Supplementary Information

Apparently improved energy barrier of Dy(III) SMMs by adopting the bridging bipyrimidine ligand

Peng Hu,^b Man-Man Ding,^d Xinpeng Gao,^b Aixin Zhu,^a Feng-Ping Xiao,^{*a} Jiangfei Cao^{*c} and Yi-Quan Zhang^{*d}

^aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, P. R. China. Email: <u>FengpingXiao@ynnu.edu.cn</u>

^bSchool of Energy and Environment Science, Yunnan Normal University, Kunming, Yunnan 650500, P. R. China.

^cSchool of Environment and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, P. R. China. E-mail:594247917@qq.com

^dJiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China. E-mail: *zhangyiquan@njnu.edu.cn*

Experimental Section

Materials and General Characterization. The used ligands (i.e., 4,4'-dimethyl-2,2'-bipyridyl and 2,2'-bipyrimidine) were obtained from J&K Chemical. $Ln^{III}(tfa)_3$ H₂O and $[Ln^{III}(tfpa)_3]_2$ H₂O were prepared based on reported methods.⁴⁴⁻⁴⁵ X-ray diffraction (XRD) analyses were conducted using a Bruker D8 FOCUS diffractometer. Infrared spectroscopy and elemental analysis were conducted on a PerkinElmer EA 2400 II and a Thermo Scientific Nicolet iS5 instrument, respectively. Magnetic property measurements of prepared complexes were carried out on Quantum Design SQUID VSM magnetometer.

Synthesis of $Ln^{III}(tfa)_3(dmpy)$ (Ln = Gd 1, Dy 2). A solution of 0.1 mmol Ln(tfa)₃·2H₂O was initially dispersed uniformly in 25 mL of heptane and refluxed for 1 hour, resulting in solution A. Subsequently, a solution of 0.1 mmol dmpy in 5 mL of CH₂Cl₂ was added to A and stirred vigorously for 3 minutes. Three days later, transparent block-shaped single crystals of Gd^{III}(tfa)₃(dmpy) and Dy^{III}(tfa)₃(dmpy) were obtained through a solvent evaporation process.

For 1, the Elemental Analytical results of $C_{27}H_{24}F_9GdN_2O_6$ (yield: 57% base on Gd) are C 40.81; H 3.17; N 3.59(%) with calculated results of C 40.50; H 3.02; N 3.50(%). IR analysis result: 1677 (s), 1598 (m), 1527 (s), 1400(s), 1188 (s), 1163(m), 1141 (s), 1009 (m), 927 (m), 795 (w), 584(w) cm⁻¹.

For **2**, the Elemental Analytical results of $C_{27}H_{24}F_9DyN_2O_6$ (yield: 54%) are C 40.40; H 3.17; N 3.53 (%) with calculated results of C 40.24; H 3.03; N 3.48. IR analysis result: 1679 (s), 1597 (m), 1527 (s), 1400(s), 1189 (s), 1163(m), 1141 (s), 1010 (m), 927 (m), 795 (w), 582(w) cm⁻¹.

Synthesis of $Ln^{III}(tfpa)_3(dmpy)$ (Ln = Gd 3, Dy 4). The synthetic methods of $Ln(tfpa)_3(dmpy)$ are similar to $Ln(tfa)_3(dmpy)$.

For **3**, the Elemental Analytical results for $C_{27}H_{24}F_9GdN_2O_6$ (yield: 57% base on Gd) are C 40.81; H 3.17; N 3.59(%) with calculated results of C 40.50; H 3.02; N 3.50. (%) IR analysis result: 1628 (s), 1591 (m), 1502 (m), 1451 (m), 1404(s), 1361 (m), 1184 (s), 1139 (s), 1059 (m), 1003 (m), 942 (m), 801 (m), 732 (m), 601 (m) cm⁻¹.

For 4, the Elemental Analytical results for $C_{27}H_{24}F_9DyN_2O_6$ (yield: 54%) are C 40.40; H 3.17; N 3.53. (%) with calculated results of C 40.24; H 3.03; N 3.48 (%). IR analysis result: 1628 (s), 1592 (m), 1502 (m), 1451 (m), 1404(s), 1361 (m), 1184 (s), 1139 (s), 1059 (m), 1002 (m), 942 (m), 801 (m), 733 (w), 603 (w) cm⁻¹.

Synthesis of $[Ln^{III}(tfa)_3]_2(bpyd)$ (Ln = Gd 5, Dy 6). A dispersion of $Ln(tfa)_3 \cdot 2H_2O$ (0.1 mmol) in 25 mL of heptane was heated until boiling. Following a 1-hour reflux, a solution containing 0.05 mmol of bpyd in 10 mL of CHCl₃ was introduced. The mixture was stirred for an additional 5 minutes and then cooled to room temperature. Through a three-day solvent evaporation process, transparent block-shaped single crystals of compounds 5 and 6 were obtained.

For 5, empirical formula is $C_{68}H_{42}F_{18}Gd_2N_4O_{12}$ (yield: 38% base on Gd). The elemental analytical measured values are C 46.74; H 2.27; N 3.24 (%) with calculated results of C 46.31; H 2.40; N 3.18. IR analysis result: 3426(w), 1601(s), 1539(m), 1501(s), 1259(s), 1225(s), 1152(s), 811(m), 657(m), 587(w) cm⁻¹.

For **6**, empirical formula is $C_{68}H_{42}F_{18}Dy_2N_4O_{12}$ (yield: 40% base on Dy). The elemental analytical measured values are C 46.51; H 2.30; N 3.20 (%) with calculated results of C 46.13; H 2.38; N 3.16. IR analysis result: 3428(w), 1603(s), 1539(m), 1501(s), 1259(s), 1226(s), 1150(s), 812(m), 657(m), 588(w) cm⁻¹.

Synthesis of $[Ln^{III}(tfpa)_3]_2(bpyd)$ (Ln = Gd 7, Dy 8). The preparation procedures for $[Ln^{III}(tfpa)_3]_2(bpyd)$ follow a similar pathway to that of $[Ln^{III}(tfa)_3]_2(bpyd)$. Initially, $Ln(tfpa)_3 \cdot 2H_2O$ (0.1 mmol) was uniformly dispersed in 25 mL of heptane and heated until boiling occurred. Subsequently, the mixture was refluxed for 1 hour, following which a solution containing 0.05 mmol of bpyd in 10 mL of CHCl₃ was introduced. The combined mixture was stirred vigorously for an additional 5 minutes before being cool down to room temperature. After standing for three days, transparent block-shaped single crystals of compounds 7 and 8 were obtained through a solvent evaporation method.

For 7, the Elemental Analytical results for $C_{27}H_{24}F_9GdN_2O_6$ (yield: 57% base on Gd) are C 40.81; H 3.17; N 3.59 (%) with calculated results of C 40.50; H 3.02; N 3.50. (%) IR analysis result: 1601 (m), 1549 (s), 1520 (m), 1464 (s), 1401 (s), 1310(m), 1247 (s), 1191 (s), 1127 (s), 813 (m), 645(w), 575(w) cm⁻¹.

For **8**, the Elemental Analytical results for $C_{27}H_{24}F_9DyN_2O_6$ (yield: 54% base on Dy) are C 40.40; H 3.17; N 3.53. (%) with calculated results of C 40.24; H 3.03; N 3.48. IR analysis result: 1601 (m), 1547 (s), 1520 (m), 1463 (s), 1401 (s), 1310 (m), 1248 (s), 1191 (s), 1127 (s), 812 (m), 645 (w), 577 (w) cm⁻¹.

Figure S1 Experimental temperature dependence magnetic susceptibility of complex 1.

Figure S2 Experimental temperature dependence magnetic susceptibility of complex 3.

Equation S1

 $\chi_{\rm M} = \left(\frac{2Ng^2\beta^2}{kT}\right) \times \left(\frac{\exp(J/kT) + 5\exp(3J/kT) + 14\exp(6J/kT) + 30\exp(10J/kT) + 55\exp(15J/kT) + 91\exp(21J/kT) + 140\exp(28J/kT)}{1 + 3\exp(J/kT) + 5\exp(3J/kT) + 7\exp(6J/kT) + 9\exp(10J/kT) + 11\exp(15J/kT) + 13\exp(21J/kT) + 15\exp(28J/kT)}\right)$

Computational details

Both of binuclear complexes **6** and **8** with central symmetrical structure have one type of magnetic center Dy^{III} ion. Complete-active-space self-consistent field (CASSCF) calculations on individual Dy^{III} fragments for **6** and **8** (see Figure S3 for the calculated complete structures of **6** and **8**) on the basis of single-crystal X-ray determined geometry have been carried out with MOLCAS 8.4^{S1} program package. Each individual Dy^{III} fragment in **6** and **8** was calculated keeping the experimentally determined structure of the corresponding compound while replacing the neighboring Dy^{III} ion by diamagnetic Lu^{III}.

The basis sets for all atoms are atomic natural orbitals from the MOLCAS ANO-RCC library: ANO-RCC-VTZP for Dy^{III}; VTZ for close N and O; VDZ for distant atoms. The calculations employed the second order Douglas-Kroll-Hess Hamiltonian, where scalar relativistic contractions were taken into account in the basis set and the spin-orbit couplings were handled separately in the restricted active space state interaction (RASSI-SO) procedure. Active electrons in 7 active spaces include all *f* electrons (CAS(9 in 7) in the CASSCF calculation. To exclude all the doubts, we calculated all the roots in the active space. We have mixed the maximum number of spin-free state which was possible with our hardware (all from 21 sextets, 128 from 224 quadruplets, 130 from 490 doublets for Dy^{II}. SINGLE_ANISO^{S2} program was used to obtain the energy levels, *g* tensors, magnetic axes, *et al.*, based on the above CASSCF/RASSI-SO calculations.

Figure S3. Calculated complete structures of complexes 6 and 8; H atoms are omitted.

Table S1. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and predominant m_J values of the lowest eight Kramers doublets (KDs) of individual Dy^{III} fragments for complexes **6** and **8** using CASSCF/RASSI-SO with MOLCAS 8.4.

VD		6		8		
s	<i>E</i> /cm1	g	m_J	<i>E</i> /cm1	g	m_J
1	0.0	0.006 0.012 19.499	±15/2	0.0	0.026 0.040 19.33 9	±15/2
2	126.8	0.297 0.446 16.429	±13/2	124.2	0.617 1.151 15.23 5	±13/2
3	175.5	1.567 1.804 13.586	±11/2	192.9	1.365 2.030 11.39 9	±11/2

		4.326			8.976	
4	220.5	5.393	$\pm 7/2$	246.7	6.736	$\pm 5/2$
		7.338			3.038	
	266.6	2 044	±5/2	285.0	1.680	±3/2
5		2.044			3.734	
		3.333			12.05	
		11.021			3	
6	343.6	0.104	04 38 ±3/2 35	325.7	0.443	±7/2
		0.194			0.650	
		0.288			18.72	
		16.635			5	
7	437.9	0.024	±1/2	439.3	0.035	±1/2
		0.034			0.065	
		0.081			18.02	
		10.372			6	
8	497.9	0.017	±9/2	562.9	0.009	±9/2
		0.01/			0.016	
		0.068			19.26	
		18.136			9	

Table S2. Wave functions with definite projection of the total moment $|m_J\rangle$ for the lowest two KDs of individual Dy^{III} fragments for complexes **6** and **8**.

	E/cm^{-1}	wave functions		
6	0.0	94.5% ±15/2>		
	126.8	75% ±13/2>+10.1% ±11/2>+7.8% ±9/2>		
8	0.0	90.8% ±15/2>7.9% ±11/2>		
	124.2	65.9% ±13/2>+24.1% ±9/2>		

To fit the exchange interactions in complexes **6** and **8**, we took two steps to obtain them. Firstly, we calculated individual Dy^{III} fragments using CASSCF/RASSI-SO to obtain the corresponding magnetic properties. Then, the exchange interactions between the magnetic centers were considered within the Lines model,^{S3} while the account of the dipole-dipole magnetic couplings were treated exactly. The Lines model is effective and has been successfully used widely in the research field of *d* and *f*-elements single-molecule magnets.^{S4}

For complexes **6** and **8**, there is only one type of \tilde{J} .

The Ising exchange Hamiltonian is:

$$\hat{H}_{exch} = -\tilde{J}\hat{\tilde{S}}_{Dy1}\hat{\tilde{S}}_{Dy2}$$
(1)

The \tilde{J}_{total} is the parameter of the total magnetic interaction $(\tilde{J}_{total} = \tilde{J}_{dip} + \tilde{J}_{exck})$

between magnetic center ions. The $\tilde{S}_{Dy} = 1/2$ is the ground pseudospin on the Dy^{III} site. The dipolar magnetic coupling can be calculated exactly, while the exchange coupling constant was fitted through comparison of the computed and measured magnetic susceptibilities using the POLY_ANISO program.^{S2}

Table S3. Exchange energies E (cm⁻¹), the energy difference between each exchange doublets Δ_t (cm⁻¹) and the main values of the g_z for the lowest two exchange doublets of **6** and **8**.

	6			8		
	Ε	Δ_t	gz	Ε	Δ_t	gz
1	0.00	0.61×10 ⁻⁶	0.000	0.00	0.77×10 ⁻⁵	0.000
2	1.42	0.44×10 ⁻⁶	38.99 8	1.39	0.50×10 ⁻⁵	38.67 8

Figure S4. Calculated (red solid line) and experimental (black square dot) data of magnetic susceptibilities of 1 and 2. The intermolecular interactions zJ' of 1 and 2 were fitted to -0.02 and -0.04 cm⁻¹, respectively.

Figure S5. Calculated orientations of the local main magnetic axes on Dy^{III} of complexes 6 and 8.

References:

- S1 F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey, L. De Vico, I. Fdez. Galván, N. Ferré, L. M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. E. Hoyer, G. Li Manni, H. Lischka, D. Ma, P. Å. Malmqvist, T. Müller, A. Nenov, M. Olivucci, T. B. Pedersen, D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J. Segarra-Martí, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V. P. Vysotskiy, O. Weingart, F. Zapata, R. Lindh, MOLCAS 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table, *J. Comput. Chem.*, 2016, 37, 506.
- (a) Chibotaru, L. F.; Ungur, L.; Soncini, A. Angew. Chem. Int. Ed., 2008, 47, 4126. (b) Ungur, L.; Van den Heuvel, W.; Chibotaru, L. F. New J. Chem., 2009, 33, 1224. (c) Chibotaru, L. F.; Ungur, L.; Aronica, C.; Elmoll, H.; Pilet, G.; Luneau, D. J. Am. Chem. Soc., 2008, 130, 12445.
- S3 Lines, M. E. J. Chem. Phys. 1971, 55, 2977.
- S4 (a) Mondal, K. C.; Sundt, A.; Lan, Y. H.; Kostakis, G. E.; Waldmann, O.; Ungur, L.; Chibotaru, L. F.; Anson, C. E.; Powell, A. K. Angew. Chem. Int. Ed. 2012, 51, 7550. (b) Langley, S. K.; Wielechowski, D. P.; Vieru, V.; Chilton, N. F.; Moubaraki, B.; Abrahams, B. F.; Chibotaru, L. F.; Murray, K. S. Angew. Chem. Int. Ed. 2013, 52, 12014.