Electronic Supplementary Information

Reversible anion-dependent iodine uptake in nonporous

pseudopolymorphic coordination polymers

Ghazale Khorshidi,^a Behrouz Notash,^{*, a} Maciej Kubicki^b

^a Department of Inorganic Chemistry, Shahid Beheshti University, 19839 69411 Tehran,

Iran.

^b Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu

Poznanskiego 8, 61-614 Poznań, Poland.

E-mail: <u>b_notash@sbu.ac.ir;</u> Tel: +98 2129904363; Fax:+98 2122431663.

List of Supporting Information provided in this file

Synthesis of ligand 4,4-pbubp
Fig. S1 ¹ H NMR spectrum of 4,4-pbubp in DMSO-d ₆ , 300 MHz5
Fig. S2 ¹³ C NMR spectrum of 4,4-pbubp in DMSO-d ₆ , 75 MHz6
Fig. S3 FT-IR spectrum of ligand 4,4-pbubp in KBr pellet7
Fig. S4 FT-IR spectrum of CP1 in KBr pellet
Fig. S5 FT-IR spectrum of CP2 in KBr pellet
Fig. S6 FT-IR spectrum of CP3 in KBr pellet
Fig. S7 Plausible conformational isomers for 4,4-pbubp10
Fig. S8 The dihedral angles between pyridyl rings and urea moieties and between the aromatic
rings and the urea moieties of CP1 11
Fig. S9 The dihedral angles between pyridyl rings and urea moieties and between the aromatic
rings and the urea moieties of CP2 11

Fig. S10 The dihedral angles between pyridyl rings and urea moieties and between the aromatic
rings and the urea moieties of CP3 11
Fig. S11 HgHg distances [Å] and HgHgHg angles [⁰] in zig-zag chains of (a) CP1, (b) CP2
and (c) CP3 12
Fig. S12 View of the channels (location of disordered DMSO solvent molecules) in CP1 and CP2
along b-axis and in CP3 along a-axis13
Fig. S13 2D fingerprint plots for CP1, CP2 and CP314
Fig. S14 Distribution of the intermolecular contacts base on Hirshfeld surface analysis for CP1,
CP2 and CP3
Fig. S15 PXRD patterns of CP1. Red: Simulated from the X-ray single crystal data; Blue:
observed for the as-synthesized solids16
Fig. S16 PXRD patterns of CP2. Red: Simulated from the X-ray single crystal data; Blue:
observed for the as-synthesized solids16
Fig. S17 PXRD patterns of CP3. Red: Simulated from the X-ray single crystal data; Blue:
observed for the as-synthesized solids17
Fig. S18 TGA curves of CP1, CP2 and CP3
Fig. S19 PXRD patterns of CP1: simulated, as-synthesized, and after immersion in H ₂ O and
different organic solvents for 1 h, at 25 and 50 °C19
Fig. S20 PXRD patterns of CP2: simulated, as-synthesized, and after immersion in H ₂ O and
different organic solvents for 1 h, at 25 and 50 °C20
Fig. S21 PXRD patterns of CP3: simulated, as-synthesized, and after immersion in H_2O and
different organic solvents for 1 h, at 25 and 50 °C21
Fig S22 ATR-FTIR spectra of CP1: as-synthesized, and after immersion in H ₂ O and different
organic solvents for 1 h, at 25 and 50 °C22
Fig S23 ATR-FTIR spectra of CP2: as-synthesized, and after immersion in H_2O and different
organic solvents for 1 h, at 25 and 50 °C23
Fig S24 ATR-FTIR spectra of CP3: as-synthesized, and after immersion in H ₂ O and different
organic solvents for 1 h, at 25 and 50 °C24
Fig. S25 Calibration plot of standard iodine in cyclohexane by UV-Vis spectra25
Fig. S26 The pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models
for the uptake of I ₂ by compound CP1 at 0.005 M concentration of solution26

Fig. S27 The pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models
for the uptake of I_2 by compound CP2 at 0.005 M concentration of solution27
Fig. S28 The pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models
for the uptake of I_2 by compound CP3 at 0.005 M concentration of solution28
Fig. S29 The Langmuir, Temkin, and Freundlich isotherm models for compound CP129
Fig. S30 The Langmuir, Temkin, and Freundlich isotherm models for compound CP229
Fig. S31 The Langmuir, Temkin, and Freundlich isotherm models for compound CP329
Fig. S32 The UV-Vis spectra of compounds CP1@I2, CP2@I2 and CP3@I2 immersed in 5 mL
ethanol and the photograph of the releasing process at the beginning and after 120 min30
Fig. S33 Comparison between the simulation powder X-ray diffraction patterns of the CP1,
before iodine uptake, the CP1@I2 and recovered CP131
Fig. S34 Comparison between the simulation powder X-ray diffraction patterns of the CP2,
before iodine uptake, the CP2@I2 and recovered CP232
Fig. S35 Comparison between the simulation powder X-ray diffraction patterns of the CP3,
before iodine uptake, the CP3@I2 and recovered CP3
Fig. S36 ATR-FTIR spectra of 4,4-pbubp, compounds CP1, CP2 and CP3 before and after iodine
uptake
Table S1 Selected bond lengths [Å] and angles [⁰] for CP135
Table S2 Selected bond lengths [Å] and angles [⁰] for CP235
Table S3 Selected bond lengths [Å] and angles [⁰] for CP335
Table S4 Geometry of intermolecular hydrogen bonds (D-H···A) for CP1-CP3
Table S5 Kinetics parameters for iodine uptake from the solution by CP1, CP2 and CP3 at room
temperature
Table S6 Langmuir, Freundlich, and Temkin parameters of iodine removal by CP1, CP2 and
CP3 at room temperature
X-ray crystallography
Analysis of Hirshfeld surfaces
References40

Synthesis of ligand 4,4-pbubp¹: Isonicotinic acid hydrazide (6 mmol, 822 mg) was dissolved in 20 ml 25% aq. HCl at 0 °C and NaNO₂ (10.0 mmol, 689 mg) dissolved in 5 mL ice cold water was added to it with stirring. Stirring was continued for 1 h, maintaining the temperature below 5 °C. The solution was neutralized by adding solid Na₂CO₃ and extracted with 50 mL toluene. The organic extracts were dried over anhydrous Na₂SO₄ and filtered. Benzene-1,4-diamine (3.0 mmol, 324 mg) was added to the filtrate and refluxed for 6 h. The precipitate was filtered and dried to afford white solid powder **4,4-pbubp** in 70% yield. ¹H NMR (DMSO-d₆, 300 MHz): $\delta = 9.12(s, 1H), 8.83(s, 1H), 8.36-8.37(d, 2H), 7.44-7.45(d, 2H) \& 7.41(s, 4H).$ ¹³C NMR (DMSO-d₆, 75 MHz) δ = 114.87, 121.97, 136.54, 149.22, 152.71 & 154.80. m.p >260 °C. IR data (KBr pellet, cm⁻¹) (Fig. S3): 3349(w), 3028(w), 1921(w), 1812(w), 1706(s), 1671(s), 1602(s), 1558(m), 1412(m), 1331(m), 1291(m), 1248(m), 1205(m), 1044(m), 990(m), 906(w), 854(m), 820(m), 796(m), 769(m), 748(w), 734(m), 651(s), 575(s), 535(s), 506(m), 419(w).

Fig. S1 ¹H NMR spectrum of 4,4-pbubp in DMSO-d₆, 300 MHz.

Fig. S2¹³C NMR spectrum of 4,4-pbubp in DMSO-d₆, 75 MHz.

Fig. S3 FT-IR spectrum of ligand 4,4-pbubp in KBr pellet.

Fig. S4 FT-IR spectrum of CP1 in KBr pellet.

Fig. S5 FT-IR spectrum of CP2 in KBr pellet.

Fig. S6 FT-IR spectrum of CP3 in KBr pellet.

Fig. S7 Plausible conformational isomers for 4,4-pbubp.

Fig. S8 The dihedral angles between pyridyl rings and urea moieties and between the aromatic rings and the urea moieties of CP1.

Fig. S9 The dihedral angles between pyridyl rings and urea moieties and between the aromatic rings and the urea moieties of CP2.

Fig. S10 The dihedral angles between pyridyl rings and urea moieties and between the aromatic rings and the urea moieties of CP3.

Fig. S11 Hg...Hg distances [Å] and Hg...Hg...Hg angles [⁰] in zig-zag chains of (a) **CP1**, (b) **CP2** and (c) **CP3**.

Fig. S12 View of the channels (location of disordered DMSO solvent molecules) in **CP1** and **CP2** along *b*-axis and in **CP3** along *a*-axis.

Fig. S13 2D fingerprint plots for **CP1**, **CP2** and **CP3**: Full (left) and resolved into H^{...}H, O^{...}H/H^{...}O, X^{...}H/H^{...}X and C^{...}H/H^{...}C contacts. These plots illustrate the percentages of various contacts contributing to the overall Hirshfeld surface area of the molecules.

Fig. S14 Distribution of the intermolecular contacts base on Hirshfeld surface analysis for CP1, CP2 and CP3.

Fig. S15 PXRD patterns of **CP1**. Red: Simulated from the X-ray single crystal data; Blue: observed for the as-synthesized solids.

Fig. S16 PXRD patterns of **CP2**. Red: Simulated from the X-ray single crystal data; Blue: observed for the as-synthesized solids.

Fig. S17 PXRD patterns of **CP3**. Red: Simulated from the X-ray single crystal data; Blue: observed for the as-synthesized solids.

Fig. S18 TGA curves of CP1, CP2 and CP3.

Fig. S19 PXRD patterns of CP1: simulated, as-synthesized, and after immersion in H_2O and different organic solvents for 1 h, at 25 and 50 °C.

Fig. S20 PXRD patterns of **CP2**: simulated, as-synthesized, and after immersion in H₂O and different organic solvents for 1 h, at 25 and 50 °C.

Fig S21 PXRD patterns of CP3: simulated, as-synthesized, and after immersion in H_2O and different organic solvents for 1 h, at 25 and 50 °C.

Fig S22 ATR-FTIR spectra of CP1: as-synthesized, and after immersion in H_2O and different organic solvents for 1 h, at 25 and 50 °C.

Fig S23 ATR-FTIR spectra of CP2: as-synthesized, and after immersion in H_2O and different organic solvents for 1 h, at 25 and 50 °C.

Fig S24 ATR-FTIR spectra of CP3: as-synthesized, and after immersion in H_2O and different organic solvents for 1 h, at 25 and 50 °C.

Fig. S25 Calibration plot of standard iodine in cyclohexane by UV-Vis spectra.

Fig. S26 The pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models for the uptake of I_2 by compound CP1 at 0.005 M concentration of solution.

Fig. S27 The pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models for the uptake of I₂ by compound **CP2** at 0.005 M concentration of solution.

Fig. S28 The pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models for the uptake of I_2 by compound CP3 at 0.005 M concentration of solution.

Fig. S29 The Langmuir, Temkin, and Freundlich isotherm models for compound CP1.

Fig. S30 The Langmuir, Temkin, and Freundlich isotherm models for compound CP2.

Fig. S31The Langmuir, Temkin, and Freundlich isotherm models for compound CP3.

Fig. S32 The UV-Vis spectra of compounds **CP1@I2**, **CP2@I2** and **CP3@I2** immersed in 5 mL ethanol and the photograph of the releasing process at the beginning and after 120 min.

Fig. S33 Comparison between the simulation powder X-ray diffraction patterns of the **CP1**, before iodine uptake, the **CP1@I**₂ and recovered **CP1**.

Fig. S34 Comparison between the simulation powder X-ray diffraction patterns of the CP2, before iodine uptake, the CP2@ I_2 and recovered CP2.

Fig. S35 Comparison between the simulation powder X-ray diffraction patterns of the CP3, before iodine uptake, the CP3@ I_2 and recovered CP3.

Fig. S36 ATR-FTIR spectra of 4,4-pbubp, compounds CP1, CP2 and CP3 before and after iodine uptake.

Hg(1)—Cl(1)	2.3990(10)	Cl(1)—Hg(1)—N(1A)	101.24(8)
Hg(1)— $Cl(2)$	2.3925(12)	Cl(1)— $Hg(1)$ — $N(1B)$	102.81(7)
Hg(1)—N(1A)	2.345(3)	Cl(2)— $Hg(1)$ — $N(1A)$	98.59(8)
Hg(1)—N(1B)	2.309(3)	Cl(2)—Hg(1)—N(1B)	103.70(8)
Cl(1)—Hg(1)—Cl(2)	143.41(3)	N(1A)—Hg(1)—N(1B)	99.80(9)

Table S1 Selected bond lengths [Å] and angles $[^0]$ for **CP1**.

 Table S2 Selected bond lengths [Å] and angles [⁰] for CP2.

Hg(1)— $Br(1)$	2.5228(8)	Br(1)—Hg(1)—N(1A)	102.57(10)
Hg(1)— $Br(2)$	2.5181(7)	Br(1)— $Hg(1)$ — $N(1B)$	98.19(10)
Hg(1)—N(1A)	2.318(4)	Br(2)— $Hg(1)$ — $N(1A)$	103.15(10)
Hg(1)— $N(1B)$	2.354(4)	Br(2)— $Hg(1)$ — $N(1B)$	102.22(10)
Br(1)— $Hg(1)$ — $Br(2)$	143.04(2)	N(1A)—Hg(1)—N(1B)	101.42(13)

 Table S3 Selected bond lengths [Å] and angles [⁰] for CP3.

Hg(1)—I(1)	2.6754(8)	I(1)—Hg(1)—N(1)	102.8(2)	
Hg(1)— $I(2)$	2.6944(8)	$I(1) - Hg(1) - N(6)^{\#1}$	102.6(2)	
Hg(1)—N(1)	2.350(7)	I(2) - Hg(1) - N(1)	99.8(2)	
Hg(1)— $N(1)$	2.362(7)	$I(2) - Hg(1) - N(6)^{\#1}$	101.8(2)	
I(1) - Hg(1) - I(2)	142.19(2)	$N(1)$ —Hg(1)— $N(6)^{#1}$	101.9(2)	
Symmetry codes: $\#1: -x + 1$, $y + 1/2$, $-z + 3/2$.				

Compound	D–H […] A	d(D-H) / Å	d(H A) / Å	d(DA) / Å	∠ D–H […] A/deg.
	N2A-H2AA…O1E	0.88	1.94	2.719(9)	147
	N3A-H3AA…O1E	0.88	2.00	2.786(10)	149
	N2B-H2BAO1D	0.88	2.03	2.836(4)	152
	N3B-H3BA…O1D	0.88	1.98	2.802(4)	156
CD1	C1C-H1C2 ^{<i>a</i>} O8B	0.98	2.46	3.229(4)	135
CPI	C2C-H2C2 ^{<i>a</i>} O8B	0.98	2.54	3.297(4)	134
	$C2C-H2C1^{a}O1C^{b}$	0.98	2.48	3.446(4)	168
	C2C-H2C3 ^b O1C ^a	0.98	2.47	3.401(4)	159
	C1E-H1E3Cl1 ^c	0.98	2.79	3.671	149
	C2E-H2E3 Cl1 ^c	0.98	2.80	3.678	149
Symmetry coo	des: <i>a</i> : x, y − 1, z <i>b</i> : −x, y	-3/2, -z + 3/2 c:	-x + 1, y - 1/2,	-z + 3/2	
	N2A-H2AA…O1D	0.88	2.02	2.839(5)	154
	N3A-H3AA…O1D	0.88	1.97	2.802(6)	157
	N2B-H2BA…O1E	0.88	1.96	2.808(8)	161
	N3B-H3BA…O1E	0.88	2.08	2.903(10)	155
CDA	C1C-H1CB ^a O1A	0.98	2.56	3.309(6)	133
CP2	C2C-H2CB ^a ···O1A	0.98	2.48	3.247(6)	135
	$C1C-H1CC^{a}O1C^{b}$	0.98	2.51	3.470(6)	167
	$C1C-H1CA^{b}O1C^{a}$	0.98	2.50	3.413(6)	156
	C1E-H1ED···Br2 ^c	0.98	2.98	3.838	148
	C2E-H2EE Br2 ^c	0.98	3.05	3.846	140
Symmetry coo	des: <i>a</i> : x, $-y + 1/2$, $z - 1/2$	b: -x + 2, -y, -z	+1 c: -x + 1, y	-1/2, -z + 1/2	1
	N2-H2A O1C	0.88	2.04	2.851(11)	152
	N3-H3A O1C	0.88	2.02	2.840(12)	155
	N4–H4A \cdots O1A ^{a}	0.88	2.01	2.835(12)	156
	N5-H5 ···O1A ^a	0.88	2.07	2.873(11)	151
	C1D-H1DB ^b O1D ^a	0.98	2.46	3.405(13)	162
	$C1D-H1DB^{a}O1D^{b}$	0.98	2.72	3.689	171
CP3	C1B-H1BA ^a O1C	0.98	2.32	3.267(14)	164
	C2D-H2DC ^{<i>b</i>} O2	0.98	2.44	3.255(15)	140
	C1D-H1DC ^{<i>b</i>} O2	0.98	2.65	3.399	133
	C1C-H1CA O1B ^a	0.98	2.78	3.615	144
	C2C-H2CC O1D ^a	0.98	2.61	3.568	165
	$C^{C-H2CC-I2^{c}}$	0.98	3.60	4.186	121
	C2C-H2CA···I2 ^{c}	0.98	3.86	4.440	120
Symmetry codes: $a: x + 1, y, z b: -x, -y + 1, -z + 1 c: x, -y + 3/2, z - 1/2$					

Table S4 Geometry of intermolecular hydrogen bonds (D-H···A) for CP1-CP3.

Kinetic models	Equations	Parameters	CP1	CP2	CP3
Pseudo-first-order	$q_t = q_e(1 - e^{-k_1 t})$	Adj. R ²	0.8705	0.9861	0.8888
		qe	132.34	150.76	61.879
		k ₁	0.0352	0.0199	0.0251
Pseudo-second-order	$q_t = \frac{q_e^2 k_2 t}{(1+q_e k_2 t)}$	Adj. R ²	0.9992	0.9966	0.9998
		qe	199.20	181.16	108.34
		k ₂	6×10 ⁻⁴	1.7×10-4	1.3×10-3
	$\boldsymbol{q}_t \!= \! \boldsymbol{x}_i + k_i t^{1/2}$	Adj. R ²	0.8141	0.9400	0.7052
Intra-particle diffusion		ki	8.5380	9.8599	4.5158
		Xi	90.752	21.583	52.219
Elovich	$q_t = \frac{\ln a_e b_e}{b_e} + \frac{1}{b_e} \ln t$	Adj. R ²	0.9612	0.9885	0.9127
		а	147.59	13.754	88.469
		b	0.0344	0.0280	0.0628

Table S5 Kinetics parameters for iodine uptake from the solution by CP1, CP2 and CP3 at room temperature.

Table S6 Langmuir, Freundlich, and Temkin parameters of iodine removal by CP1, CP2 and CP3 at room temperature.

Models	Equations	CP1 Adj. R ²	CP2 Adj. R ²	CP3 Adj. R ²
Langmuir	$q_e = \frac{q_{max}C_ek_L}{(1+C_ek_L)}$	0.9989	0.9872	0.9790
Freundlich	$q_e = k_F C_e^{1/n}$	0.9997	0.9893	0.9930
Temkin	$q_e = B \ln(A_t C_e)$	0.9953	0.9713	0.9784

X-ray crystallography

Diffraction data were collected at 100(1) K by the ω -scan technique, using graphitemonochromated MoK_a radiation (λ =0.71073 Å), on Rigaku XCalibur four-circle diffractometer with EOS CCD detector. The data were corrected for Lorentzpolarization as well as for absorption effects.² Precise unit-cell parameters were determined by a least-squares fit of the 8919 (CP1), 9998 (CP2) and 11958 (CP3) reflections of the highest intensity, chosen from the whole experiment. The structures were solved with SHELXT³ and refined with the full-matrix least-squares procedure on F² by SHELXL.⁴ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in idealized positions and refined as 'riding model' with isotropic displacement parameters set at 1.2 (1.5 for CH_3) times U_{eq} of appropriate carrier atoms. In all structures, diffused electron density was found, caused probably by additional solvent molecules; the number of such molecules given in the formulae reflect the modelled molecules only. The Squeeze procedure ⁵ was applied in order to include this electron density in the model. In CP1 and CP2 one of the localized solvent DMSO molecules was refined in two alternative positions, site occupancy factors refined at 57.5(6)/42.5(6)% in CP1 and at 50.7(12)/49.3(12)% in CP2.

Analysis of Hirshfeld surfaces

The surfaces are transparent to permit visualization of the asymmetric unit of each coordination polymer. The intermolecular interactions data (cf. Table S4) makes clear that the interactions discussed widely in the crystal structure section are summarized effectively in the spots. The deep red large circular depressions on each and every face of the d_{norm} surfaces indicate that they have been encapsulated in the hydrogen bond interactions. The small extent of area and light color on the surface indicates weaker and longer contact other than hydrogen bonds and the blue spots indicate the areas without close contacts. The FPs of Hirshfeld surface for compounds and relative contributions of different interactions overlapping in the full FPs are shown in Fig. S13 and S14, respectively. The Hirshfeld surfaces mapped over d_{norm} shown (as expected) that the H···H, O···H/H···O, X···H/H···X (X= Cl, Br and I) and C…H/H…C hydrogen contacts were the most outstanding interaction in the total Hirshfeld surface (Fig. S13). In all cases, the O···H/H···O interactions are highlighted by the two distinct spikes in the (d_i, d_e) region of (1.340, 1.020), (1.332, 1.022), (1.112, 0.772) C···H/H···C close contacts, which take almost 10% of the total surface (Fig. S13), can be attributed to C–H $\cdots\pi$ interaction.

References

- P. Howlader, P. Das, E. Zangrando and P. S. Mukherjee, J. Am. Chem. Soc., 2016, 138, 1668-1 1676.
- Rigaku Oxford Diffraction (2015) CrysAlis PRO (Version 1.171.38.41). 2
- 3
- G. Sheldrick, Acta Crystallographica Section A, 2015, 71, 3-8.
 G. Sheldrick, Acta Crystallographica Section C, 2015, 71, 3-8.
 A. Spek, Acta Crystallographica Section C, 2015, 71, 9-18. 4
- 5