Two water-rich amphiphilic and hydrophilc coordination polymers:

syntheses, structures and proton conduction behaviors in Nafion

composite membranes

Zhipeng Huan, Huiqi Zou, Na Wang, Jing Lu*, Houting Liu*, Suna Wang*, Yunwu Li

Compound 1 2.284(4) Cd(1)-O(7)2.268(4)Cd(1)-O(1)2.348(5)Cd(1)-O(3)#1 2.486(4)Cd(1)-O(4)#1 Cd(1)-O(2)2.650(4)Cd(1)-N(1)2.338(6) Cd(1)-N(2)2.324(6)Cd(2)-O(9)2.284(5)Cd(2)-O(5)2.219(4) Cd(2)-O(8)2.314(5)93.00(18) O(7)-Cd(1)-O(1)98.88(17) O(7)-Cd(1)-N(2)O(1)-Cd(1)-N(2)137.69(18) O(7)-Cd(1)-N(1)162.3(2)O(1)-Cd(1)-N(1)88.2(2) N(2)-Cd(1)-N(1)71.2(2) O(7)-Cd(1)-O(4)#1 103.31(17)O(1)-Cd(1)-O(4)#1 83.95(15) N(2)-Cd(1)-O(4)#1 132.37(17)N(1)-Cd(1)-O(4)#1 93.6(2) O(7)-Cd(1)-O(3)#1 88.43(15) O(1)-Cd(1)-O(3)#1 136.85(16) N(2)-Cd(1)-O(3)#1 83.57(17) N(1)-Cd(1)-O(3)#1 97.51(18) O(4)#1-Cd(1)-O(3)#1 53.11(14) O(7)-Cd(1)-O(2)81.15(14) N(2)-Cd(1)-O(2)O(1)-Cd(1)-O(2)52.00(14) 90.64(16) 135.59(14) N(1)-Cd(1)-O(2)90.72(17) O(4)#1-Cd(1)-O(2) O(3)#1-Cd(1)-O(2) 167.81(14) O(5)-Cd(2)-O(9)#2 88.33(19) O(5)-Cd(2)-O(8)91.63(17) O(5)-Cd(2)-O(9)91.67(19) 88.37(17) 88.9(2) O(5)#2-Cd(2)-O(8) O(9)#2-Cd(2)-O(8) O(9)-Cd(2)-O(8)91.1(2) 88.37(17) O(5)-Cd(2)-O(8)#2 Compound **2** Zn(1)-O(1)1.992(4)Zn(1)-O(2)2.144(4)Zn(1)-O(3)2.156(3) Zn(2)-O(5)2.040(3)Zn(2)-O(6)2.102(3) 2.141(3) Zn(2)-O(7)Zn(2)-O(9)2.170(3)Zn(2)-O(8)2.101(3)Zn(2)-O(10) 2.032(3)O(1)#1-Zn(1)-O(1) O(1)-Zn(1)-O(2)#1 94.12(16) 104.0(4)O(1)-Zn(1)-O(2) 83.86(16) O(2)#1-Zn(1)-O(2) 176.7(2) O(2)#1-Zn(1)-O(3)#1 95.97(15) O(1)-Zn(1)-O(3)#1 156.35(18) O(2)-Zn(1)-O(3)#1 86.85(14) O(1)-Zn(1)-O(3) 98.3(2) O(3)#1-Zn(1)-O(3) O(2)-Zn(1)-O(3) 95.97(15) 61.04(17)89.94(13) O(10)-Zn(2)-O(5) 173.76(15) O(10)-Zn(2)-O(8) O(5)-Zn(2)-O(8) 93.80(14) O(10)-Zn(2)-O(6) 90.50(13)

Table S1 The selected bond lengths and angels of compounds 1-2.

O(5)-Zn(2)-O(6)	86.10(13)	O(8)-Zn(2)-O(6)	176.11(15)
O(5)-Zn(2)-O(7)	90.99(13)	O(7)-Zn(2)-O(9)	178.83(15)
O(6)-Zn(2)-O(7)	87.93(14)	O(8)-Zn(2)-O(7)	88.18(14)
O(5)-Zn(2)-O(9)	88.93(14)	O(8)-Zn(2)-O(9)	92.99(14)
O(6)-Zn(2)-O(9)	90.90(14)	O(10)-Zn(2)-O(9)	85.89(14)
O(10)-Zn(2)-O(7)	94.12(14)		

Symmetry codes: compound 1 #1 x-1, y, z; #2 -x+2, -y+2, -z+1; #3 x+1, y, z; compound 2 #1 - x+2, y, -z+1.

D-H···A $d(H \cdot \cdot \cdot A)$ <DHA $d(D \cdots A)$ Compound 1 O7-H···O6^a 1.862 169.18 2.702 O7-H···O10 1.879 177.55 2.728 O8-H···O6 2.281 115.28 2.754 O8-H…O2^b 2.204 133.27 2.855 O10-H…O4^c 2.052 147.73 2.808 O10-H···O1^d 2.390 115.02 2.855 Compound 2 2.012 01-H···012e 175.47 2.860 01-H···06^f 1.850 158.37 2.658 O2-H…O12^g 2.044 2.868 163.17 O2-H···O8^h 2.365 2.888 120.19 O6-H…O11 2.088 113.54 2.549 06-H···012i 2.272 123.57 2.832 O7-H···O11^j 1.831 176.25 2.680 O7-H···O9^k 2.428 160.99 3.243 O8-H···O3¹ 2.210 138.24 2.900 O8-H···O4 2.012 127.17 2.614 O9-H…O4^m 1.915 2.745 165.12 $O9-H\cdots O12^n$ 2.332 149.03 3.092

Table S2 The hydrogen bond parameters of compounds 1 and 2.

Symmetry codes: compound 1 a -x+1, -y+1, -z+1; b x, y+1, z; c -x+2, -y+1, -z+1; d -x+1, -y+1, - z+1; e x+1/2, y+3/2, z; f -x+2, y+1, -z+1; g -x+3/2, y+3/2, -z; h -x+3/2, y+1/2, -z; i -x+3/2, y+1/2, -z; j -x+3/2, y+1/2, -z; k x, y, z-1; l x-1/2, y-1/2, z; m -x+3/2, y-1/2, -z+1; n -x+3/2, y+1/2, -z+1.

T (K)	pure Nafion	1/Nafion-3	1/Nafion-5	1/Nafion-7
308	2.55×10 ⁻³	2.42×10 ⁻³	6.02×10 ⁻³	3.90×10 ⁻³
313	2.95×10 ⁻³	2.47×10 ⁻³	6.21×10 ⁻³	4.54×10 ⁻³
318	3.48×10 ⁻³	3.59×10 ⁻³	6.85×10 ⁻³	5.05×10 ⁻³
323	4.19×10 ⁻³	4.55×10 ⁻³	7.73×10 ⁻³	4.79×10 ⁻³
328	4.76×10 ⁻³	5.55×10 ⁻³	8.26×10 ⁻³	5.37×10 ⁻³
333	5.43×10 ⁻³	6.62×10 ⁻³	8.50×10 ⁻³	6.20×10 ⁻³
338	6.26×10 ⁻³	7.64×10 ⁻³	9.19×10 ⁻³	6.11×10 ⁻³
343	7.00×10 ⁻³	8.51×10 ⁻³	9.39×10 ⁻³	7.12×10 ⁻³
348	7.45×10 ⁻³	9.32×10 ⁻³	10.20×10 ⁻³	7.91×10 ⁻³
353	8.48×10 ⁻³	9.86×10 ⁻³	10.92×10 ⁻³	8.81×10 ⁻³

Table S3. Proton conductivities $(S \cdot cm^{-1})$ of pure Nafion membrane and 1/Nafion-x composite membranes at different temperatures

Table S4. Proton conductivities $(S \cdot cm^{-1})$ of pure Nafion membrane and 2/Nafion-x composite membranes at different temperatures

T (K)	pure Nafion	2/Nafion-1	2/Nafion-3	2/Nafion-5
308	2.55×10 ⁻³	2.95×10 ⁻³	4.44×10 ⁻³	4.36×10 ⁻³
313	2.95×10 ⁻³	3.99×10 ⁻³	5.03×10 ⁻³	4.85×10 ⁻³
318	3.48×10 ⁻³	4.75×10 ⁻³	5.62×10 ⁻³	5.26×10 ⁻³
323	4.19×10 ⁻³	5.20×10 ⁻³	6.03×10 ⁻³	5.73×10 ⁻³
328	4.76×10 ⁻³	6.38×10 ⁻³	6.73×10 ⁻³	6.43×10 ⁻³
333	5.43×10 ⁻³	6.97×10 ⁻³	7.79×10 ⁻³	7.30×10 ⁻³
338	6.26×10 ⁻³	7.65×10 ⁻³	8.94×10 ⁻³	7.83×10 ⁻³

343	7.00×10 ⁻³	8.36×10 ⁻³	10.42×10 ⁻³	9.02×10 ⁻³
348	7.45×10 ⁻³	9.42×10 ⁻³	12.10×10 ⁻³	9.94×10 ⁻³
353	8.48×10 ⁻³	10.65×10 ⁻³	13.18×10 ⁻³	11.41×10 ⁻³

immersed in Nafion DMF solution at 25°C for 3 days

-immersed in water at 80°C for 3 days

Fig. S1 Simulated, experiment water treatment and Nafion DMF treatment sample PXRD patterns of compounds 1 (a) and 2 (b); the TG curves of of compounds 1 and 2 (c).

Fig. S2 PXRD of pure Nafion and 1/Nafion-x (a) and PXRD of pure Nafion and 2/Nafion-x (b).

Fig. S3 IR spectra of pure Nafion and 1/Nafion-x (a) and PXRD of pure Nafion and 2/Nafion-x (b).

Fig. S4 TG curves of pure Nafion and 1/Nafion-x (a) and PXRD of pure Nafion and 2/Nafion-x (b).

Fig. S4 Nyquist curves of 1/Nafion-3(a), 1/Nafion-5(b), 1/Nafion-7(c), 2/Nafion-1(d),2/Nafion-3(e) and 2/Nafion-5(f) composite membranes at different temperatures.