Supporting Information Highly tunable emission properties of solid state supramolecular compounds based on Eu-mixed lanthanide complexes and cucurbit[6]uril

Mariana I. Rakhmanova,^a Taisiya S. Sukhikh^a, Ekaterina A. Kovalenko^{a*}

^aNikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Academician Lavrentiev Avenue, Novosibirsk 630090, Russian Federation

Figure S1. Representation of atomic displacement ellipsoids (50% probability) for non-hydrogen atoms in the crystallographically independent part of the structures. Hydrogen atoms are shown as spheres of fixed size. Each of the disordered nitrates located in the cavity of CB[6] is further disordered over two positions due to the proximity to the special position.

Fig. S2. Simulated and experimental (Mo K α radiation, 150 K) powder XRD patterns for type α (a) compounds **1**, **2** and β (b) compounds **3–8**, and their comparison (c) showing slight differences. (d) Rietveld refinement for a sample [Eu-Pr]: the experimental pattern (Cu K α radiation, 298 K; blue), simulated pattern (red) and the difference (gray). Refined unit cell parameters: $P2_1/n$, a = 14.5417(4) Å, b = 13.6308(7) Å, c = 18.3293(7) Å, $\beta = 105.476(3)^\circ$, V = 3501.4(2) Å³. Atomic positions were fixed to be the same as in the single-crystal structure. Some differences of the peak intensities can be due to a slight variation of atomic positions; applying spherical harmonic (order 4) preferred orientation functions does not completely eliminate the difference.

Fig. S3. Simulated and experimental (Mo K α radiation) powder XRD patterns for type γ compound

Fig. S4a. The TGA curves of compounds 1–9.

Fig. S4b. The TGA curve of compound Eu-Pr (1)

Thermal decomposition of compound 1. First, dehydration occurs in the temperature range of $55-150^{\circ}$ C and is accompanied by a 10 % weight loss of eight crystallization water molecules. In the temperature range of 160–300°C, the sample gradually is decomposed, being accompanied by loss of crystallization nitric acid molecules. Further weight loss occurs at 350°C, which corresponds to the decomposition temperature of CB[6].

Fig. S4c. The TGA curve of compound Eu-Nd (2)

Thermal decomposition of **2** begins at 55–60°C. Desolvation occurs in the temperature range of 60-100°C, being accompanied by a 9 % weight loss of the eight crystallization water. At temperature 150°C compound loose one crystallization nitric acid molecule. In the temperature ranges of 200–350°, the sample is gradually decomposed. Further weight loss occurs at 390°C, which corresponds to the decomposition temperature of CB[6].

Fig. S4d. The TGA curve of compound Eu-Sm (3)

Thermal decomposition of compound **3**. Desolvation occurs in the temperature range of $55-100^{\circ}$ C, being accompanied by a 12 % weight loss of the ten crystallization water. At temperature 150°C compound loose one crystallization nitric acid molecule. In the temperature ranges of 200–350°, the sample is gradually decomposed. Further weight loss occurs at 390°C, which corresponds to the decomposition temperature of CB[6].

On the mass loss curve of compound **4** we observe the gradual thermal decomposition of the sample in the temperature range of 50–300°C and is accompanied by a 8 % weight loss of six crystallization water molecules and crystallization nitric acid molecules. Further weight loss occurs at 395°C, which corresponds to the decomposition temperature of CB[6].

Fig. S4f. The TGA curve of compound Eu-Tb (5)

Thermal decomposition of compound **5**. First, dehydration occurs in the temperature range of $45-95^{\circ}$ C and is accompanied by a 8 % weight loss of seven crystallization water molecules. In the temperature range of $160-240^{\circ}$ C, the sample gradually is decomposed, being accompanied by loss of crystallization nitric acid molecules. Further weight loss occurs at 340° C, which corresponds to the decomposition temperature of CB[6].

Fig. S4g. The TGA curve of compound Eu-Dy (6)

On the mass loss curve of compound **6** we observe the gradual thermal decomposition of the sample in the temperature range of $50-300^{\circ}$ C and is accompanied by a 10 % weight loss of six crystallization water molecules and crystallization nitric acid molecules. Further weight loss occurs at 400°C, which corresponds to the decomposition temperature of CB[6].

Fig. S4h. The TGA curve of compound Eu-Ho (7)

Thermal decomposition of compound 7. Desolvation occurs in the temperature range of 40–80°C, being accompanied by a 6 % weight loss of the five crystallization water. At temperature 200°C compound loose one crystallization nitric acid molecule. Further weight loss occurs at 360°C, which corresponds to the decomposition temperature of CB[6].

On the mass loss curve of compound **8** we observe the gradual thermal decomposition of the sample in the temperature range of $50-300^{\circ}$ C and is accompanied by a 12 % weight loss of ten crystallization water molecules and crystallization nitric acid molecules. Further weight loss occurs at 360°C, which corresponds to the decomposition temperature of CB[6].

Fig. S4j. The TGA curve of compound Eu-Yb (9)

Thermal decomposition of **9** can be divided into three stages. First, desolvation occurs in the temperature range of 40–80°C and is accompanied by 15% weight loss of eleven crystallization water and nitric acid molecules. In the temperature range of 80–320°C, the sample is gradually decomposed. Further weight loss occurs at 380°C, which corresponds to the decomposition temperature of CB[6].

Fig. S5. An overlay of α - and β -structures showing negligible differences between them. H atoms and hydrate molecules are not shown.

Fig. S6. Schematic energy level diagram of Tb^{3+} , Eu^{3+} and Dy^{3+} ions in the complexes.

Fig. S7. Photographs of the 365 nm ultraviolet LED lighting the crystals of compounds **1–9** when the LED is turned off and turned on.

Identification code	1	2	3α	3β	4	5	6	7	8	9
Empirical formula		C36H68EuN31NdO4	C ₃₆ H ₆₈ EuN ₃₁ O ₄₉ S	C36H68EuN31O49S	$C_{36}H_{68}EuGdN_{31}O_4$	C. H. FuN. O. Th	C36H68DyEuN31O4	C36H68Eu1.4Ho0.6N3		
		9	m	m	9	C361168Ed1 (3104910	9	1O49		
Formula weight		2015.41	2021.52	2021.52	2028.42	2030.09	2033.67	2030.91		
Temperature/K	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)
Space group	$P2_1/n$	$P2_1/n$	$P2_1/n$	P-1	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	P-1	<i>P</i> -1	<i>R</i> –3
a/Å	14.3764(10)	14.4113(6)	14.4200(5)	13.4418(4)	13.4267(3)	13.4041(2)	13.4214(5)	13.4090(5)	13.429(3)	25.7946(4)
b/Å	13.6375(7)	13.6182(7)	13.5890(4)	14.4661(4)	14.4721(4)	14.4617(2)	14.4818(6)	14.4887(5)	14.477(4)	25.7946(4)
c/Å	18.0744(13)	18.0470(9)	17.9538(6)	18.2775(6)	18.2429(4)	18.2115(3)	18.2079(7)	18.2100(8)	18.244(4)	31.7638(6)
α/°	90	90	90	73.8147(10)	73.8016(10)	73.8223(13)	73.8732(13)	73.8529(14)	73.796(18)	90
β/°	105.456(3)	105.5893(16)	105.6825(13)	87.3845(11)	87.3486(10)	87.3313(13)	87.4439(13)	87.2751(14)	87.367(17)	90
γ/°	90	90	90	87.8140(9)	87.8007(11)	87.7248(12)	87.9242(12)	87.7447(12)	87.768(18)	120
Volume/Å ³	3415.5(4)	3411.5(3)	3387.14(19)	3408.45(18)	3399.26(14)	3385.45(9)	3395.3(2)	3393.2(2)	3401.3(15)	18302.9(7)
Z		2	2	2	2	2	2	2		
$\rho_{calc}g/cm^3$		1.962	1.982	1.970	1.982	1.991	1.989	1.988		
µ/mm ⁻¹		1.803	1.916	1.904	2.021	2.095	2.147	2.117		
F(000)		2032.0	2036.0	2036.0	2040.0	2042.0	2044.0	2043.0		
Crystal size/mm ³		$0.09 \times 0.08 \times 0.07$	$0.32 \times 0.21 \times 0.08$	0.38 imes 0.3 imes 0.17	0.13 imes 0.1 imes 0.06	$0.21 \times 0.2 \times 0.11$	0.17 imes 0.14 imes 0.1	$0.25 \times 0.22 \times 0.13$		
Padiation		ΜοΚα (λ =	ΜοΚα (λ =	ΜοΚα (λ =	ΜοΚα (λ =	Μο Κα (λ =	ΜοΚα (λ =	MoK α (λ =		
Radiation		0.71073)	0.71073)	0.71073)	0.71073)	0.71073)	0.71073)	0.71073)		
20 range for data collection/°		3.226 to 57.392	3.228 to 61.014	2.932 to 61.076	3.758 to 59.15	3.764 to 58.2	2.928 to 59.238	2.928 to 63.06		
Index ranges		$-19 \le h \le 17, -18 \le$	$-20 \le h \le 20, -19 \le$	$-19 \le h \le 18, -20 \le$	$-18 \le h \le 18, -20 \le$	$-17 \le h \le 13, -17 \le$	$-18 \le h \le 18, -20 \le$	$-19 \le h \le 19$ $-20 \le$		
		$k \le 18, -24 \le 1 \le$	$k \le 19, -22 \le 1 \le$	$k \le 20, -26 \le 1 \le$	$k \le 20, -25 \le 1 \le$	$k \le 19, -24 \le 1 \le$	$k \le 20, -25 \le l \le$	$k \le 21, 0 \le 1 \le 26$		
		24	25	26	25	21	23	22105		
Reflections collected		46565	65540	35598	59465	32288	32897	22195		
R _{int} , R _{sigma}		0.0311, 0.0241	0.0517, 0.0382	0.0462, 0.0713	0.0380, 0.0407	0.0228, 0.0360	0.0542, 0.0642	0.0814, 0.0800		
Data/restraints/parameters		8741/147/595	10354/117/595	35598/294/1210	18997/276/1209	15136/329/1209	32897/283/1212	22195/289/1210		
Goodness-of-fit on F ²		1.118	1.030	1.063	1.203	1.030	1.031	1.163		
Final R indexes $[I \ge 2\sigma(I)]$		$R_1 = 0.0408,$	$R_1 = 0.0295,$	$R_1 = 0.0470,$	$R_1 = 0.0453,$	$R_1 = 0.0263,$	$R_1 = 0.0613,$	$R_1 = 0.0569,$		
		$WK_2 = 0.1128$	$WR_2 = 0.06/5$	$WR_2 = 0.1221$	$WR_2 = 0.1010$	$WR_2 = 0.0367$	$WR_2 = 0.1490$	$WR_2 = 0.1165$		
Final R indexes [all data]		$K_1 = 0.0455,$ $wR_2 = 0.1173$	$R_1 = 0.0425,$ $wR_2 = 0.0714$	$K_1 = 0.0590,$ $wR_2 = 0.1281$	$K_1 = 0.0516,$ $wR_2 = 0.1035$	$K_1 = 0.0335,$ $wR_2 = 0.0603$	$K_1 = 0.0/35,$ $wR_2 = 0.1558$	$K_1 = 0.1019,$ $wR_2 = 0.1369$		
Largest diff. peak/hole / e Å-3		2.78/-1.75	0.71/-0.93	2.49/-1.74	2.05/-1.55	1.16/-0.72	6.38/-2.40	1.74/-1.57		

Table S1. Crystal data and structure refinement for the compounds

Atoms	Eu-Sm (3β)	Eu	Eu-Gd (4)	Eu-Tb (5)	Eu-Dy (6)	Eu-Ho (7)
Ln1 011	M 2.503(3)	2.4950(18)	2.491(3)	2.485(2)	2.482(5)	2.479(5)
Ln1 012	M 2.418(3)	2.4084(18)	2.412(3)	2.3970(18)	2.401(5)	2.389(5)
Ln1 013	M 2.443(3)	2.4310(18)	2.427(3)	2.4153(18)	2.419(5)	2.405(5)
Ln1 014	M 2.445(3)	2.4337(18)	2.430(3)	2.4242(18)	2.428(5)	2.413(5)
Ln1 015	M 2.409(3)	2.3899(19)	2.390(3)	2.3774(19)	2.379(5)	2.376(5)
Ln1 011	.N 2.489(3)	2.4795(17)	2.481(3)	2.467(2)	2.471(5)	2.467(5)
Ln1 012	N 2.550(3)	2.5434(18)	2.541(3)	2.533(2)	2.527(5)	2.526(5)
Ln1 01	1 2.381(3)	2.3764(16)	2.377(3)	2.3665(19)	2.376(5)	2.363(4)
Ln1 02	1 2.480(3)	2.4753(17)	2.474(3)	2.4700(17)	2.479(5)	2.469(4)
Ln2 021	M 2.436(3)	2.4309(18)	2.430(3)	2.414(2)	2.416(5)	2.408(5)
Ln2 022	M 2.428(3)	2.4111(18)	2.412(3)	2.4016(18)	2.404(5)	2.392(5)
Ln2 023	M 2.517(3)	2.5023(17)	2.500(3)	2.4891(19)	2.488(5)	2.479(5)
Ln2 024	M 2.407(3)	2.3946(18)	2.391(3)	2.380(2)	2.376(5)	2.368(5)
Ln2 025	M 2.429(3)	2.4188(18)	2.414(3)	2.4045(19)	2.410(5)	2.398(5)
Ln2 021	.N 2.521(3)	2.5152(18)	2.516(3)	2.5067(18)	2.507(5)	2.495(5)
Ln2 022	N 2.505(3)	2.4945(17)	2.494(3)	2.4859(17)	2.483(5)	2.475(5)
Ln2 04	1 2.473(3)	2.4664(17)	2.461(3)	2.4578(17)	2.462(5)	2.458(5)
Ln2 05	1 2.363(3)	2.3572(17)	2.350(3)	2.3461(17)	2.342(5)	2.334(5)

Table S2. Ln–O bond distances in the β structures with color coding for each distance from green (large) through yellow (medium) to red (small).

Table S3. Quantum yield under different excitation.

Compound		Excitation λ_{ex} , nm				
	305	325	365	370	395	
5	1	1	2	6	12	
6	-	<1	-	-	1	
1	-	-	<1	-	<1	
2	-	-	<1	-	<1	
3	-	-	<1	<1	1	
4	-	<1	-	<1	2	
7	-	<1	1	-	10	
8	-	1	-	-	2	
9	-	1	1	-	<1	