A stable metal azolate framework with rare nonintersecting one-/twodimensional pore channels

Yi Heng, Mu-Yang Zhou, Le Ye, Xiao-Tong Lu, Dong-Dong Zhou,* and Jie-Peng Zhang

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
*Email: zhoudd3@mail.sysu.edu.cn

Materials, Measurement, and Characterization

Commercially available reagents and solvents were used as received without further purification. Dibenzo $[b, e][1,4]$ dioxine-2,3,7,8-tetraamine was prepared according to the previously reported synthesis (J. Am. Chem. Soc., 2019, 141, 13858). Mass spectrum (MS) was obtained on an LTQ Orbitrap Elite LC/MS (ESI) equipment with methanol (MeOH) as the mobile phase. ${ }^{1} \mathrm{H}$-nuclear magnetic resonance $\left({ }^{1} \mathrm{H}\right.$ NMR) spectrum was obtained on a Bruker advance III (400 MHz) NMR spectrometer. Elemental analyses (EA) were performed with an Elementar Vario EL Cube elemental analyzer. Powder X-ray diffraction (PXRD) patterns were collected on a Smart Lab X-ray powder diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation. Thermogravimetry (TG) analyses were performed on a TA Q50 thermogravimetric analyzer under nitrogen at a heating rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$. Gas and vapor isotherms were measured with an automatic volumetric adsorption apparatus (ASAP 2020M or BELSORP max). The temperature was controlled by a liquidnitrogen bath or water bath. The MeOH -exchanged sample was placed in the sample tube and dried for 5 h under vacuum at $130^{\circ} \mathrm{C}$ to remove the remaining solvent molecules prior to measurement.

Synthesis of 1,7-bis(trifluoromethyl)-[1,4]dioxino-[2,3-f:5,6-f']bisbenzimidazole ($\mathbf{H}_{2} \mathbf{f d b b}$)

A mixture of dibenzo $[b, e][1,4]$ dioxine-2,3,7,8-tetraamine ($5 \mathrm{~g}, 0.02 \mathrm{mmol}$) and trifluoroacetic acid $(50 \mathrm{~mL})$ were stirred under N_{2} atmosphere for 30 min , then heated to reflux for 6 h . After that, the solvent was evaporated under nitrogen atmosphere and the crude product was precipitated. After recrystallization in MeOH)/trimethylamine ($v: v 100: 1$), the resulting white powders were filtered, and then washed three times with $\mathrm{MeOH}(10 \mathrm{~mL})$. Finally, the samples were dried in air (yield: $\sim 84 \%$). ESI-MS m/z calculated for $\mathrm{H}_{2} \mathrm{fdbb}\left(\mathrm{C}_{16} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~F}_{6} \mathrm{O}_{2}\right)$: 400.24 , found: $401.24[\mathrm{M}+\mathrm{H}]^{+}$. EA calculated for $\mathrm{H}_{2} \mathrm{fdbb}\left(\mathrm{C}_{16} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$: C, 48.01; H, 1.51; N, 14.00. Found (\%): C, 48.19; H, 1.55; N, 14.00.

Synthesis of $\left[\mathrm{Zn}_{2}(\mathbf{O H})\left(\mathbf{C H}_{3} \mathrm{COO}\right)(\mathbf{f d b b})\right] \cdot$ Guest $(\mathrm{MAF}-50,1 \cdot \mathbf{G})$

A mixture of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(16.5 \mathrm{mg}, 0.055 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{COONa}(2.5 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{fdbb}$ ($10 \mathrm{mg}, 0.025 \mathrm{mmol}$) in a solvent mixture of N-methylpyrrolidone (NMP, 3 mL), isopropanol (IPA, 3 mL) and $\mathrm{CH}_{3} \mathrm{COOH}(10 \mathrm{uL})$ was sealed in a Teflon-lined reactor and heated at $160^{\circ} \mathrm{C}$ for 24 h , then cooled to room temperature at a rate of $5{ }^{\circ} \mathrm{C} \mathrm{h}^{-1}$. Colorless leaf-shaped crystals of $\mathbf{1} \cdot \mathbf{G}$ were collected by filtration, washed three times with $\mathrm{MeOH}(10 \mathrm{~mL})$, and dried under vacuum (yield: $\sim 80 \%$). Microcrystals of $\mathbf{1} \cdot \mathbf{G}$ could be synthesized by mixing $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.49 \mathrm{~g}, 5 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{COONa}(0.21 \mathrm{~g}, 2.5 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{fdbb}(1.00 \mathrm{~g}, 2.5 \mathrm{mmol})$ in a solvent mixture of NMP $(50 \mathrm{~mL})$ and ethanol ($\mathrm{EtOH}, 25 \mathrm{~mL}$) under stirring conditions and heating at $160^{\circ} \mathrm{C}$ for 12 h , then white microcrystalline sample of $\mathbf{1} \cdot \mathbf{G}$ was obtained after filtration, washed with $\mathrm{MeOH}(1.22 \mathrm{~g}$, yields: $\sim 80 \%)$. The sample was dispersed in MeOH and heated at

333 K for guest exchanging, then filtrated and activated at 403 K to give the activated one, finally the sample was stored in the air. EA calculated for $\mathbf{1} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{6.5} \mathrm{~F}_{6} \mathrm{Zn}_{2}\right)$: $\mathrm{C}, 34.20 ; \mathrm{H}, 1.75 ; \mathrm{N}, 8.86$. Found (\%): C, 33.87; H, 1.93; N, 9.16.

Crystal Structure Determination

Single-crystal X-ray diffraction (SCXRD) data of $\mathrm{H}_{2} \mathrm{fdbb}$ ligand and $\mathbf{1} \cdot \mathbf{G}$ was collected on an Agilent SuperNova diffractometer by using graphite monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation, with absorption corrections applied by using the multiscan program CrysAlisPro. The structure was solved with the direct method and refined with a full-matrix least-squares technique with the SHELXTL software package. Anisotropic thermal parameters were applied to all non-hydrogen atoms, and the hydrogen atoms were generated geometrically. The PLATON SQUEEZE treatment was applied for $\mathbf{1} \cdot \mathbf{G}$ because the guest molecules are extremely disordered and cannot be modeled. CCDC 2343053-2343054 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Fig. S1 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 298 \mathrm{~K}$) of $\mathrm{H}_{2} \mathrm{fdbb}$.

Fig. S2 PXRD patterns of $\mathbf{1} \cdot \mathbf{G}$.

Fig. S3 The molecule unit of $\mathrm{H}_{2} \mathrm{fdbb}$ ligand. Symmetry codes: $\mathrm{A}=-x, 1-y, 1-z$. Atoms in the asymmetric unit are drawn with thermal ellipsoids.

(b)

(c)

Fig. S4 (a) The topological representation of hydrogen-bonded network, (b) wavy layers, and (c) $\pi-\pi$ stacking interaction of $\mathrm{H}_{2} \mathrm{fdbb}$ ligands.

Fig. S5 The coordination environment of $\mathbf{1 \cdot G}$. Symmetry codes: $\mathrm{A}=-x+y, y, 1-z ; \mathrm{B}=y, x, z ; \mathrm{C}=x, y$, $1 / 2-z$. Atoms in the asymmetric unit are drawn with thermal ellipsoids (H atoms are omitted for clarify).

Fig. S6 The topological representation of $\mathbf{1}$.

Fig. S7 The pore environment of 1D channel (green) in 1.

(b)

Fig. S8 The pore (a) aperture and (b) cavity environment of 2D channel (yellow) in $\mathbf{1}$.

Fig. S9 TG curves of as-synthesized and MeOH-exchanged $\mathbf{1} \cdot \mathbf{G}$.

Fig. S10 PXRD patterns of $\mathbf{1}$ in the aqueous solution with different pH .

Fig. S11 (a) $V\left(1-P_{0}-P\right)$ vs P / P_{0} curve and (b) plot of the linear region on the N_{2} isotherm of $\mathbf{1}$ for the BET equation.

Fig. S12. Langmuir fitting of the adsorption isotherms for N_{2} in 1 .

Fig. S13 CO_{2} adsorption and desorption isotherms at 195 K .

Fig. S14 $\mathrm{N}_{2}, \mathrm{CH}_{4}$ and CO_{2} adsorption (solid) and desorption (open) isotherms at 298 K .

Fig. S15 Water vapor sorption isotherms of 1 at 298 K.

Table S1. Crystallographic data and structural refinement details.

Compound	$\mathrm{H}_{2} \mathrm{fdbb}$	$\mathbf{1} \cdot \mathbf{G}$
Formula	$\mathrm{C}_{16} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}$	$\mathrm{Zn}_{2} \mathrm{C}_{18} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~F}_{6} \mathrm{H}_{8}$
Mass formula $/\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	400.24	605.09
Temperature $/ \mathrm{K}$	$100(2)$	$250(2)$
Crystal system	monolinic	hexagonal
Space group	$P 2_{1} / c$	$P 6{ }_{3} / m c m$
a / \AA	$4.7256(3)$	$26.1617(4)$
b / \AA	$16.4363(11)$	$26.1617(4)$
c / \AA	$9.9536(6)$	$16.6663(3)$
V / \AA^{3}	$772.76(9)$	$9878.7(3)$
Z	2	12
$D_{\mathrm{c}} /(\mathrm{g} \mathrm{cm}$		
$\left.R_{\text {int }}\right)$	1.72	1.219
$R_{1}[I>2 \sigma(I)]^{a}$	0.0409	0.0351
$w R_{2}[I>2 \sigma(I)]^{b}$	0.0788	0.0891
$R_{1}($ all data $)$	0.1939	0.2478
$w R_{2}($ all data $)$	0.0864	0.1015
GOF	0.1991	0.2666
	1.045	1.025

${ }^{a} R_{1}=\sum| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right| / \sum\right| F_{\mathrm{o}} \mid$
${ }^{b} w R_{2}=\left[\sum w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \sum w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}$

