
| $\beta^{0}$                                                             | 94.337(2)                | 118.4840(10)          | 116.423(7)                                                        | 85.7720(10)             | 95.597(2)             |
| $\gamma^{0}$                                                            | 90                       | 90                    | 90                                                                | 76.8740(10)             | 90                    |
| V/Å <sup>3</sup>                                                        | 2832.01(18)              | 1344.23(7)            | 1334.3(5)                                                         | 1359.14(8)              | 1265.97(12)           |
| Z                                                                       | 8                        | 4                     | 4                                                                 | 4                       | 4                     |
| $D_{ m calc}/ m g\  m cm^{-3}$                                          | 1.549                    | 1.420                 | 1.477                                                             | 1.668                   | 1.376                 |
| <i>m</i> /mm <sup>-1</sup>                                              | 0.271                    | 0.245                 | 0.441                                                             | 3.177                   | 0.251                 |
| F(000)                                                                  | 1360                     | 600                   | 616                                                               | 688                     | 552                   |
| Ab. Correct.                                                            | multi-scan               | multi-scan            | multi-scan                                                        | multi-scan              | multi-scan            |
| T <sub>min</sub> / T <sub>max</sub>                                     | 0.916/0.979              | 0.962/0.993           | 0.843/0.905                                                       | 0.555/0.883             | 0.928/0.971           |
| $2 \theta_{max}$                                                        | 56                       | 56                    | 61                                                                | 73                      | 69                    |
| Total reflns.                                                           | 21863                    | 17833                 | 41523                                                             | 67292                   | 11985                 |
| Unique reflns.                                                          | 3414                     | 3230                  | 4025                                                              | 12244                   | 4127                  |
| Obs. reflns.                                                            | 3197                     | 3036                  | 3842                                                              | 11050                   | 3702                  |
|                                                                         | (-33, 33),               | (-19, 19),            | (-20, 20),                                                        | (-9, 9),                | (-8, 8),              |
| <i>h</i> , <i>k</i> , <i>l</i> (min, max)                               | (-6, 6),                 | (-8, 9),              | (-10, 10),                                                        | (-18, 20),              | (-14, 10),            |
|                                                                         | (-29, 29)                | (-19, 19)             | (-21, 21)                                                         | (-33, 33)               | (-37, 35)             |
| $R_{int}/R_{sig}$                                                       | 0.0427/0.0290            | 0.0174/0.0128         | 0.0186/0.0097                                                     | 0.0216/0.0169           | 0.0186/0.0234         |
| No. of<br>Para/Restraints                                               | 203/0                    | 185/0                 | 176/0                                                             | 351/0                   | 167/0                 |
| $R1 [I > 2\sigma(I)]$                                                   | 0.0453                   | 0.0320                | 0.0265                                                            | 0.0230                  | 0.0384                |
| $wR2[I>2\sigma(I)]$                                                     | 0.1049                   | 0.0803                | 0.0728                                                            | 0.0580                  | 0.0947                |
| <i>R1</i> [all data]                                                    | 0.0478                   | 0.0340                | 0.0276                                                            | 0.0277                  | 0.0443                |
| wR2 [all data]                                                          | 0.1066                   | 0.0816                | 0.0737                                                            | 0.0597                  | 0.0981                |
| goodness-of-fit                                                         | 1.074                    | 1.081                 | 1.065                                                             | 1.025                   | 1.065                 |
| $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}(e \text{\AA}^{-3})$ | +0.861, -0.541           | +0.406, -0.441        | +0.461, -0.337                                                    | +0.631, -0.490          | +0.504, -0.370        |
| CCDC No.                                                                | 2337448                  | 2337449               | 2337450                                                           | 2337451                 | 2337452               |

**Table S3.** Summary of the crystallographic data for N-(pyridin-2 yl)ethyl)benzenesulfonamide (1c to 7c).

## Table S3 Continued...

| Crystal Data                                                            | 6с                    | 7c                    |
|-------------------------------------------------------------------------|-----------------------|-----------------------|
| Formula                                                                 | $C_{14}H_{16}N_2O_2S$ | $C_{14}H_{16}N_2O_3S$ |
| Mr                                                                      | 276.35                | 292.35                |
| Crystal Size, mm                                                        | 0.38×0.19×0.13        | 0.28×0.18×0.14        |
| Temp. (K)                                                               | 100(2)                | 90(2)                 |
| Crystal Syst.                                                           | Orthorhombic          | Monoclinic            |
| Space Group                                                             | Pbca                  | $P2_{1}/c$            |
| a/Å                                                                     | 7.7896(10)            | 7.5399(5)             |
| b/Å                                                                     | 15.722(2)             | 7.6427(5)             |
| $c/{ m \AA}$                                                            | 22.587(3)             | 24.2467(16)           |
| $\alpha / ^{0}$                                                         | 90                    | 90                    |
| $\beta^{\prime 0}$                                                      | 90                    | 93.270(4)             |
| $\gamma^{0}$                                                            | 90                    | 90                    |
| $V/Å^3$                                                                 | 2766.2(6)             | 1394.95(16)           |
| Z                                                                       | 8                     | 4                     |
| $D_{\rm calc}/{ m g~cm^{-3}}$                                           | 1.327                 | 1.392                 |
| $m/\mathrm{mm}^{-1}$                                                    | 0.233                 | 0.241                 |
| F(000)                                                                  | 1168                  | 616                   |
| Ab. Correct.                                                            | multi-scan            | multi-scan            |
| T <sub>min</sub> / T <sub>max</sub>                                     | 0.917/0.970           | 0.936/0.967           |
| $2 \theta_{max}$                                                        | 67                    | 61                    |
| Total reflns.                                                           | 36770                 | 19381                 |
| Unique reflns.                                                          | 5428                  | 4298                  |
| Obs. reflns.                                                            | 4697                  | 3772                  |
|                                                                         | (-11, 11),            | (-10, 10),            |
| <i>h, k, l</i> (min, max)                                               | (-23, 23),            | (-10, 10),            |
|                                                                         | (-35, 25)             | (-33, 33)             |
| R <sub>int</sub>                                                        | 0.0368/0.0253         | 0.0504/0.0405         |
| No. of para                                                             | 177/0                 | 186/0                 |
| <i>R1</i> [ $I > 2\sigma(I)$ ]                                          | 0.0597                | 0.0452                |
| $wR2[I>2\sigma(I)]$                                                     | 0.1328                | 0.1059                |
| <i>R1</i> [all data]                                                    | 0.0707                | 0.0528                |
| wR2 [all data]                                                          | 0.1382                | 0.1097                |
| goodness-of-fit                                                         | 1.166                 | 1.117                 |
| $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}(e \text{\AA}^{-3})$ | +0.502, -0.570        | +0.502, -0.442        |
| CCDC No.                                                                | 2337453               | 2337454               |



Figure S46. Structure overlay for molecules in (a) 1a series, (b) 1b series and (c) 1c series.



**Figure S47.** Intramolecular  $\pi \cdots \pi$  stacking interactions in **1a** series of molecules.



**Figure S48.** Syn geometry in **6c** facilitated by C-H<sup> $\cdots$ </sup> $\pi$  interactions.

| Compound | Substitution (X) | Cg <sup></sup> Cg | α (°)        | Slippage (Å) | Representation                |
|----------|------------------|-------------------|--------------|--------------|-------------------------------|
| 1a       | CF <sub>3</sub>  | 3.937 (3)         | 7.0(2)       | 1.739        |                               |
| 3a       | Cl               | 3.848(5)          | 5.5(7)       | 1.510        | Π                             |
| 4.2      | D.               | 3.892(5)          | 3.8(4)       | 1.433        |                               |
| +a       | DI               | 3.970(5)          | 1.0(4)       | 1.636        |                               |
| 69       | СНа              | 3.882(5)          | 6.2(4)       | 1.634        | Face-to-face sand-witched     |
| 0a       |                  | 3.925(5)          | 7.8(4) 1.271 |              | Syn (muanniecular n-stacking) |
| 1b       | CF <sub>3</sub>  | -                 | -            | -            | Midway (no π-stacking)        |
| 2b       | CN               |                   |              |              | X                             |
| 3b       | Cl               |                   |              |              |                               |
| 4b       | Br               | _                 | -            | _            |                               |
| 5b       | Н                | -                 |              |              |                               |
| бb       | CH <sub>3</sub>  | -                 |              |              |                               |
| 7b       | OCH <sub>3</sub> | -                 |              |              | Anti (no π-stacking)          |
| 1c       | CF <sub>3</sub>  | -                 | -            | -            | Midway (no m-stacking)        |

**Table S4.** Intramolecular  $\pi$ -stacking in sulphoester (1a, 3a, 4a, 6a), sulfonamide benzene (1b to 7b) and sulfonamide pyridine (1c to 7c) derivatives.





Figure S49. Description of conformations about a single bond.

Table S5. Torsion angles (°) for sulfoester derivatives (1a, 3a, 4a, 6a).

| Sr. No.                                                                                 | Compounds | C4-S1-O3-C7 (τ <sub>1</sub> ) | S1-O3-C7-C8 (τ <sub>2</sub> ) | O3-C7-C8-C9 (τ <sub>3</sub> ) |  |
|-----------------------------------------------------------------------------------------|-----------|-------------------------------|-------------------------------|-------------------------------|--|
| 1                                                                                       | 1a        | -77.8(3)                      | 149.0(3)                      | -64.8(5)                      |  |
| 2                                                                                       | 3a        | -75.28(15)                    | 147.76(11)                    | -64.80(19)                    |  |
| 3                                                                                       | 49        | 74.2(5) (A)                   | -148.0(6) (A)                 | 67.4(9) (A)                   |  |
| 5                                                                                       | та        | -73.6(6) (B)                  | 148.3(7) (B)                  | -69.4(11) (B)                 |  |
| 4                                                                                       | 60        | -74.6(6) (A),                 | 145.9(6) (A),                 | -68.3(9) (A),                 |  |
| 4                                                                                       | oa        | 74.0(6)(B)                    | -146.7(6) (B)                 | 71.8(10) (B)                  |  |
| Note: A and B are the labels given to the symmetry-independent molecules present in the |           |                               |                               |                               |  |
| asymmetric unit of the respective crystal structure.                                    |           |                               |                               |                               |  |

| Sr. No.                                                                                 | Compounds | C4-S1-N1-C7 (t <sub>1</sub> ) | S1-N1-C7-C8 (t <sub>2</sub> ) | N1-C7-C8-C9 (t <sub>3</sub> ) |  |  |
|-----------------------------------------------------------------------------------------|-----------|-------------------------------|-------------------------------|-------------------------------|--|--|
|                                                                                         |           | 70.0(5) (A)                   | 168.3(4) (A)                  | -177.5(5) (A)                 |  |  |
| 1                                                                                       | 11        | 71.0(5) (B)                   | 163.2(4) (B)                  | -174.0(5) (B)                 |  |  |
| I                                                                                       | 10        | -71.5(6) (C)                  | -167.5(5) (C)                 | 172.7(6) (C)                  |  |  |
|                                                                                         |           | -70.2(6) (D)                  | -173.5(5) (D)                 | 174.8(6) (D)                  |  |  |
|                                                                                         | 21        | 58.9(9) (A)                   | 169.2(7) (A)                  | -61.1(13) (A)                 |  |  |
|                                                                                         | 26        | 59.1(9) (B)                   | 170.2(7) (B)                  | -65.5(13) (B)                 |  |  |
| 2                                                                                       | 21        | -57.94(18) (A)                | -171.89(15) (A)               | 64.7(3) (A)                   |  |  |
| 2                                                                                       | 30        | -58.40(19) (B)                | -170.81(16) (B)               | 62.7(3) (B)                   |  |  |
|                                                                                         |           | -57.9(3) (A)                  | -171.2(3) (A)                 | 64.3(5) (A)                   |  |  |
|                                                                                         | 4b        | 58.9(4) (B)                   | 169.9(3) (B)                  | -63.5(5) (B)                  |  |  |
| 3                                                                                       | 5b        | 61.41(17)                     | 170.12(13)                    | -62.7(2)                      |  |  |
|                                                                                         | 6b        | -59.6(16)                     | 169.22(6)                     | 66(2)                         |  |  |
|                                                                                         |           | -70.66(8) (A)                 | -175.31(6) (A)                | 62.01(11)(A)                  |  |  |
| 4                                                                                       | 7b        | 64.81(8) (B)                  | -178.86(6) (B)                | -55.68(10) (B)                |  |  |
| Note: A and B are the labels given to the symmetry-independent molecules present in the |           |                               |                               |                               |  |  |
| asymmetric unit of the respective crystal structure.                                    |           |                               |                               |                               |  |  |

**Table S6.** Torsion angles ( $^{\circ}$ ) for sulfonamide benzene derivatives (1b to 7b).

| Sr. No.                                                                                 | Compounds | C5-S1-N1-C8 $(\tau_1)$ | S1-N1-C8-C9 (t <sub>2</sub> ) | N1-C8-C9-C10 (t <sub>3</sub> ) |  |
|-----------------------------------------------------------------------------------------|-----------|------------------------|-------------------------------|--------------------------------|--|
| 1                                                                                       | 1c        | -72.74(15)             | -93.46(16)                    | -172.74(14)                    |  |
| 2                                                                                       | 2c        | 71.47(10)              | 146.33(8)                     | -62.64(13)                     |  |
| 2                                                                                       | 3с        | -69.18(9)              | -145.41(7)                    | 62.32(11)                      |  |
|                                                                                         |           | -69.09(12) (A)         | -93.81(13) (A)                | -173.97(12) (A)                |  |
|                                                                                         | 4c        | 62.02(13) (B)          | 115.08(13) (B)                | 177.51(13) (B)                 |  |
| 3                                                                                       | 5c        | 81.46(11)              | 95.97(12)                     | 169.30(11)                     |  |
|                                                                                         | 6с        | -88.87(14)             | 75.03(17)                     | 64.75(19)                      |  |
| 4                                                                                       | 7c        | -65.44(12)             | -155.96(10)                   | 67.90(15)                      |  |
| Note: A and B are the labels given to the symmetry-independent molecules present in the |           |                        |                               |                                |  |
| asymmetric unit of the respective crystal structure.                                    |           |                        |                               |                                |  |

**Table S7.** Torsion angles (°) for sulfonamide pyridine derivatives (1c to 7c).



Figure S50. A diagram showing the distortion of the N-H bond for 5b.

 Table S8. The angles around N atoms and total sum.

| Compounds | ∠SNC (°)   | ∠SNH (°)   | ∠CNH (°)   | Angles sum |
|-----------|------------|------------|------------|------------|
| 1         |            |            |            | (°)        |
|           | 119.56 (A) | 106.98 (A) | 110.62 (A) | 337.16     |
| 16        | 120.14 (B) | 115.57 (B) | 100.72 (B) | 336.43     |
| 10        | 118.69 (C) | 106.47 (C) | 122.65 (C) | 347.81     |
|           | 118.41 (D) | 109.80 (D) | 116.16 (D) | 344.37     |
| 21        | 118.23 (A) | 120.90 (A) | 120.87(A)  | 360.0 (A)  |
| 20        | 117.74 (B) | 121.14 (B) | 121.12 (B) | 360.0 (B)  |
| 3h        | 118.04 (A) | 108.59 (A) | 116.97(A)  | 343.6 (A)  |
| 50        | 118.27 (B) | 105.98 (B) | 117.22 (B) | 341.47 (B) |
| 4b        | 118.32 (A) | 112.01 (A) | 111.37 (A) | 341.7 (A)  |
| 40        | 117.95 (B) | 105.52 (B) | 120.79 (B) | 344.26 (B) |
| 5b        | 118.04     | 108.36     | 116.08     | 342.48     |
| 6b        | 114.63     | 115.38     | 112.90     | 342.91     |
| 7h        | 118.34 (A) | 111.54 (A) | 115.72 (A) | 345.6 (A)  |
| 70        | 119.76 (B) | 113.03 (B) | 116.71 (B) | 349.5 (B)  |
| 1c        | 121.17     | 113.38     | 119.78     | 354.33     |
| 2c        | 121.27     | 113.51     | 115.31     | 350.09     |
| 3c        | 121.08     | 113.22     | 114.71     | 349.01     |
| 10        | 121.12 (A) | 115.31 (A) | 119.57 (A) | 356.0(A)   |
| 40        | 119.94 (B) | 113.87 (B) | 117.67 (B) | 351.48 (B) |
| 5c        | 122.77     | 117.84     | 117.66     | 358.27     |
| 6с        | 122.12     | 114.76     | 118.39     | 355.27     |
| 7c        | 119.26     | 109.97     | 116.51     | 345.74     |

| Comp.      | S. No. D-H···A                                                                |                          | D-H<br>(Å) | Н…А<br>(Å)   | <b>D····A</b><br>(Å) | D-<br>H···A                                | Symmetry<br>Codes                        |  |
|------------|-------------------------------------------------------------------------------|--------------------------|------------|--------------|----------------------|--------------------------------------------|------------------------------------------|--|
|            | 1.                                                                            | С7-Н7В…О2                | 0.97       | 2.65         | 3.444(5)             | / <b>a</b> (*)<br>140                      | 1-x, 1/2+y, 3/2-z                        |  |
| 1a -       | 2.                                                                            | С3-Н3…О2                 | 0.93       | 2.49         | 3.244(5)             | 139                                        | x, -1/2 - y, 1/2 + z                     |  |
|            | 3.                                                                            | F3F2                     |            | 2.889(13)    |                      | 167.6(6                                    | 2- <i>x</i> , 1/2+ <i>y</i> , 5/2-       |  |
|            | 4.                                                                            | Cg1 <sup></sup> Cg2      |            |              | 4.001(3)             | 7.1(2)                                     | <i>x</i> ,-1+ <i>y</i> , <i>z</i>        |  |
|            | 5.                                                                            | Cg1…Cg2                  |            |              | 3.937(3)             | 7.1(2)                                     | <i>x</i> , <i>y</i> , <i>z</i>           |  |
|            | Cg1=                                                                          | C1-C2-C3-C4-C5-C6; Cg2=  | C9-C10-    | ·C11-C12-C13 | -C14                 | I                                          |                                          |  |
|            | 6.         C7-H7B···O2         0.97         2.59         3.411(5)         143 |                          |            |              | 143                  | - <i>x</i> , 1/2+ <i>y</i> , 1/2- <i>z</i> |                                          |  |
|            | 7.                                                                            | С3-Н3…О2                 | 0.93       | 2.45         | 3.142(5)             | 131                                        | <i>x</i> , 1/2- <i>y</i> , 1/2+ <i>z</i> |  |
| 20         | 8.                                                                            | Cg1···Cg2                |            |              | 3.848(5)             | 5.52(7)                                    | <i>x</i> ,-1+ <i>y</i> , <i>z</i>        |  |
| 38         | 9.                                                                            | Cg1 <sup></sup> Cg2      |            |              | 3.875(5)             | 5.52 (7)                                   | <i>x,y,z</i>                             |  |
|            | Cg1= C1-C2-C3-C4-C5-C6; Cg2= C9-C10-C11-C12-C13-C14                           |                          |            |              |                      |                                            |                                          |  |
|            | 10.                                                                           | C8A-H8AB <sup></sup> O2A | 0.97       | 2.58         | 3.430(11)            | 147                                        | -1+ <i>x</i> , <i>y</i> , <i>z</i>       |  |
|            | 11.                                                                           | C6A-H6A <sup></sup> O1A  | 0.93       | 2.68         | 3.464(12)            | 142                                        | <i>x</i> , <i>y</i> ,1+ <i>z</i>         |  |
|            | 12.                                                                           | C12A-H12A···O2A          | 0.93       | 2.61         | 3.454(11)            | 152                                        | 1+x, y, 1+z                              |  |
|            | 13.                                                                           | C12B-H12B-O2B            | 0.93       | 2.61         | 3.428(14)            | 151                                        | -1+ <i>x</i> , <i>y</i> ,-1+ <i>z</i>    |  |
|            | 14.                                                                           | C14B-H14B···· Cg2        | 0.93       | 2.77         | 3.558(9)             | 143                                        | 1-x,-1/2+y,1-z                           |  |
| <b>4</b> a | 15.                                                                           | Cg1…Cg2                  |            |              | 3.892(5)             | 3.8(4)                                     | <i>x</i> , <i>y</i> , <i>z</i>           |  |
|            | 16.                                                                           | Cg1 <sup></sup> Cg3      |            |              | 3.970(5)             | 1.0(4)                                     | <i>x</i> , <i>y</i> , <i>1</i> +z        |  |
|            | 17.                                                                           | Cg3···Cg4                |            |              | 3.945(5)             | 4.8(4)                                     | <i>x</i> , <i>y</i> , <i>z</i>           |  |
|            | Cg1=C1A-C2A-C3A-C4A-C5A-C6A; Cg2= C9A-C10A-C11A-C12A-C13A-C14A; Cg3= C1B-C2B- |                          |            |              |                      |                                            |                                          |  |
|            | C3B-C                                                                         | C4B-C5B-C6B; Cg4=C9B-C   | C10B-C1    | 1B-C12B-C13  | B-C14B               | 140                                        | 1.                                       |  |
|            | 18.                                                                           | C8A-H8AB····OIA          | 0.97       | 2.64         | 3.435(12)            | 140                                        | 1+x,y,z                                  |  |
|            | 19.                                                                           | CI2A-HI2A···OIA          | 0.93       | 2.57         | 3.425(11)            | 153                                        | 1+x,-1+y,z                               |  |
|            | 20.                                                                           | C3B-H3B-02D              | 0.93       | 2.67         | 3.484(12)            | 146                                        | 1-x,2-y,1-z                              |  |
|            | 21.                                                                           | C12B-H12B····O2B         | 0.93       | 2.59         | 3.448(11)            | 154                                        | 1+x,-1+y,z                               |  |
| 6a         | 22.                                                                           | C14B-H14B····O2B         | 0.93       | 2.70         | 3.463(12)            | 140                                        | 1+x,y,z                                  |  |
|            | 23.                                                                           | C10B-H10BCg2             | 0.93       | 2.72         | 3.516(9)             | 145                                        | <i>x,y,z</i>                             |  |
|            | 24.                                                                           |                          |            |              | 3.859(5)             | 0.0(4)                                     | -x, 1-y, 2-z                             |  |
|            | 25.                                                                           |                          |            |              | 3.882(5)             | 6.2(4)                                     | <i>x</i> , <i>y</i> , <i>z</i>           |  |
|            | 30.                                                                           | Cg3···Cg3                |            |              | 3.852(5)             | 0.0(4)                                     | 1-x, 1-y, 1-z                            |  |
|            | 31.                                                                           | Cg3···Cg4                |            |              | 3.925(5)             | 7.8(4)                                     | <i>x</i> , <i>y</i> , <i>z</i>           |  |

**Table S9.** Geometrical parameters of intermolecular interactions in Phenethylbenzenesulfonate (1a, 3a, 4a, 6a).

| Cg1= C1A-C2A-C3A-C4A-C5A-C6A; Cg2= C9A-C10A-C11A-C12A-C13A-C14A; Cg3= C1B-                   |
|----------------------------------------------------------------------------------------------|
| C2B-C3B-C4B-C5B-C6B; Cg4= C9B-C10B-C11B-C12B-C13B-C14B; α - the dihedral angle between       |
| two rings, $Cg$ – Centroid of the ring, $Cg$ ··· $Cg$ – Distance between two ring centroids. |

**Table S10.** Geometrical parameters of intermolecular interactions in N-Phenethylbenzenesulfonamide (1b to 7b).

| Com<br>poun<br>d | S. No. | D-H…A                              | <b>D-Н</b><br>(Å) | H…A<br>(Å) | D…A<br>(Å) | <b>D-</b><br><b>H···A</b><br>/α<br>(°) | Symmetry<br>Codes                              |
|------------------|--------|------------------------------------|-------------------|------------|------------|----------------------------------------|------------------------------------------------|
|                  | 1.     | N1A-H1NA…O1B                       | 0.88(3)           | 2.06(3)    | 2.942(7)   | 179.(9)                                | <i>x</i> , <i>y</i> , <i>z</i>                 |
|                  | 2.     | N1B-H1NB…O1A                       | 0.89(3)           | 2.13(4)    | 2.969(7)   | 158.(7)                                | 1+ <i>x</i> , <i>y</i> , <i>z</i>              |
|                  | 3.     | N1C-H1NC…O2D                       | 0.88(3)           | 2.11(3)    | 2.977(7)   | 168.(6)                                | -1+ <i>x</i> , <i>y</i> , <i>z</i>             |
|                  | 4.     | N1D-H1ND…O2C                       | 0.88(3)           | 2.09(3)    | 2.956(7)   | 168.(5)                                | <i>x</i> , <i>y</i> , <i>z</i>                 |
|                  | 5.     | СЗА-НЗА-О1С                        | 0.95              | 2.48       | 3.257(7)   | 139                                    | -x, -1/2+y, 2-z                                |
|                  | 6.     | C3B-H18O1D                         | 0.95              | 2.5        | 3.354(8)   | 149                                    | 1- <i>x</i> , -1/2+ <i>y</i> , 2- <i>z</i>     |
|                  | 7.     | СЗС-НЗС-О2В                        | 0.95              | 2.46       | 3.278(8)   | 144                                    | $1-x$ , $\frac{1}{2}+y$ , $1-z$                |
|                  | 8.     | C3D-H3D····O2A                     | 0.95              | 2.51       | 3.342(8)   | 149                                    | $1-x$ , $\frac{1}{2}+y$ , $1-z$                |
| 1b               | 9.     | C7B-H8D…O1C                        | 0.99              | 2.68       | 3.642(7)   | 163                                    | 1-x,-1/2+y,2-z                                 |
|                  | 10.    | С7С-Н8Е…О2А                        | 0.99              | 2.64       | 3.531(8)   | 150                                    | $-x$ , $\frac{1}{2}+y$ , $1-z$                 |
|                  | 11.    | C11A-H11A…Cg7                      | 0.95              | 2.84       | 3.647(7)   | 143                                    | 1- <i>x</i> ,-1/2+ <i>y</i> ,2- <i>z</i>       |
|                  | 12.    | C13D-H13D····Cg3                   | 0.95              | 2.83       | 3.655(7)   | 145                                    | 1-x, 1/2+y, 1-z                                |
|                  | 13.    | C12A-H12A…F2A                      | 0.95              | 2.67       | 3.518(6)   | 149                                    | - <i>x</i> ,-1/2+ <i>y</i> ,2- <i>z</i>        |
|                  | 14.    | C12B-H12B…F2B                      | 0.95              | 2.62       | 3.440(8)   | 145                                    | 1- <i>x</i> ,-1/2+ <i>y</i> ,2- <i>z</i>       |
|                  | 15.    | C12C-H12C…F2D                      | 0.95              | 2.59       | 3.403(8)   | 144                                    | 1- <i>x</i> , 1/2+ <i>y</i> , 1- <i>z</i>      |
|                  | 16.    | F2A···F2C                          |                   | 2.732(8)   |            | 133.7(4)                               | <i>x</i> , <i>y</i> , <i>z</i>                 |
|                  | 17.    | F2B…F2D                            |                   | 2.732(8)   |            | 145.9(5)                               | <i>x</i> , <i>y</i> , <i>z</i>                 |
|                  | 18.    | N1A-H1A <sup></sup> O1A            | 0.88              | 2.49       | 2.992(13)  | 116                                    | 1/2+ <i>x</i> , - <i>y</i> , <i>z</i>          |
|                  | 19.    | N1B-H1B <sup></sup> O2B            | 0.88              | 2.51       | 2.991(12)  | 115                                    | -1/2+ <i>x</i> , 1- <i>y</i> , <i>z</i>        |
|                  | 20.    | C5A-H5A <sup></sup> O2A            | 0.95              | 2.52       | 3.107(15)  | 120                                    | <i>x</i> , 1+ <i>y</i> , <i>z</i>              |
|                  | 21.    | C7A-H7AB <sup></sup> O1A           | 0.99              | 2.59       | 3.304(14)  | 129                                    | 1/2+ <i>x</i> , <i>1</i> - <i>y</i> , <i>z</i> |
| 2h               | 22.    | C8A-H8A····O2A                     | 0.97              | 2.59       | 3.277(13)  | 128                                    | 1/2+x, 1-y, z                                  |
|                  | 23.    | C3B-H3B <sup></sup> O1B            | 0.95              | 2.47       | 3.099(15)  | 124                                    | <i>x</i> , 1+ <i>y</i> , <i>z</i>              |
|                  | 24.    | C7B-H7BB <sup></sup> O2B           | 0.99              | 2.59       | 3.295(14)  | 128                                    | -1/2+x, 2-y, z                                 |
|                  | 25.    | C8B-H8D····O2B                     | 0.97              | 2.60       | 3.293(12)  | 129                                    | -1/2+x, 2-y, z                                 |
|                  | 26.    | $C6B-H6B\cdots N2A$                | 0.95              | 2.51       | 3.3/5(15)  | 151                                    | <i>x</i> , <i>y</i> , <i>z</i>                 |
|                  | 27.    | $V_{A}$ - $\Pi_{A}$ ···· $\Pi_{A}$ | 0.95              | 2.35       | 2 992(3)   | 152<br>166(4)                          | x, -1+y, z                                     |
|                  | 20.    | N1B-H1NR O1R                       | 0.81(3)           | 2.10(4)    | 2.992(3)   | 171(3)                                 | $x, 1^{-y}, 7^{2+z}$                           |
|                  | 30     | N1A-H1NA····S1A                    | 0.86(4)           | 3.02(4)    | 3.7475(19) | 145(3)                                 | x, y, 72+2<br>x, 1-y, 1/2+7                    |
|                  | 31.    | N1B-H1NB····S1B                    | 0.81(3)           | 3.03(4)    | 3.736(2)   | 146(3)                                 | $x, -y, \frac{1}{2+z}$                         |
| 36               | 32.    | СЗА-НЗА…О2А                        | 0.95              | 2.49       | 3.121(3)   | 124                                    | <i>x</i> , -1+ <i>y</i> , <i>z</i>             |

|    | 33.                                                      | C7A-H7A1···O1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.99      | 2.60      | 3.297(3)   | 127           | $x, -y, \frac{1}{2}+z$                           |  |  |  |  |  |
|----|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|------------|---------------|--------------------------------------------------|--|--|--|--|--|
|    | 34.                                                      | СЗВ-НЗВ…О2В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.95      | 2.46      | 3.087(3)   | 123           | <i>x</i> , 1+ <i>y</i> , <i>z</i>                |  |  |  |  |  |
|    | 35.                                                      | C6B-H6B····Cl1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.95      | 2.96      | 3.853(2)   | 156           | $x, -y, \frac{1}{2}+z$                           |  |  |  |  |  |
|    | 36.                                                      | C7B-H7B1O1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.99      | 2.60      | 3.313(3)   | 129           | $x, 1-y, \frac{1}{2}+z$                          |  |  |  |  |  |
|    | 37.                                                      | N1A-H1NA…O2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.88(3)   | 2.12(3)   | 2.981(5)   | 166(7)        | x, 1-y, -1/2+z                                   |  |  |  |  |  |
|    | 38.                                                      | N1B-H1NB…O1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.86(3)   | 2.12(3)   | 2.955(5)   | 165(6)        | $x, 2-y, -\frac{1}{2}+z$                         |  |  |  |  |  |
| 4b | 39.                                                      | N1A-H1NA…S1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.88(3)   | 2.93(4)   | 3.734(4)   | 152.(6)       | $x, 1-y, -\frac{1}{2}+z$                         |  |  |  |  |  |
|    | 40.                                                      | N1B-H1NB…S1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.86(3)   | 3.01(5)   | 3.719(4)   | 141.(6)       | $x, 2-y, -\frac{1}{2}+z$                         |  |  |  |  |  |
|    | 41.                                                      | СЗА-НЗА…О1А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.95      | 2.49      | 3.135(6)   | 125           | <i>x</i> , -1+ <i>y</i> , <i>z</i>               |  |  |  |  |  |
|    | 42.                                                      | C7A-H7A1···O2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.99      | 2.64      | 3.330(5)   | 127           | $x, -y, -\frac{1}{2}+z$                          |  |  |  |  |  |
|    | 43.                                                      | СЗВ-НЗВ…О2В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.95      | 2.47      | 3.091(6)   | 123           | <i>x</i> , -1+ <i>y</i> , <i>z</i>               |  |  |  |  |  |
|    | 44.                                                      | C7B-H7B2O1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.99      | 2.64      | 3.346(6)   | 129           | $x, 1-y, -\frac{1}{2}+z$                         |  |  |  |  |  |
|    | 45.                                                      | N1-H1N····O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.86(3)   | 2.14(3)   | 2.980(2)   | 167(3)        | 1/2+ <i>x</i> ,1- <i>y</i> , <i>z</i>            |  |  |  |  |  |
|    | 46.                                                      | N1-H1N···S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.86(3)   | 2.98(3)   | 3.707(17)  | 145(2)        | 1/2+x, 1-y, z                                    |  |  |  |  |  |
|    | 47.                                                      | С3-Н3…О2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.95      | 2.70      | 3.374(2)   | 128           | 1/2+x, 1-y, z                                    |  |  |  |  |  |
| 5b | 48.                                                      | С5-Н5…О1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.95      | 2.59      | 3.293(3)   | 131           | <i>x</i> ,-1+ <i>y</i> , <i>z</i>                |  |  |  |  |  |
|    | 49.                                                      | C7-H7B…O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.99      | 2.71      | 3.280(2)   | 117           | 1/2+x, 1-y, z                                    |  |  |  |  |  |
|    | 50.                                                      | C7-H7B····O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.99      | 2.61      | 3.300(2)   | 127           | 1/2+ <i>x</i> ,- <i>y</i> , <i>z</i>             |  |  |  |  |  |
|    | 51.                                                      | C7-H7A…O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.99      | 2.68      | 3.403(2)   | 130           | <i>x</i> ,-1+ <i>y</i> , <i>z</i>                |  |  |  |  |  |
| 6b | 52.                                                      | N1A-H1N <sup></sup> O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.88(6)   | 2.07(6)   | 2.928(8)   | 166(8)        | 3/2- <i>x</i> ,-<br>1/2+ <i>y</i> ,3/2- <i>z</i> |  |  |  |  |  |
|    | 53.                                                      | С3'-Н3'…О2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.95      | 2.59      | 3.455(13)  | 152           | 3/2- <i>x</i> ,-<br>1/2+ <i>y</i> ,3/2- <i>z</i> |  |  |  |  |  |
|    | 54.                                                      | C7-H7A…O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.99      | 2.53      | 3.33(2)    | 137           | <i>x</i> ,-1+ <i>y</i> , <i>z</i>                |  |  |  |  |  |
|    | 55.                                                      | С7-Н7В…О1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.99      | 2.57      | 3.54(2)    | 168           | 1- <i>x</i> , 2- <i>y</i> , 1- <i>z</i>          |  |  |  |  |  |
|    | 56.                                                      | C14'-H14'…O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.99      | 2.43      | 3.375(10)  | 175           | 1- <i>x</i> , 2- <i>y</i> , 1- <i>z</i>          |  |  |  |  |  |
|    | 57.                                                      | N1A-H1NA…O1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.842(16) | 2.123(16) | 2.9588(11) | 171.6(15<br>) | - <i>x</i> ,2- <i>y</i> ,1- <i>z</i>             |  |  |  |  |  |
|    | 58.                                                      | N1B-H1NB…O2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.852(15) | 2.101(16) | 2.9458(10) | 171.3(14<br>) | 2- <i>x</i> , 1- <i>y</i> , - <i>z</i>           |  |  |  |  |  |
|    | 59.                                                      | C12A-H12AO1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.95      | 2.68      | 3.586(12)  | 160           | -1+ <i>x</i> , <i>y</i> ,1+ <i>z</i>             |  |  |  |  |  |
|    | 60.                                                      | C12B-H12B····O2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.95      | 2.50      | 3.4371(12) | 170           | 1+x, y, -1+z                                     |  |  |  |  |  |
|    | 61.                                                      | C15A-H15AO1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.98      | 2.56      | 3.3946(12) | 153           | -1+ <i>x</i> , <i>y</i> , <i>z</i>               |  |  |  |  |  |
| 7b | 62.                                                      | C15B-H15D····O2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.98      | 2.59      | 3.3552(12) | 135           | 1+x,y,z                                          |  |  |  |  |  |
|    | 63.                                                      | C15B-H15EO3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.98      | 2.65      | 3.5035(12) | 146           | 1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>          |  |  |  |  |  |
|    | 64.                                                      | C2A-H2A <sup></sup> Cg3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.95      | 2.85      | 3.5747(10) | 134           | <i>x</i> , <i>y</i> , <i>z</i>                   |  |  |  |  |  |
|    | 65.                                                      | C5B-H5B···Cg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.95      | 2.93      | 3.5861(9)  | 128           | 1+ <i>x</i> , <i>y</i> , <i>z</i>                |  |  |  |  |  |
|    | 66.                                                      | C14A-H14A <sup></sup> Cg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.95      | 2.98      | 3.7638(10) | 141           | 1- <i>x</i> , 2- <i>y</i> , 1- <i>z</i>          |  |  |  |  |  |
|    | 67.                                                      | C14B-H14C···Cg2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.95      | 2.93      | 3.4698(10) | 117           | <i>x</i> , <i>y</i> ,-1+ <i>z</i>                |  |  |  |  |  |
|    | Cg1=                                                     | Cg1 = C1A - C2A - C3A - C4A - C5A - C6A; Cg2 = C9A - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C11A - C12A - C13A - C14A; Cg3 = C1B - C2B - C10A - C14A |           |           |            |               |                                                  |  |  |  |  |  |
|    | C3B-C4B-C5B-C6B; a- Dihedral angle, Cg-Centroid of ring. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           |            |               |                                                  |  |  |  |  |  |





| Comp. | S.                                                   |                          | D-H       | Н…А       |           | I          | D····A                            |          | <b>D-H···</b> A |            | Symmetry                                   |  |
|-------|------------------------------------------------------|--------------------------|-----------|-----------|-----------|------------|-----------------------------------|----------|-----------------|------------|--------------------------------------------|--|
|       | No.                                                  | D-H···A                  | (A)       | (.        | Å) (      |            | $\mathbf{A} ) \qquad /\mathbf{a}$ |          |                 | (          | Codes                                      |  |
|       |                                                      |                          |           |           |           |            |                                   | (        | )               |            |                                            |  |
|       | 1.                                                   | N1-H1N <sup></sup> N2    | 0.85(2)   | 2.        | 2.06(3)   |            | .899(2)                           |          | /1(2)           |            | ′2- <i>x</i> , 3/2- <i>y</i> , 1- <i>z</i> |  |
|       | 2.                                                   | С2-Н2…О1                 | 0.95      | 2.        | 66        | 3.         | 3.561(2)                          |          | 159             |            | - <i>x</i> , 1- <i>y</i> , 1- <i>z</i>     |  |
| IC    | 3.                                                   | С13-Н13…О2               | 0.95      | 2.        | 54        | 3.         | 300(2)                            | 13       | 137             |            | /2- <i>x</i> , 3/2- <i>y</i> , 1- <i>z</i> |  |
|       | 4.                                                   | F1…F1                    |           | 2.        | 2.929(2)  |            |                                   |          | 130.52(12)      |            | -x,y,1/2-z                                 |  |
|       | 5.                                                   | N1-H1N···N2              | 0.874(19) | 2.        | 013(19) 2 |            | .8730(14) 16                      |          | 7.6(18)         | - <i>x</i> | z,1-y,1-z                                  |  |
|       | 6.                                                   | С2-Н2…О1                 | 0.95      | 2.        | .41 3     |            | .2883(14) 15                      |          | 3 x             |            | 3/2-y,-1/2+z                               |  |
|       | 7.                                                   | С6-Н6 <sup></sup> О2     | 0.95      | 2.        | 2.40      |            | 3.3464(17) 1                      |          | 74 1            |            | - <i>x</i> ,-1/2+ <i>y</i> ,3/2- <i>z</i>  |  |
|       | 8.                                                   | C7-H7B…N3                | 0.99      | 2.        | .59 3.    |            | .5254(17) 15                      |          | 7 1             |            | -x,1-y,1-z                                 |  |
| 2c    | 9.                                                   | C8-H8B…O2                | 0.99      | 2.        | .61 3     |            | .3176(16) 12                      |          | 28 x            |            | -1+ <i>y</i> , <i>z</i>                    |  |
|       | 10.                                                  | С12-Н12…О2               | 0.95      | 2.        | 61 3      |            | .4421(16) 14                      |          | 6               |            | z,-1/2+y,3/2-z                             |  |
|       | 11.                                                  | C5-H5 <sup></sup> Cg2    | 0.95      | 2.        | 82        | 3.         | 6495(13) 14                       |          | 6 1             |            | - <i>x</i> ,-1/2+ <i>y</i> ,3/2- <i>z</i>  |  |
|       | 12.                                                  | Cg1···Cg1                |           |           |           | 3.7323(7)  |                                   | 11.24(6) |                 | - <i>x</i> | z,1/2+y,3/2-z                              |  |
|       | Cg1 = N2-C9-C10-C11-C12-C13; Cg2 = C1-C2-C3-C4-C5-C6 |                          |           |           |           |            |                                   |          |                 |            |                                            |  |
|       | 13.                                                  | N1-H1N···N2              | 0.846(15) | 2.053(15) |           | 2.         | 2.8807(13)                        |          | 166.0(14)       |            | z,1-y,1-z                                  |  |
|       | 14.                                                  | С2-Н2…О2                 | 0.95      | 2.        | 2.42      |            | 3.2804(13)                        |          | 150             |            | 1/2-y,-1/2+z                               |  |
|       | 15.                                                  | С6-Н6…О1                 | 0.95      | 2.        | 2.44      |            | 3522(15)                          | 16       | 1               | 1.         | -x, 1/2 + y, 3/2 - z                       |  |
| 30    | 16.                                                  | C8-H8A…O1                | 0.99      | 2.        | 54        | 3.         | 2941(14)                          | 13       | 3               | x,         | 1+ <i>y</i> , <i>z</i>                     |  |
| 50    | 17.                                                  | C12-H12…O1               | 0.95      | 2.59      |           | 3.4211(17) |                                   | 146      |                 | - <i>x</i> | z,1/2+y,3/2-z                              |  |
|       | 18.                                                  | C7-H7A···Cl1             | 0.99      | 2.80      |           | 3.         | 3.7152(14)                        |          | 4               | 1.         | -x,1-y,1-z                                 |  |
|       | 19.                                                  | Cg1···Cg1                |           |           |           |            | 3.7505(10) 12                     |          | 2.15(4) -:      |            | x,1/2+y,3/2-z                              |  |
|       | Cg1 =                                                | N2-C9-C10-C11-C12-       | C13       |           |           |            |                                   |          |                 |            |                                            |  |
|       | 20.                                                  | N1A-H1NA…N2A             | 0.865(17  | )         | 2.061(17) |            | 2.9246(1)                         |          | 2) 175.5(17)    |            | 2- <i>x</i> ,1- <i>y</i> ,1- <i>z</i>      |  |
|       | 21.                                                  | N1B-H1NB <sup></sup> N2B | 0.837(18  | )         | 2.060(18) |            | 2.8918(12)                        |          | 172.7(18)       |            | 2- <i>x</i> ,1- <i>y</i> ,- <i>z</i>       |  |
|       | 22.                                                  | C5-H5A···O1A             | 0.95      |           | 2.55      |            | 3.1945(12)                        |          | 126             |            | 1+x,y,z                                    |  |
|       | 23.                                                  | C11B-H11BO1A             | 0.95      |           | 2.51      |            | 3.3882(13)                        |          | 153             |            | 1- <i>x</i> ,1- <i>y</i> ,1- <i>z</i>      |  |
| 4c    | 24.                                                  | C12A-H12A…O1B            | 0.95      |           | 2.64      |            | 3.2482(12)                        |          | 122             |            | 1+ <i>x</i> , <i>y</i> , <i>z</i>          |  |
|       | 25.                                                  | C11A-H11AO1B             | 0.95      |           | 2.63      |            | 3.247(1)                          |          | 123             |            | 1+ <i>x</i> , <i>y</i> , <i>z</i>          |  |
|       | 26.                                                  | C13A-H13A…O1A            | 0.95      |           | 2.61      |            | 3.3664(12                         |          | 137             |            | 2- <i>x</i> ,1- <i>y</i> ,1- <i>z</i>      |  |
|       | 27.                                                  | C7B-H7B2O1B              | 0.99      |           | 2.62      |            | 3.3967(12                         |          | 135             |            | 1+ <i>x</i> , <i>y</i> , <i>z</i>          |  |
|       | 28.                                                  | C6A-H6A <sup></sup> Br1B | 0.95      | _         | 3.11      |            | 3.8102(10)                        |          | 131             |            | 2- <i>x</i> ,2- <i>y</i> ,1- <i>z</i>      |  |

**Table S11.** Geometrical parameters of intermolecular interactions inN-(pyridin-2 yl)ethyl)benzenesulfonamide (1c to 7c).

|    | 29.                         | C13B-H13B···Br1B                                        | 0.95             |                          |           | 3.06                     |             | 3.7789(10)                  |              | 134                |                                          | 1+ <i>x</i> ,-1+ <i>y</i> , <i>z</i>       |  |
|----|-----------------------------|---------------------------------------------------------|------------------|--------------------------|-----------|--------------------------|-------------|-----------------------------|--------------|--------------------|------------------------------------------|--------------------------------------------|--|
|    | 30.                         | C1A-Br1A…Cg1                                            |                  | 1.8943(10)               |           | 3.5654(5)                |             | 5.4189(11)                  |              | 165.27(3)          |                                          | 2- <i>x</i> ,2- <i>y</i> ,1- <i>z</i>      |  |
|    | 31.                         | C1B-Br1B <sup></sup> Cg3                                |                  | 1.8907(10)               |           | 3.4432(5)                |             | 5.1172(11)                  |              | 145.70(4)          |                                          | <i>x</i> ,1+ <i>y</i> , <i>z</i>           |  |
|    | 32.                         | Cg1···Cg3                                               |                  |                          |           |                          |             | 4.1721(6)                   |              | 15.93(5)           |                                          | <i>x</i> , <i>y</i> , <i>z</i>             |  |
|    | Cg1 =                       | N2A-C9A-C10A-C1                                         | A-C10A-C11A-C12A |                          |           | 3A; Cg3 = N2E            |             | 9B-C10B-0                   | C11B-C12B-C1 |                    |                                          | 13B                                        |  |
|    | 33.                         | N1-H1N <sup></sup> N2                                   | 0.               | 879(19)                  | 2.        | 048(19)                  | 2.          | 9249(14)                    | 175.4(19)    |                    | 1- <i>x</i> ,- <i>y</i> ,1- <i>z</i>     |                                            |  |
|    | 34.                         | С3-Н3…О2                                                | 0.9              | 95                       | 2.:       | 53                       | 3.          | 2251(14)                    | 131          |                    | 1-                                       | + <i>x</i> , <i>y</i> , <i>z</i>           |  |
|    | 35.                         | С6-Н6 <sup></sup> О2                                    | 0.9              | 95                       | 2.        | 61                       | 3.          | .3209(16)                   |              | 132                |                                          | -x, 1/2 + y, 1/2 - z                       |  |
|    | 36.                         | C8-H8B…O2                                               | 0.9              | 0.99                     |           | 2.55 3                   |             | 3665(16) 13                 |              | 7 -                |                                          | z,-y,1-z                                   |  |
| 5c | 37.                         | С11-Н11…О1                                              | 0.9              | 0.95                     |           | 2.63 3                   |             | 3144(15) 12                 |              | .9 -               |                                          | z,1-y,1-z                                  |  |
|    | 38.                         | С13-Н13-О2                                              | 0.95             |                          | 2.:       | 2.53 3                   |             | 3412(15) 14                 |              | 43                 |                                          | 1- <i>x</i> ,- <i>y</i> ,1- <i>z</i>       |  |
|    | 39.                         | C1-H1···Cg1                                             | 0.95             |                          | 2.        | 96                       | 3.          | 7772(13) 14                 |              | 44                 |                                          | x,1/2-y,-1/2+z                             |  |
|    | Cg1 = N2-C9-C10-C11-C12-C13 |                                                         |                  |                          |           |                          |             |                             |              |                    |                                          |                                            |  |
|    | 40.                         | N1-H1N <sup></sup> N2                                   | (                | 0.84(2)                  | 84(2) 2.1 |                          | 2.          | 9679(18)                    | 177(2)       |                    | -1/2+ <i>x</i> , <i>y</i> ,3/2- <i>z</i> |                                            |  |
|    | 41.                         | С6-Н6 <sup></sup> О2                                    | 0.95             |                          | 2.58      |                          | 3.          | 3.2262(19)                  |              | 126                |                                          | 1/2-x, 1/2+y, z                            |  |
|    | 42.                         | С7-Н7В…О1                                               | 0.99             |                          | 2.49      |                          | 3.          | 3.416(2)                    |              | 156                |                                          | 1/2+ <i>x</i> , <i>y</i> ,3/2- <i>z</i>    |  |
| 60 | 43.                         | C8-H8AO1                                                | (                | 0.99                     | 2.32      |                          | 3.          | 3.2913(19)                  |              | 168                |                                          | 1+ <i>x</i> , <i>y</i> , <i>z</i>          |  |
| UC | 44.                         | С11-Н11…О1                                              | (                | 0.95                     | 2.        | 61                       | 3.          | 366(2)                      | 137          |                    | 1/2- <i>x</i> ,1/2+ <i>y</i> , <i>z</i>  |                                            |  |
|    | 45.                         | C14-H144B…O2                                            | (                | 0.98                     | 2.55      |                          | 3.          | 3.423(2)                    |              | 148                |                                          | 1/2- <i>x</i> ,1/2+ <i>y</i> , <i>z</i>    |  |
|    | 46.                         | C10-H10Cg2                                              | (                | 0.95                     | 2.        | 85                       | 3.6089(17)  |                             | 137          |                    | <i>x</i> , <i>y</i> , <i>z</i>           |                                            |  |
|    | Cg2= C1-C2-C3-C4-C5-C6      |                                                         |                  |                          |           |                          |             |                             |              |                    |                                          |                                            |  |
|    | 47.                         | N1-H1N <sup></sup> N2                                   | (                | 0.83(2)                  | 2.        | 08(2)                    | 2.          | 9060(17)                    | 17           | 6(2)               | 1.                                       | -x,1-y,1-z                                 |  |
|    | 48.                         | C2-H2 <sup></sup> O1                                    | (                | 0.95                     |           | 2.54                     |             | 3.4881(18)                  |              | 173                |                                          | 1- <i>x</i> ,-1/2+ <i>y</i> ,1/2- <i>z</i> |  |
|    | 49.                         | C8-H8AO1                                                | (                | 0.99                     |           | 2.46 3                   |             | 3.3439(18)                  |              | 149                |                                          | <i>x</i> ,-1+ <i>y</i> , <i>z</i>          |  |
|    | 50.                         | С10-Н10-О3                                              | (                | 0.95                     |           | 2.58                     |             | 3.3816(18)                  |              | 142                |                                          | 1- <i>x</i> ,-1/2+ <i>y</i> ,1/2- <i>z</i> |  |
| 7c | 51.                         | С12-Н12-О1                                              | (                | 0.95                     | 2.        | 65                       | 3.4891(18)  |                             | 147          |                    | -x,1-y,1-z                               |                                            |  |
|    | 52.                         | C3-H3···Cg2                                             | (                | 0.95                     | 2.        | 78                       | 3.          | 3.5489(15)                  |              | 138                |                                          | 1- <i>x</i> ,-1/2+ <i>y</i> ,1/2- <i>z</i> |  |
|    | 53.                         | Cg1…Cg1                                                 |                  |                          |           |                          | 4.          | 4.1845(9)                   |              | 0.02(7)            |                                          | - <i>x</i> ,- <i>y</i> ,1- <i>z</i>        |  |
|    | 54.                         | Cg1 <sup></sup> Cg1                                     |                  |                          |           |                          | 4.          | 4.0447(9)                   |              | 02(7) - <i>x</i> , |                                          | z,1-y,1-z                                  |  |
|    | Cg1=<br>- Ce                | N2-C9-C10-C11-C12<br>ntroid of the ring, Cg <sup></sup> | -C1<br><i>C§</i> | 3; Cg2= C<br>g – Distanc | 1-C       | C2-C3-C4-C<br>etween two | C5-0<br>rin | C6; α - dihe<br>g centroids | edra         | l angle bet        | wee                                      | en two rings, Cg                           |  |



Type D, zigzag arrangement



Type E, dimeric arrangement

Figure S52. Different hydrogen bonding motifs observed in sulphonamides pyridine derivatives (1c to 7c).



**Figure S53**. Overlay of DSC profiles of (a) phenethyl benzenesulfonate, (b) N-Phenethyl benzenesulfonamides and (c) N-(pyridin-2-yl)ethyl)benzenesulfonamides.



**Figure S54.** The geometry of sulphonamide and sulfoester derivatives with –NO2 substitution. The data has been taken from Cryst. Growth Des.2016, 16, 2416–2428.



**Figure S55**. Molecules in compounds **i**, **ii** and **iii** linked via extended chains of parallel displaced  $\pi$ — $\pi$  stacking interactions.



**Figure S56.** (a) The ORTEP presentation illustrates the molecules of sulfonamide **1b** in an *anti*-conformation, featuring an atom numbering scheme. The displacement ellipsoids are represented at the 40% probability level, and H atoms are depicted as small spheres with arbitrary radii. The structure overlay of symmetry-independent molecules in the crystal structure of compounds (b) **1b**, (c) **2b**, (d) **3b**, (e) **4b** and (f) **7b**.



**Figure S57**. (a) The ORTEP presentation illustrates the molecules of sulfonamide **2b** in an *anti*-conformation, featuring an atom numbering scheme. The displacement ellipsoids are represented at the 40% probability level, and H atoms are depicted as small spheres with arbitrary radii. (b) The structure overlay compares symmetry-independent molecules of 2b, revealing that molecules A and B share a similar conformation.



**Figure S58**. (a) and (b) ORTEPs display molecules of sulfonamide **3b** and **4b**, respectively, in an anti-conformation, accompanied by the atom numbering scheme. The displacement ellipsoids are depicted at the 40% probability level, and H atoms are represented as small spheres with arbitrary radii. (c) and (d) illustrate the structural overlay of both symmetry-independent molecules of **3b** and **4b**, respectively.



**Figure S59**. ORTEP of a molecule of compound **5b** with the atom numbering scheme. The displacement ellipsoids are drawn at 50% probability, and H atoms are shown as small spheres with arbitrary radii.



**Figure S60**. View of molecular packing along the c-axis in **5b** showing a loose association between the adjacent zigzag chain through van der Waals forces.



**Figure S61**. ORTEP of a molecule of compound **6b** with the atom numbering scheme. The displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres with arbitrary radii.



**Figure S62**. (a) ORTEP of a molecule of compound **7b** with the atom numbering scheme. The displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres with arbitrary radii, (b) the structural overlay of symmetry-independent molecules of 7b.



**Figure S63.** ORTEP of a molecule of compound **1c** with the atom numbering scheme. The displacement ellipsoids are drawn at 40% probability, and H atoms are shown as small spheres with arbitrary radii.



**Figure S64**. ORTEP of a molecule of compound **2c** with the atom numbering scheme. The displacement ellipsoids are drawn at 40% probability, and H atoms are shown as small spheres with arbitrary radii.



**Figure S65**. ORTEP of a molecule of compound **3c** with the atom numbering scheme. The displacement ellipsoids are drawn at 40% probability, and H atoms are shown as small spheres with arbitrary radii.


**Figure S66**. (a) ORTEP of a molecule of compound **4c** with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres with arbitrary radii and (b) the structural overlay of symmetry-independent molecules.



**Figure S67**. ORTEP of a molecule of compound **5c** with the atom numbering scheme. The displacement ellipsoids are drawn at 40% probability, and H atoms are shown as small spheres with arbitrary radii.



**Figure S68.** ORTEP of a molecule of compound **6c** with the atom numbering scheme. The displacement ellipsoids are drawn at 40% probability, and H atoms are shown as small spheres with arbitrary radii.



**Figure S69.** ORTEP of a molecule of compound **7c** with the atom numbering scheme. The displacement ellipsoids are drawn at 40% probability, and H atoms are shown as small spheres with arbitrary radii.

| Compounds | Packing Energy (kJ/mol) | Density (g/cm <sup>3</sup> ) |
|-----------|-------------------------|------------------------------|
| 1a        | -127.3                  | 1.444                        |
| 3a        | -134.5                  | 1.427                        |
| 4a        | -138.9                  | 1.602                        |
| ба        | -134.4                  | 1.308                        |
| 1b        | -161.4                  | 1.476                        |
| 2b        | -163.4                  | 1.383                        |
| 3b        | -160.9                  | 1.428                        |
| 4b        | -161.5                  | 1.611                        |
| 5b        | -152.1                  | 1.328                        |
| бb        | -147.3                  | 1.331                        |
| 7b        | -176.7                  | 1.389                        |
| 1c        | -181.9                  | 1.549                        |
| 2c        | -187.1                  | 1.420                        |
| 3c        | -176.3                  | 1.477                        |
| 4c        | -178.9                  | 1.668                        |
| 5c        | -171.4                  | 1.376                        |
| бс        | -159.2                  | 1.327                        |
| 7c        | -185.7                  | 1.392                        |

 Table S12. Comparative analysis of Packing energy and density parameters.

| Compounds      | Intermolecular Interactions   | Intermolecular potentials (IMP)    |
|----------------|-------------------------------|------------------------------------|
|                |                               | ( kJ/mol)                          |
| 10             | An extended $\pi\pi$ assembly | -29.3                              |
| 1a             | С-НО                          | -30.4 & -20.0                      |
| 20             | An extended $\pi\pi$ assembly | -30.7                              |
| Ja             | С-НО                          | -31.4 & -20.45                     |
| 10             | An extended $\pi\pi$ assembly | -39.1                              |
| <del>4</del> a | C-HO and C-H $\pi$            | -32.8 & -27.0                      |
|                | An extended $\pi\pi$ assembly | -36.9                              |
| 6a             | C-HO and C-H $\pi$            | -31.8 & -24.8                      |
| 11             | Catemer N-HO                  | -54.4, -53.0, -52.1 & -50.8        |
| 10             | С-НО                          | -46.5, -45.5, -44.4 & -42.7        |
| 215            | Catemer N-HO                  | -49.6 & -48.5                      |
| 20             | С-НО                          | -37.6, -36.2, -33.2 & -33.1        |
| 3h             | Catemer N-HO                  | -55.4 & -54.7                      |
| 50             | С-НО                          | -36.5, -35.4, -32.0 & -31.4        |
| 4b             | Catemer N-HO                  | -56.6 & -55.6                      |
|                | С-НО                          | -36.9, -36.0, -31.6 & -31.0        |
| 5b             | Catemer N-HO                  | -56.3                              |
|                | С-НО                          | -31.4 & -30.0                      |
| бb             | Catemer N-HO                  | -47.1 & -41.0                      |
|                | С-НО                          | -38.1, -34.9, -31.9, -30.7 & -29.5 |
| 7b             | Dimer N-HO                    | -86.9 & -78.1                      |
|                | C-HO and C-H $\pi$            | -41.0, -35.4, -34.6, -32.3 & -29.3 |
|                | Dimer N-HN                    | -76.6                              |
| 1c             | С=Оπ                          | -58.5                              |
|                | C-HF and C-F $\pi$            | -30.1                              |
| 2c             | Dimer N-HN                    | -83.7                              |
|                | C-HO and C-HN                 | -35.4, -30.6 & -30.3               |
| 3c             | Dimer N-HN                    | -79.6                              |

 Table S13. Intermolecular interactions and potentials values.

|    | C-HO, C-Hπ & C-HCl     | -31.8, -31.1 & -25.9        |
|----|------------------------|-----------------------------|
|    | Dimer N-HN             | -77.1, -74.2                |
| 4c | C-HO and van der Walls | -45.3, -43.6, -41.6 & -30.0 |
|    | interactions           |                             |
| 5c | Dimer N-HN             | -78.8                       |
|    | С-НО & С-Нπ            | -38.7 & -34.5               |
| 60 | Catemer N-HN           | -53.8                       |
|    | С-НО & С-Нπ            | -33.5 & -20.4               |
| 76 | Dimer N-HN             | -82.9                       |
|    | С-НО, С-Нπ & ππ        | -40.4, -39.4 & -22.0        |



Figure S70. Hirshfeld surfaces, fingerprint plots and the contributions of various intermolecular interactions to Hirshfield surface areas for sulfoester derivatives **1a** to **6a**.



**Figure S71**. Hirshfeld surfaces, fingerprint plots and the contributions of various intermolecular interactions to Hirshfield surface areas for sulphonamide derivatives **1b** to **7b**.



**Figure S72**. Hirshfeld surfaces, fingerprint plots and the contributions of various intermolecular interactions to Hirshfield surface areas for sulphonamide derivatives **1c** to **7c**.



| Ν | Symop             | R     | Electron Density | E_ele | E_pol | E_dis | E_rep | E_tot |
|---|-------------------|-------|------------------|-------|-------|-------|-------|-------|
| 2 | x, -y+1/2, z+1/2  | 7.35  | B3LYP/6-31G(d,p) | -8.5  | -3.3  | -17.3 | 12.5  | -18.  |
| 2 | -x, y+1/2, -z+1/2 | 9.91  | B3LYP/6-31G(d,p) | -4.8  | -3.0  | -12.2 | 6.9   | -13.  |
| 1 | -x, -y, -z        | 8.50  | B3LYP/6-31G(d,p) | -15.7 | -4.5  | -18.2 | 9.6   | -29.8 |
| 2 | x, y, z           | 7.94  | B3LYP/6-31G(d,p) | -4.7  | -1.2  | -29.4 | 10.5  | -25.  |
| 2 | x, -y+1/2, z+1/2  | 6.79  | B3LYP/6-31G(d,p) | -6.3  | -3.3  | -30.8 | 13.1  | -27.8 |
| 1 | -x, -y, -z        | 11.28 | B3LYP/6-31G(d,p) | 2.9   | -0.7  | -5.1  | 1.1   | -1.   |
| 1 | -x, -y, -z        | 8.27  | B3LYP/6-31G(d,p) | -4.8  | -0.7  | -17.8 | 5.7   | -17.  |
| 2 | -x, y+1/2, -z+1/2 | 10.17 | B3LYP/6-31G(d,p) | -0.1  | -0.1  | -8.5  | 1.3   | -6.1  |
| 1 | -x, -y, -z        | 11.11 | B3LYP/6-31G(d,p) | 0.6   | -0.1  | -2.3  | 0.0   | -1.4  |

Interaction Energies (kJ/mol) R is the distance between molecular centroids (mean atomic position) in Å.

Total energies, only reported for two benchmarked energy models, are the sum of the

Scale factors for benchmarked energy models See Mackenzie et al. IUCrJ (2017)

| Energy Model                                 | k_ele | k_pol | k_disp | k_rep |
|----------------------------------------------|-------|-------|--------|-------|
| CE-HF HF/3-21G electron densities            | 1.019 | 0.651 | 0.901  | 0.811 |
| CE-B3LYP B3LYP/6-31G(d,p) electron densities | 1.057 | 0.740 | 0.871  | 0.618 |



**Figure S73**. The interaction energy is based on energy frameworks for compound **1a** (a) and (b) that show electrostatic and dispersion energy contributions to the total energy.



**Figure S74**. The interaction energy is based on energy frameworks for compound **3a** (a), and (b) that show electrostatic and dispersion energy contributions to the total energy.



**Figure S75**. The interaction energy is based on energy frameworks for compound **4a** (a), and (b) that show and dispersion energy contributions to the total energy.

4a

Total

(b)





**Figure S76**. The interaction energy is based on energy frameworks for compound **6a** (a) and (b) that show electrostatic and dispersion energy contributions to the total energy.



-5.5

-4.1

-40.1

-5.5

-7.6

-5.2



Figure S77. The interaction energy is based on energy frameworks for compound 1b (a) and (b) that show electrostatic and dispersion energy contributions to the total energy.





**Figure S78**. The interaction energy is based on energy frameworks for compound **2b** (a) and (b) that show electrostatic and dispersion energy contributions to the total energy.





**Figure S79.** The interaction energy is based on energy frameworks for compound **3b** (a) nd (b) that show electrostatic and dispersion energy contributions to the total energy.





**Figure S80**. The interaction energy is based on energy frameworks for compound **4b** (a) and (b) that show electrostatic and dispersion energy contributions to the total energy.





**Figure S81**. The interaction energy is based on energy frameworks for compound **5b** (a) and (b) that show electrostatic and dispersion energy contributions to the total energy.





**Figure S82**. The interaction energy is based on energy frameworks for compound **6b** (a) and (b) thgat show electrostatic and dispersion energy contributions to the total energy.

| 7b                            | Inter<br>R is t<br>Total<br>four | action<br>he de<br>energ<br>(P/6-:<br>N | n Energies G<br>stance betw<br>gies, only re<br>gy component<br>31G(d,p)]<br>Symop | Prouped liveen mole<br>eported ints, scale | by Elect<br>ecular ce<br>for two b<br>ed appro | enters of<br>benchma<br>opriately<br>E_pol | ity (kJ/m<br>mass (Å<br>rked ene<br>(see the<br>E_dis | iol)<br>).<br>scale fa<br>E_rep | els, are<br>ctor tab<br><br>E_tot | the sum (<br>le below) | of the |
|-------------------------------|----------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------|--------------------------------------------|-------------------------------------------------------|---------------------------------|-----------------------------------|------------------------|--------|
|                               |                                  | 1                                       | •                                                                                  | 7.70                                       | -3.9                                           | -1.9                                       | -39.2                                                 | 24.1                            | -24.8                             | \$                     |        |
|                               |                                  | 0                                       | •                                                                                  | 8.49                                       | -27.7                                          | -7.7                                       | -34.3                                                 | 28.8                            | -47.1                             | 1                      |        |
|                               |                                  | 0                                       | •                                                                                  | 9.78                                       | -15.5                                          | -5.5                                       | -27.9                                                 | 22.9                            | -30.6                             | 1                      |        |
|                               |                                  | 0                                       | -x, -y, -z                                                                         | 4.50                                       | -85.4                                          | -21.8                                      | -68.8                                                 | 98.6                            | -105.5                            | 1                      |        |
|                               |                                  | 0                                       | x, y, z                                                                            | 7.64                                       | -5.3                                           | -2.7                                       | -6.6                                                  | 2.4                             | -11.8                             | <u>(</u>               |        |
|                               |                                  | 0                                       | -x, -y, -z                                                                         | 16.17                                      | 0.3                                            | -0.3                                       | -1.5                                                  | 0.0                             | -1.2                              | -                      |        |
|                               |                                  | 0                                       | ×, -y, -2                                                                          | 16.12                                      | 1.4                                            | -0.6                                       | -8.4                                                  | 0.0                             | -6.1                              |                        |        |
|                               |                                  | 0                                       | -                                                                                  | 9.73                                       | -7.5                                           | -1.6                                       | -18.3                                                 | 10.6                            | -18.5                             | 5                      |        |
| LI YOUNG F LINE AND AND THE I |                                  | 0                                       | -x, -y, -z                                                                         | 5.82                                       | -6.9                                           | -2.1                                       | -51.9                                                 | 30.6                            | -35.2                             | 2                      |        |
|                               |                                  | 0                                       | •                                                                                  | 10.05                                      | -3.1                                           | -1.1                                       | -14.1                                                 | 8.0                             | -11.5                             | 5                      |        |
|                               |                                  | 0                                       | •                                                                                  | 11.20                                      | -4.9                                           | -1.2                                       | -25.4                                                 | 17.9                            | -17.2                             | 2                      |        |
|                               |                                  | 0                                       | •                                                                                  | 10.05                                      | -7.4                                           | -3.0                                       | -20.6                                                 | 13.5                            | -19.5                             | i -                    |        |
| LAND THAT INTO T              |                                  | 0                                       | •                                                                                  | 9.80                                       | -0.2                                           | -2.0                                       | -14.4                                                 | 7.7                             | -9.5                              | 4                      |        |
|                               |                                  | 0                                       | -x, -y, -z                                                                         | 4.41                                       | -87.2                                          | -25.0                                      | -69.6                                                 | 101.9                           | -108.3                            | <u>-</u>               |        |
|                               |                                  | 0                                       | х, у, z                                                                            | 16.12                                      | -0.6                                           | -0.5                                       | -5.3                                                  | 0.0                             | -5.5                              | 4                      |        |
|                               |                                  | 0                                       | ·x, ·y, ·z                                                                         | 14.95                                      | -4.8                                           | -1.0                                       | -9.0                                                  | 0.0                             | -13.6                             | -                      |        |
|                               |                                  | 0                                       | x, y, z                                                                            | 7.64                                       | -6.4                                           | -2.9                                       | -6.5                                                  | 2.2                             | -13.7                             | 2                      |        |
|                               |                                  | 0                                       | -x, -y, -z                                                                         | 15.79                                      | 0.5                                            | -0.3                                       | -1.5                                                  | 0.0                             | -1.0                              | 5                      |        |
|                               | Scale<br>See M                   | facte<br>1acke                          | ors for benc<br>nzie et al. I                                                      | hmarked<br>IUCrJ (20                       | energy<br>)17)                                 | models                                     |                                                       |                                 |                                   |                        |        |
|                               | Ene                              | rgy M                                   | lodel                                                                              |                                            |                                                |                                            | k_                                                    | ele k                           | pol k                             | _disp k                | rep    |
|                               | CE                               | HF                                      | HF/3-21G                                                                           | electron                                   | densitie                                       | s                                          | 1                                                     | .019 0                          | .651                              | J.901 0                | ).811  |
|                               | CE-                              | BGLYF                                   | B3LYP/                                                                             | 6-31G <b>(</b> d,                          | p) elect                                       | ron dens                                   | ities 1                                               | .057 0                          | .740                              | J.871 0                | 0.618  |



**Figure S83**. The interaction energy is based on energy frameworks for compound **7b** (a) and (b) that show electrostatic and dispersion energy contributions to the total energy.



nteraction Energies (kJ/mol) Lis the distance between molecular centroids (mean atomic position) in Å.

Total energies, only reported for two benchmarked energy models, are the sum of t four energy components, scaled appropriately (see the scale factor table below)

| N | Symop                 | R                   | Electron Density | E_ele  | E_pol | E_dis          | E_rep | E_tot |
|---|-----------------------|---------------------|------------------|--------|-------|----------------|-------|-------|
| 1 | -x, -y, -z            | 5.70                | B3LYP/6-31G(d,p) | -16.2  | -2.4  | -33.2          | 27.1  | -31.0 |
| 1 | -x+1/2, -y+1/2, -z    | 9 <mark>.0</mark> 2 | B3LYP/6-31G(d,p) | 2.5    | nan   | -18.1          | 7.6   | nan   |
| 2 | x, y, z               | 5.00                | B3LYP/6-31G(d,p) | -13.4  | 0.0   | -54.3          | 26.9  | -44.9 |
| 2 | x, -y, z+1/2          | 11.41               | B3LYP/6-31G(d,p) | -6.0   | -1.2  | - <b>11</b> .6 | 8.9   | -11.8 |
| 1 | -x, -y, -z            | 5.91                | B3LYP/6-31G(d,p) | -5.2   | -5.4  | -42.3          | 22.4  | -32.5 |
| 2 | ×, -y, z+1/2          | 11.52               | B3LYP/6-31G(d,p) | 1.4    | -0.8  | -9.4           | 4.8   | -4.4  |
| 1 | -x, y, -z+1/2         | 11.66               | B3LYP/6-31G(d,p) | -3.2   | -3.5  | - <b>11</b> .7 | 5.4   | -12.8 |
| 1 | -x+1/2, -y+1/2, -z    | 7.67                | B3LYP/6-31G(d,p) | -109.4 | -6.7  | -48.4          | 136.1 | -78.6 |
| 2 | -x+1/2, y+1/2, -z+1/2 | 15.10               | B3LYP/6-31G(d,p) | -3.1   | -5.6  | -12.9          | 10.2  | -12.3 |

Scale factors for benchmarked energy models See Mackenzie et al. IUCrJ (2017)

| Energy Model                                 | k_ele | k_pol | k_disp | k_rep |
|----------------------------------------------|-------|-------|--------|-------|
| CE-HF HF/3-21G electron densities            | 1.019 | 0.651 | 0.901  | 0.811 |
| CE-B3LYP B3LYP/6-31G(d,p) electron densities | 1.057 | 0.740 | 0.871  | 0.618 |



**Figure S84**. The interaction energy is based on energy frameworks for compound **1c** (a) and (b), which show electrostatic and dispersion energy contributions to the total energy.



| al ene | rgies, only reported f<br>gy components, scale | or two be<br>d approp | enchmarked energy<br>priately (see the scal | models, a<br>e factor f | re the s<br>table be | um of th<br>low) | e     |       |
|--------|------------------------------------------------|-----------------------|---------------------------------------------|-------------------------|----------------------|------------------|-------|-------|
| N      | Symop                                          | R                     | Electron Density                            | E_ele                   | E_pol                | E_dis            | E_rep | E_tot |
| 1      | -x, -y, -z                                     | 10.29                 | B3LYP/6-31G(d,p)                            | -4.0                    | -5.5                 | -6.4             | 0.9   | -13.4 |
| 1      | -x, y+1/2, -z+1/2                              | 10.14                 | B3LYP/6-31G(d,p)                            | -7.7                    | nan                  | -34.2            | 26.4  | nan   |
| 0      | x, y, z                                        | 14.77                 | B3LYP/6-31G(d,p)                            | -13.4                   | nan                  | -54.3            | 26.9  | nan   |
| 1      | -x, -y, -z                                     | 6.88                  | B3LYP/6-31G(d,p)                            | -112.7                  | -2.2                 | -52.2            | 139.4 | -80.2 |
| 1      | x, -y+1/2, z+1/2                               | 8.58                  | B3LYP/6-31G(d,p)                            | -1.6                    | -1.2                 | -13.3            | 8.4   | -8.9  |
| 1      | x, y, z                                        | 6.93                  | B3LYP/6-31G(d,p)                            | -4.3                    | -3.4                 | -12.4            | 6.4   | -13.9 |
| 0      | -x, y+1/2, -z+1/2                              | 7.10                  | B3LYP/6-31G(d,p)                            | -12.2                   | -0.5                 | -37.1            | 32.8  | -25.3 |
| 0      | x, -y+1/2, z+1/2                               | 7.94                  | B3LYP/6-31G(d,p)                            | -16.7                   | -0.0                 | -11.0            | 10.5  | -20.7 |
| 0      | -x, -y, -z                                     | 10.01                 | B3LYP/6-31G(d,p)                            | -22.6                   | nan                  | -29.3            | 27.8  | nan   |
| 0      | -x, -y, -z                                     | 11.74                 | B3LYP/6-31G(d,p)                            | -3.1                    | -5.5                 | -17.6            | 12.1  | -15.3 |

Energy Model

CE-HF ... HF/3-21G electron densities CE-B3LYP ... B3LYP/6-31G(d,p) electron de 
 k\_ele
 k\_pol
 k\_disp
 k\_rep

 1.019
 0.651
 0.901
 0.811

 1.057
 0.740
 0.871
 0.618



**Figure S85**. The interaction energy is based on energy frameworks for compound **2c** (a) and (b), which show electrostatic and dispersion energy contributions to the total energy.



| otal<br>iur e | energ          | gies, only reported f<br>y components, scale  | or two be<br>d approp | enchmarked<br>priately (see | energy r<br>the scal | nodels, a<br>e factor t | re the su<br>able belo | ım of the<br>wv) | 2     |       |
|---------------|----------------|-----------------------------------------------|-----------------------|-----------------------------|----------------------|-------------------------|------------------------|------------------|-------|-------|
|               | N              | Symop                                         | R                     | Electron De                 | nsity                | E_ele                   | E_pol                  | E_dis            | E_rep | E_tot |
|               | 2              | х, у, z                                       | 14.23                 | B3LYP/6-31                  | G(d,p)               | 0.6                     | -0.1                   | -2.6             | 0.0   | -1.7  |
|               | 2              | -x, y+1/2, -z+1/2                             | 10.41                 | B3LYP/6-31                  | G(d,p)               | -7.5                    | -2.8                   | -33.6            | 25.0  | -23.8 |
|               | 1              | -x, -y, -z                                    | 7.18                  | B3LYP/6-31                  | G(d,p)               | -109.6                  | -30.1                  | -51.3            | 134.6 | -99.6 |
|               | 2              | x, -y+1/2, z+1/2                              | 8.69                  | B3LYP/6-31                  | G(d,p)               | -1.5                    | -0.8                   | -12.4            | 7.0   | -8.7  |
|               | 1              | -x, -y, -z                                    | 10.70                 | B3LYP/6-31                  | G(d,p)               | -3.7                    | -0.5                   | -4.9             | 0.4   | -8.3  |
|               | 1              | -x, -y, -z                                    | 10.85                 | B3LYP/6-31                  | G(d,p)               | -5.4                    | -1.0                   | -18.9            | 16.1  | -12.9 |
|               | 2              | -x, y+1/2, -z+1/2                             | 6.68                  | B3LYP/6-31                  | G(d,p)               | -10.9                   | -3.4                   | -32.0            | 26.5  | -25.5 |
|               | 2              | x, y, z                                       | 7.04                  | B3LYP/6-31                  | G(d,p)               | -6.0                    | -3.6                   | -11.5            | 7.2   | -14.6 |
|               | 2              | x, -y+1/2, z+1/2                              | 7.87                  | B3LYP/6-31                  | G(d,p)               | -14.2                   | -3.2                   | -11.3            | 10.2  | -20.8 |
|               | 1              | -x, -y, -z                                    | 9.05                  | B3LYP/6-31                  | G(d,p)               | -6.1                    | 0.0                    | -33.9            | 32.4  | -15.9 |
| ale<br>œ№     | facto<br>lacke | ors for benchmarked<br>Inzie et al. IUCrJ (20 | energy r<br>17)       | nodels                      |                      |                         |                        |                  |       |       |
|               |                |                                               |                       |                             |                      |                         |                        |                  | -     |       |
| iner          | gy M           | lodel                                         |                       |                             | k_ele                | k_pol                   | k_disp                 | k_rep            |       |       |
| Έł            | F              | HF/3-21G electron of                          | densities             |                             | 1.019                | 0.651                   | 0.901                  | 0.811            |       |       |
| E-E           | I3LYF          | B3LYP/6-31G(d,                                | o) electro            | on densities                | 1.057                | 0.740                   | 0.871                  | 0.618            |       |       |

position) in Å.

nteraction Energies (kJ/mol) is the distance between mo



Figure S86. The interaction energy is based on energy frameworks for compound 3c (a) and (b), which show electrostatic and dispersion energy contributions to the total energy.





**Figure S87**. The interaction energy is based on energy frameworks for compound **4c** (a) and (b), which show electrostatic and dispersion energy contributions to the total energy.

**5**c

| NI. | Suman             |       | Electron Density | E ala  | E aul | e     | E     | E 1.1 |
|-----|-------------------|-------|------------------|--------|-------|-------|-------|-------|
| IN  | Symop             | к     | Electron Density | c_ee   | c_poi | E_us  | c_rep | E_101 |
| 1   | -x, -y, -z        | 6.29  | B3LYP/6-31G(d,p) | -2.6   | 0.0   | -23.6 | 19.6  | -11.3 |
| 1   | -x, y+1/2, -z+1/2 | 10.23 | B3LYP/6-31G(d,p) | -11.0  | -5.9  | -15.1 | 12.6  | -21.3 |
| 1   | x, y, z           | 5.49  | B3LYP/6-31G(d,p) | -17.7  | -4.9  | -37.7 | 26.4  | -38.8 |
| 0   | -х, -у, -z        | 7.02  | B3LYP/6-31G(d,p) | -15.9  | -0.5  | -19.1 | 13.4  | -25.5 |
| 0   | x, -y+1/2, z+1/2  | 12.98 | B3LYP/6-31G(d,p) | -1.9   | -0.1  | -10.2 | 6.6   | -7.0  |
| 1   | -x, -y, -z        | 5.85  | B3LYP/6-31G(d,p) | -106.7 | -0.3  | -45.4 | 122.3 | -77.  |
| 0   | -x, y+1/2, -z+1/2 | 10.61 | B3LYP/6-31G(d,p) | 0.2    | -0.8  | -8.1  | 3.4   | -5.4  |
| 1   | x, -y+1/2, z+1/2  | 12.31 | B3LYP/6-31G(d,p) | -1.7   | -0.6  | -12.7 | 6.5   | -9.3  |
| 0   | -x, -y, -z        | 6.63  | B3LYP/6-31G(d,p) | -8.4   | -1.7  | -44.9 | 35.5  | -27.3 |

ids (mean atomic position) in Å.

## actors for benchmarked ene ackenzie et al. IUCrJ (2017)

nteraction Energies (kJ/mol)

| Energy Model                                 | k_ele | k_pol | k_disp | k_rep |
|----------------------------------------------|-------|-------|--------|-------|
| CE-HF HF/3-21G electron densities            | 1.019 | 0.651 | 0.901  | 0.811 |
| CE-B3LYP B3LYP/6-31G(d,p) electron densities | 1.057 | 0.740 | 0.871  | 0.618 |



Figure S88. The interaction energy is based on energy frameworks for compound 5c (a) and (b), which show electrostatic and dispersion energy contributions to the total energy.



**Figure S89**. The interaction energy is based on energy frameworks for compound **6c** (a) and (b), which show electrostatic and dispersion energy contributions to the total energy.





**Figure S90**. The interaction energy is based on energy frameworks for compound **7c** (a) and (b), which show electrostatic and dispersion energy contributions to the total energy.





















**Figure S91**. The molecular electrostatic potential (MEP) mapped onto the molecular van der Waals surface, using a colour code, blue (electropositive regions), white (neutral) and red (electronegative regions), (a) **3a**, (b) **4a**,(c) **1b**, (d) **2b**,(e) **3b**, (f) **4b**, (g) **5b**, (h) **6b**, (i) **7b**, (j) **1c**, (k) **2c**, (l) **3c**, (m) **4c**, (n) **5c**, (o) **6c** and (p) **7c**.

## **DFT Studies**

| Table S14. Energy difference between | different conformations ( $\Delta$ | E, in kcal/mol). |
|--------------------------------------|------------------------------------|------------------|
|--------------------------------------|------------------------------------|------------------|

| Model                          | Syn   | Midway     | Anti    | Mid-H            |
|--------------------------------|-------|------------|---------|------------------|
|                                |       |            |         | (with H Bonding) |
|                                |       | Sulfonyl   | compo   | unds             |
| 1a                             | 0.0   | +4.2       | +4.7    | -                |
| <b>3</b> a                     | 0.0   | +4.0       | +4.5    | -                |
| 4a                             | 0.0   | +6.2       | +6.8    | -                |
| 6a                             | 0.0   | +3.1       | +3.7    | -                |
|                                | Benze | ene sulfon | amide o | compounds        |
| 1b                             | 0.0   | +3.0       | +4.4    | -                |
| 2b                             | 0.0   | +3.8       | +4.6    | -                |
| 3b                             | 0.0   | +3.6       | +4.3    | -                |
| <b>4</b> b                     | 0.0   | +5.8       | +6.4    | -                |
| 5b                             | 0.0   | +2.1       | +3.0    | -                |
| 6b                             | 0.0   | +2.5       | +3.4    | -                |
| 7b                             | 0.0   | +3.2       | +3.8    | -                |
| Pyridine sulfonamide compounds |       |            |         |                  |
| 1c                             | 0.0   | +4.2       | +4.7    | +1.3             |
| 2c                             | 0.0   | +2.6       | +3.2    | +1.4             |
| 3c                             | 0.0   | +2.5       | +3.2    | +1.8             |
| 4c                             | 0.0   | +5.1       | +5.5    | +4.1             |
| 5c                             | 0.0   | +1.3       | +1.7    | +0.6             |
| 6c                             | 0.0   | +4.3       | +4.9    | +1.6             |
| 7c                             | 0.0   | +3.5       | +4.0    | +1.2             |

| <b>1a</b> (Syn)                                                                                                                                                                                                                                      | 1a (Midway)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>1a</b> (Anti)                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39-09-09-9<br>00-03-95                                                                                                                                                                                                                               | 2000 - 200<br>2000 - 2000<br>2000 | <b>3</b><br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                   |
| 0.0                                                                                                                                                                                                                                                  | +4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +4.7                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>3a</b> ( <i>Syn</i> )                                                                                                                                                                                                                             | <b>3a</b> (Midway)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>3a</b> (Anti)                                                                                                                                                                                                                                                                                                                                                                                     |
| - 03-03-0-<br>- 03-0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ం- యాతు - ్<br>ుర్<br>్రాత్యాత్రు                                                                                                                                                                                                                                                                                                                                                                    |
| 0.0                                                                                                                                                                                                                                                  | +4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +4.5                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>4a</b> (Syn)                                                                                                                                                                                                                                      | <b>4a</b> (Midway)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>4a</b> (Anti)                                                                                                                                                                                                                                                                                                                                                                                     |
| <del></del>                                                                                                                                                                                                                                          | <del>• స్పాపు</del><br>సాన్రా<br>తి                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>الكريمية المحالية المح<br/>محالية المحالية المحال<br/>المحالية المحالية المحالية</del> |
| 0.0                                                                                                                                                                                                                                                  | +6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +6.8                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>6a</b> (Syn)                                                                                                                                                                                                                                      | 6a (Midway)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>6a</b> (Anti)                                                                                                                                                                                                                                                                                                                                                                                     |
| ်ခ္- အဆ- ခ်<br>းဆာက္လာ- ရွိ၊                                                                                                                                                                                                                         | j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-33-33-39<br>3-8<br>3-33-533-3                                                                                                                                                                                                                                                                                                                                                                      |
| 0.0                                                                                                                                                                                                                                                  | +3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +3.7                                                                                                                                                                                                                                                                                                                                                                                                 |

**Figure S92.** DFT optimized (M06-2X/6-31+ $g^*$ ) conformers in *syn*, *midway* and *anti* geometries for sulfonyl compounds (**1a** to **6a**); all energy values are in kcal/mol.

| <b>1b</b> ( <i>Syn</i> )     | <b>1b</b> ( <i>Midway</i> )                                                                       | <b>1b</b> ( <i>Anti</i> )              |
|------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------|
| <del>పించింది.</del>         | <b>j-19593</b><br>                                                                                | A CONCOLORING                          |
| 0.0                          | +3.0                                                                                              | +4.4                                   |
| <b>2b</b> ( <i>Syn</i> )     | <b>2b</b> ( <i>Midway</i> )                                                                       | <b>2b</b> ( <i>Anti</i> )              |
|                              |                                                                                                   | ••                                     |
| 0.0                          | +3.8                                                                                              | +4.6                                   |
| <b>3b</b> ( <i>Syn</i> )     | <b>3b</b> (Midway)                                                                                | <b>3b</b> ( <i>Anti</i> )              |
| ం-యాయ-సిం<br>సతార్థిత్రాల్లు |                                                                                                   |                                        |
| 0.0                          | +3.6                                                                                              | +4.3                                   |
| <b>4b</b> ( <i>Syn</i> )     | <b>4b</b> (Midway)                                                                                | <b>4b</b> ( <i>Anti</i> )              |
| •                            | ●                                                                                                 | ●_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 0.0                          | +5.8                                                                                              | +6.4                                   |
| <b>5b</b> ( <i>Syn</i> )     | <b>5b</b> ( <i>Midway</i> )                                                                       | <b>5b</b> ( <i>Anti</i> )              |
| 3 <del>232</del> 00-03       | - 03-03- <b>-</b><br>- 23-03-<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3<br>- | აფიდე_ <b>ე</b> ∎<br>ა.გ.<br>კადეჭდე   |



**Figure S93**. DFT optimized (M06-2X/6-31+ $g^*$ ) conformers in *syn*, *midway* and *anti* geometries for benzene sulfonamide compounds (**1b** to **7b**); all energy values are in kcal/mol.

| <b>1c</b> ( <i>Syn</i> )               | 1c (Midway)                                                            | <b>1c</b> ( <i>Anti</i> )                                       |
|----------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|
| <del>}</del>                           | j <u>355_55</u><br>→                                                   | 2-22-22<br>2-2<br>2-2<br>2-2<br>2-2<br>2-2<br>2-2<br>2-2<br>2-2 |
| 0.0                                    | +4.2                                                                   | +4.7                                                            |
| <b>2c</b> ( <i>Syn</i> )               | 2c (Midway)                                                            | <b>2c</b> ( <i>Anti</i> )                                       |
|                                        | ••*?3233.<br>**<br>**<br>**                                            |                                                                 |
| 0.0                                    | +2.6                                                                   | +3.2                                                            |
| <b>3c</b> ( <i>Syn</i> )               | <b>3c</b> (Midway)                                                     | <b>3c</b> ( <i>Anti</i> )                                       |
| • ಡಾತಾ <mark>ಕೆ</mark><br>ಎಂಡಿಡಿ ಕ್ರಿ  | <b>ంార్మెలెర్కె <mark>ర</mark>ిం</b><br>సంత్రించిం<br>రిల్లి<br>కిల్లి | • = ======<br>. 3<br>                                           |
| 0.0                                    | +2.5                                                                   | +3.2                                                            |
| <b>4c</b> ( <i>Syn</i> )               | <b>4c</b> (Midway)                                                     | <b>4c</b> ( <i>Anti</i> )                                       |
| - 23-23-45<br>- 23-25-45<br>- 23-25-45 |                                                                        |                                                                 |
| 0.0                                    | +5.1                                                                   | +5.5                                                            |
| <b>5c</b> ( <i>Syn</i> )               | 5c (Midway)                                                            | <b>5c</b> ( <i>Anti</i> )                                       |
| -య-లా-తి<br>-<br>                      |                                                                        |                                                                 |
| 0.0                                    | +1.3                                                                   | +1.7                                                            |

| <b>6c</b> (Syn)          | <b>6c</b> ( <i>Midway</i> ) | <b>6c</b> (Anti)                                                                                            |
|--------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------|
| <u>}-250,</u>            | j-2020 - 30                 | у<br>Э-229200- <b>9</b> 0                                                                                   |
| <u></u>                  |                             |                                                                                                             |
| 0.0                      | +4.3                        | +4.9                                                                                                        |
| <b>7c</b> ( <i>Syn</i> ) | 7c (Midway)                 | <b>7c</b> ( <i>Anti</i> )                                                                                   |
| 3 <b>3-63-63</b>         |                             | <sup>3</sup> डे <b>० डावड</b><br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38 |
| 0.0                      | +3.5                        | +4.0                                                                                                        |

**Figure S94**. DFT optimized (M06-2X/6-31+ $g^*$ ) conformers in *syn*, *midway* and *anti* geometries for pyridine sulfonamide compounds (**1c** to **7c**); all energy values are in kcal/mol.


**Figure S95**. DFT optimized (M06-2X/6-31+ $g^*$ ) conformers in midway geometries for pyridine sulfonamide compounds (**1c** to **7c**) with intramolecular N-H···N H-bonding interactions; all energy values are in kcal/mol.