## **Supporting Information**

# Crystal engineering and sorption studies on CN- and dipyridyl-bridged 2D coordination polymers

Valoise Brenda Nguepmeni Eloundou<sup>a,b</sup>, Patrice Kenfack Tsobnang<sup>\*a</sup>, Theophile Kamgaing<sup>a</sup>, Chiranjib Gogoi <sup>b</sup>, Nieves Lopez-Salas<sup>c</sup>, Susan A. Bourne<sup>\*b</sup>

<sup>a</sup> Department of Chemistry, University of Dschang, PO Box 67, Dschang, Cameroon

<sup>b</sup> Centre for Supramolecular Chemistry Research, University of Cape Town, Rondebosch 7701, South Africa

<sup>c</sup> Sustainable Materials Chemistry, Department of Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany

#### **Corresponding Authors:**

Prof. Susan Bourne: <a href="mailto:susan.bourne@uct.ac.za">susan.bourne@uct.ac.za</a>

A/Prof. Patrice Kenfack Tsobnang: pakenfack@gmail.com, patrice.kenfack@univ-dschang.org

Additional Emails: <u>eloundoubrenda@gmail.com</u>, <u>theokamgaing@yahoo.fr</u>, <u>nieves.lopez.salas@uni-paderborn.de</u>, <u>chiranjib.gogoi@uct.ac.za</u>.

#### Section 1: Synthesis of K<sub>2</sub>[Ni(CN)<sub>4</sub>]·H<sub>2</sub>O

 $K_2[Ni(CN)_4]\cdot H_2O$  was prepared as reported in previous works [1-3], by mixing stoichiometric amounts of nickel(II) chloride hexahydrate with potassium cyanide in water solution. To 10 mL aqueous solution of NiCl<sub>2</sub>·6H<sub>2</sub>O (0.238 g, 1 mmol) was added a 10 mL aqueous solution of KCN (0.13 g, 2 mmol). The grayish green precipitate of nickel cyanide [Ni(CN)<sub>2</sub>] was washed carefully with hot water (100°C) to remove the impurities. [Ni(CN)<sub>2</sub>] was then dissolved in 10 ml aqueous solution of KCN (0.13 g, 2 mmol). The orange obtained solution was filtered and kept at room temperature for crystallization, and yellow  $K_2[Ni(CN)_4]\cdot H_2O$  crystals were obtained after few days.

#### Section 2: Characterisation of 1 and 2



Figure S1. Microscopic picture of 1 (a) and microscopic picture of 2 (b).

#### **Infrared spectroscopy**

The symmetric  $C^{sp2}$ -H (-CH<sub>2</sub>) stretching vibrations appear at 2940 cm<sup>-1</sup> in 1 or at 2938 cm<sup>-1</sup> in **2**. We also note the presence of the adsorption band at 2165 cm<sup>-1</sup> (for **1**) or at 2135 cm<sup>-1</sup> (for **2**) which can be related to the vibration mode of C=N which in the literature appears between 2000-2200 cm<sup>-1</sup> [4-5] We also note the presence of the adsorption band at 1614 cm<sup>-1</sup> (for **1**) or at 1616 cm<sup>-1</sup> (for **2**) characteristic of the vibration mode of the C=N [6] This band could be also assigned to the deformation vibration mode of OH which in the literature appears at 1614 cm<sup>-1</sup>. The adsorption band at 1560 cm<sup>-1</sup> which appears in both spectra is characteristic of the vibration mode of C=C group of 1,2-bis(4-pyridyl)ethane ligand. The presence of the adsorption band at 1358 cm<sup>-1</sup> can be assigned to the bending vibrations of v(C-C, C-N) [6] The presence of the adsorption band at 1020 cm<sup>-1</sup> can be assigned to the CH<sub>2</sub> wagging vibration mode of 1,2-bis(4-pyridyl)ethane [7]]. The band at 834 cm<sup>-1</sup> is assigned to aromatic ring vibration. The presence of the adsorption band at 550 or at 547cm<sup>-1</sup> can be assigned to the vibration and to a spectroscopic analysis that the 1,2-bis(4-pyridyl)ethane ,cyanide and water molecules are present in **1** and **2**.



Figure S2. FTIR spectrum of 1 (black) and 2 (red).

**Table S1**. Summary of the assignment of the characteristic frequencies observed in the FTIR spectra of 1 and 2.

| Frequencies bands (cm <sup>-1</sup> ) of 1 | Frequencies bands (cm <sup>-1</sup> ) of 2 | Assigned vibrations                   |
|--------------------------------------------|--------------------------------------------|---------------------------------------|
| 3359                                       | 3354                                       | <b>ҮО-</b> Н                          |
| 2940                                       | 2938                                       | ΥCH <sub>2</sub>                      |
| 2165                                       | 2135                                       | ΎC≡N                                  |
| 1614                                       | 1616                                       | $\Upsilon C=N \text{ or } \delta O-H$ |
| 1560                                       | 1560                                       | ΎС=С                                  |
| 1424                                       | 1423                                       | δС-Н                                  |
| 1358                                       | 1358                                       | Ύ(C-C,C-N)                            |
| 1020                                       | 1060-1020                                  | CH <sub>2</sub> wagging               |
| 834                                        | 833                                        | Aromatic ring                         |
| 550                                        | 547                                        | ΎM-N                                  |

 $\Upsilon$  : stretching ;  $\delta$  : bending



Figure S3. HSM images of 1 at (a) 21 °C, (b) 73 °C, (c) 80 °C, (d) 100-300 °C.



Figure S4. HSM images of 2 at (a) 26 °C, (b) 100 °C, (c) 245 °C, (d) 300°C, (e) 320 °C and (f) 330 °C.





The UV-Visible absorption spectrum of **1** and **2** (Figure S5) contains three absorption bands (259 nm, 280 nm and 316 nm for **1** and 258 nm, 275 nm and 293nm for **2**). The two first one at 259 nm and 280 nm for **1** (or 258 nm and 275 nm for **2**) observed in the ultraviolet region of the spectrum could be attributed to  $n \rightarrow \pi^*$ electronic transition of 1,2-bis(4-pyridyl)ethane ligand. The third band at 316 nm for **1** (or 293 nm for **2**) denotes the presence of Ni atom in a square planar geometry and to the ligand field transitions, namely  ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$  in  $[Ni^{II}(CN)_{4}]^{2-}$ [8].

| Atom              | Atom                          | Length/Å  | Atom                    | Atom              | Length/Å  |
|-------------------|-------------------------------|-----------|-------------------------|-------------------|-----------|
| Ni <sub>(1)</sub> | N <sub>(3)</sub>              | 2.125(2)  | Ni <sub>(2)</sub>       | $C_{(1C)}^2$      | 1.907(10) |
| Ni <sub>(1)</sub> | N <sub>(3)</sub> <sup>1</sup> | 2.124(2)  | N <sub>(3)</sub>        | C <sub>(6)</sub>  | 1.344(4)  |
| Ni <sub>(1)</sub> | O <sub>(1)</sub>              | 2.103(2)  | N <sub>(3)</sub>        | C <sub>(3)</sub>  | 1.342(4)  |
| Ni <sub>(1)</sub> | $O_{(1)}{}^1$                 | 2.103(2)  | N <sub>(2)</sub>        | C <sub>(2)</sub>  | 1.151(4)  |
| Ni <sub>(1)</sub> | N <sub>(2)</sub>              | 2.051(2)  | C <sub>(6)</sub>        | C <sub>(7)</sub>  | 1.383(4)  |
| Ni <sub>(1)</sub> | N(2) <sup>1</sup>             | 2.051(2)  | C <sub>(3)</sub>        | C <sub>(4)</sub>  | 1.377(4)  |
| Ni <sub>(2)</sub> | C <sub>(2)</sub>              | 1.852(3)  | C <sub>(5)</sub>        | C <sub>(7)</sub>  | 1.385(4)  |
| Ni <sub>(2)</sub> | $C_{(2)}^{2}$                 | 1.852(3)  | C <sub>(5)</sub>        | C <sub>(4)</sub>  | 1.384(4)  |
| Ni <sub>(2)</sub> | $C_{(1B)}^{2}$                | 1.807(16) | C <sub>(5)</sub>        | C <sub>(8)</sub>  | 1.506(4)  |
| Ni(2)             | C <sub>(1B)</sub>             | 1.807(16) | C <sub>(8)</sub>        | $C_{(8)}{}^3$     | 1.549(6)  |
| Ni <sub>(2)</sub> | $C_{(1A)}^{2}$                | 1.900(12) | C <sub>(1B)</sub>       | N <sub>(1B)</sub> | 1.186(19) |
| Ni <sub>(2)</sub> | C <sub>(1A)</sub>             | 1.900(12) | N <sub>(1A)</sub>       | C <sub>(1A)</sub> | 1.130(14) |
| Ni <sub>(2)</sub> | C <sub>(1C)</sub>             | 1.907(10) | N <sub>(1C)</sub>       | C <sub>(1C)</sub> | 1.127(12) |
| O <sub>(1)</sub>  | $H_{(1A)}$                    | 0.980(17) | <b>O</b> <sub>(1)</sub> | H <sub>(1B)</sub> | 0.997(17) |
| C <sub>(3)</sub>  | H <sub>(3)</sub>              | 0.9500    | C <sub>(6)</sub>        | H <sub>(6)</sub>  | 0.9500    |
| C <sub>(4)</sub>  | H <sub>(4)</sub>              | 0.9500    | C <sub>(8)</sub>        | H <sub>(8A)</sub> | 0.9900    |
| C <sub>(8)</sub>  | H <sub>(8B)</sub>             | 0.9900    |                         |                   |           |

Table S2. Bond distances (Å) for 1

<sup>1</sup>1-X,1-Y,-Z; <sup>2</sup>-X,2-Y,-Z; <sup>3</sup>2-X,1-Y,1-Z

### Table S3. Bond angles (°) for 1

| Atom                          | Atom              | Atom                          | Angle/°  | Atom              | Atom              |  |
|-------------------------------|-------------------|-------------------------------|----------|-------------------|-------------------|--|
| N <sub>(3)</sub> <sup>1</sup> | Ni <sub>(1)</sub> | N <sub>(3)</sub>              | 180.0    | C <sub>(1B)</sub> | Ni <sub>(2)</sub> |  |
| O <sub>(1)</sub>              | Ni <sub>(1)</sub> | N <sub>(3)</sub>              | 90.82(9) | $C_{(1B)}^{2}$    | Ni <sub>(2)</sub> |  |
| O <sub>(1)</sub> <sup>1</sup> | Ni <sub>(1)</sub> | N <sub>(3)</sub> <sup>1</sup> | 90.84(9) | $C_{(1B)}^{2}$    | Ni <sub>(2)</sub> |  |
| O <sub>(1)</sub>              | Ni <sub>(1)</sub> | N <sub>(3)</sub> <sup>1</sup> | 89.16(9) | C <sub>(1B)</sub> | Ni <sub>(2)</sub> |  |
| O <sub>(1)</sub> <sup>1</sup> | Ni <sub>(1)</sub> | N <sub>(3)</sub>              | 89.18(9) | $C_{(1A)}^{2}$    | Ni <sub>(2)</sub> |  |
| O <sub>(1)</sub> <sup>1</sup> | Ni <sub>(1)</sub> | O <sub>(1)</sub>              | 180.0    | C <sub>(1A)</sub> | Ni <sub>(2)</sub> |  |
| N <sub>(2)</sub>              | Ni <sub>(1)</sub> | N(2) <sup>1</sup>             | 180.0    | N <sub>(2)</sub>  | C <sub>(2)</sub>  |  |

| Atom              | Atom              | Atom              | Angle/°  |
|-------------------|-------------------|-------------------|----------|
| C <sub>(1B)</sub> | Ni <sub>(2)</sub> | C <sub>(2)</sub>  | 90.4(5)  |
| $C_{(1B)}^{2}$    | Ni <sub>(2)</sub> | C <sub>(2)</sub>  | 89.6(5)  |
| $C_{(1B)}^{2}$    | Ni <sub>(2)</sub> | $C_{(1C)}^{2}$    | 10.8(7)  |
| C <sub>(1B)</sub> | Ni <sub>(2)</sub> | $C_{(1C)}^{2}$    | 169.2(7) |
| $C_{(1A)}^{2}$    | Ni <sub>(2)</sub> | C <sub>(1A)</sub> | 180.0    |
| C <sub>(1A)</sub> | Ni <sub>(2)</sub> | $C_{(1C)}^{2}$    | 159.1(6) |
| N <sub>(2)</sub>  | C <sub>(2)</sub>  | Ni(2)             | 179.1(2) |

| $C_{(2)}^{2}$                 | Ni <sub>(2)</sub>     | C <sub>(2)</sub>  | 180.00(18) | N <sub>(1B)</sub>             | C(1B)             | Ni <sub>(2)</sub> | 178.1(16) |
|-------------------------------|-----------------------|-------------------|------------|-------------------------------|-------------------|-------------------|-----------|
| N(2) <sup>1</sup>             | Ni <sub>(1)</sub>     | O <sub>(1)</sub>  | 91.24 (9)  | N <sub>(2)</sub>              | Ni <sub>(1)</sub> | O <sub>(1)</sub>  | 88.76 (9) |
| N(2) <sup>1</sup>             | Ni <sub>(1)</sub>     | $O_{(1)}{}^1$     | 88.76 (9)  | N <sub>(2)</sub> <sup>1</sup> | Ni <sub>(1)</sub> | $O_{(1)}{}^1$     | 91.24 (9) |
| N <sub>(2)</sub> <sup>1</sup> | Ni <sub>(1)</sub>     | N(3) <sup>1</sup> | 89.70 (9)  | N <sub>(2)</sub>              | Ni <sub>(1)</sub> | N(3) <sup>1</sup> | 90.30 (9) |
| N <sub>(2)</sub> <sup>1</sup> | Ni <sub>(1)</sub>     | N <sub>(3)</sub>  | 90.30 (9)  | N <sub>(2)</sub>              | Ni <sub>(1)</sub> | N <sub>(3)</sub>  | 89.70 (9) |
| O <sub>(1)</sub>              | Ni <sub>(1)</sub>     | N <sub>(3)</sub>  | 89.16(9)   | N <sub>(3)</sub> <sup>1</sup> | Ni <sub>(1)</sub> | N <sub>(3)</sub>  | 180.0     |
| $C_{(1B)}^{2}$                | Ni <sub>(2)</sub>     | C(1B)             | 180.0      | C <sub>(2)</sub>              | Ni <sub>(2)</sub> | $C_{(1A)}$        | 93.4(4)   |
| $C_{(2)}^{2}$                 | Ni <sub>(2)</sub>     | $C_{(1A)}^{2}$    | 93.4(4)    | C <sub>(2)</sub>              | Ni <sub>(2)</sub> | $C_{(1A)}^{2}$    | 86.6(4)   |
| $C_{(2)}^{2}$                 | Ni <sub>(2)</sub>     | $C_{(1A)}$        | 86.6(4)    | $C_{(2)}^{2}$                 | Ni <sub>(2)</sub> | C <sub>(1C)</sub> | 91.9(3)   |
| C <sub>(2)</sub>              | Ni <sub>(2)</sub>     | C <sub>(1C)</sub> | 88.1(3)    | $C_{(2)}^{2}$                 | Ni <sub>(2)</sub> | $C_{(1C)}^{2}$    | 88.1(3)   |
| C <sub>(2)</sub>              | Ni <sub>(2)</sub>     | $C_{(1C)}^{2}$    | 91.9(3)    | $C_{(1A)}^{2}$                | Ni <sub>(2)</sub> | $C_{(1C)}^{2}$    | 20.9(6)   |
| <sup>1</sup> 1-X,1-Y,         | -Z; <sup>2</sup> -X,2 | -Y,-Z             |            |                               |                   |                   |           |

| Table S4. Bond distances (Å) for 2 |                 |           |      |                 |           |  |
|------------------------------------|-----------------|-----------|------|-----------------|-----------|--|
| Atom                               | Atom            | Length/Å  | Atom | Atom            | Length/Å  |  |
| Cu1                                | N3 <sup>1</sup> | 2.058(2)  | N2   | C2              | 1.153(3)  |  |
| Cu1                                | N3              | 2.058(2)  | C4   | C7              | 1.385(3)  |  |
| Cu1                                | O1              | 2.030(2)  | C4   | C3              | 1.388(3)  |  |
| Cul                                | O1 <sup>1</sup> | 2.030(2)  | C7   | C6              | 1.391(4)  |  |
| Cul                                | N2 <sup>1</sup> | 2.438(2)  | C7   | C8              | 1.510(3)  |  |
| Cu1                                | N2              | 2.438(2)  | C6   | C5              | 1.384(3)  |  |
| Ni1                                | C1 <sup>2</sup> | 1.870(3)  | N1   | C1              | 1.149(4)  |  |
| Ni1                                | C1              | 1.870(3)  | C8   | C8 <sup>3</sup> | 1.537(5)  |  |
| Ni1                                | $C2^2$          | 1.870(3)  | C10  | С9              | 1.277(18) |  |
| Ni1                                | C2              | 1.870(3)  | C10  | 02              | 1.580(19) |  |
| N3                                 | C5              | 1.344(3)  | C10  | 03              | 1.356(19) |  |
| N3                                 | C3              | 1.343(3)  | O3   | O3 <sup>5</sup> | 1.33(3)   |  |
| O1                                 | H1A             | 0.993(17) | O1   | H1B             | 0.90(2)   |  |
| C4                                 | H4              | 0.88(3)   | C6   | Н6              | 0.9500    |  |

| C5                                                                                                                           | Н5              | 0.97(3)   | C3 | Н3              | 0.95(3)   |  |
|------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|----|-----------------|-----------|--|
| C8                                                                                                                           | H8A             | 0.9900    | C8 | H8B             | 0.9900    |  |
| C10                                                                                                                          | C9 <sup>4</sup> | 2.012(13) | С9 | C9 <sup>4</sup> | 1.889(17) |  |
| <sup>1</sup> 1-X,-Y,1-Z; <sup>2</sup> 2-X,1-Y,1-Z; <sup>3</sup> -X,1-Y,2+Z; <sup>4</sup> 1-X,-Y,2-Z; <sup>5</sup> 2-X,-Y,2+Z |                 |           |    |                 |           |  |

| Table S5. | Bond angles (°) for <b>2</b> |  |
|-----------|------------------------------|--|
|           |                              |  |

| Atom                    | Atom | Atom            | Angle/°   | Atom            | Atom | Atom             | Angle/°    |
|-------------------------|------|-----------------|-----------|-----------------|------|------------------|------------|
| N3 <sup>1</sup>         | Cu1  | N3              | 180.0     | C2 <sup>2</sup> | Ni1  | C2               | 180.0      |
| N3                      | Cu1  | N21             | 90.10(8)  | C5              | N3   | Cu1              | 119.79(17) |
| N3 <sup>1</sup>         | Cu1  | N2              | 89.90(8)  | C3              | N3   | Cu1              | 122.39(16) |
| N3 <sup>1</sup>         | Cu1  | N2 <sup>1</sup> | 90.10(8)  | C3              | N3   | C5               | 117.7(2)   |
| N3                      | Cu1  | N2              | 90.10(8)  | C2              | N2   | Cul              | 157.6(2)   |
| 01                      | Cu1  | N31             | 90.17(9)  | C7              | C4   | C3               | 119.8(2)   |
| O1                      | Cul  | N3              | 89.83(9)  | C4              | C7   | C6               | 117.3(2)   |
| <b>O</b> 1 <sup>1</sup> | Cu1  | N3              | 90.17(9)  | C4              | C7   | C8               | 122.4(2)   |
| <b>O</b> 1 <sup>1</sup> | Cu1  | N3 <sup>1</sup> | 89.83(9)  | C6              | C7   | C8               | 120.2(2)   |
| 01                      | Cu1  | O1 <sup>1</sup> | 180.0     | C5              | C6   | C7               | 119.8(2)   |
| 01                      | Cu1  | N2 <sup>1</sup> | 88.16(9)  | N3              | C5   | C6               | 122.6(2)   |
| 01                      | Cu1  | N2              | 91.84(9)  | N3              | C3   | C4               | 122.6(2)   |
| O1 <sup>1</sup>         | Cu1  | N2              | 88.16(9)  | N1              | C1   | Ni1              | 177.9(2)   |
| O1 <sup>1</sup>         | Cu1  | N2 <sup>1</sup> | 91.84(9)  | N2              | C2   | Ni1              | 178.4(2)   |
| N2                      | Cu1  | N2 <sup>1</sup> | 180.00(8) | C7              | C8   | C8 <sup>3</sup>  | 110.6(2)   |
| C1 <sup>2</sup>         | Ni1  | C1              | 180.0     | С9              | C10  | 02               | 133.4(9)   |
| C1                      | Ni1  | C2              | 89.43(11) | С9              | C10  | 03               | 160.6(9)   |
| C1 <sup>2</sup>         | Ni1  | C2              | 90.57(11) | C10             | С9   | C10 <sup>4</sup> | 114.3(8)   |
| C1 <sup>2</sup>         | Ni1  | $C2^2$          | 89.43(11) | C1              | Ni1  | C2 <sup>2</sup>  | 90.57(11)  |

<sup>1</sup>1-X,-Y,1-Z; <sup>2</sup>2-X,1-Y,1-Z; <sup>3</sup>-X,1-Y,2+Z; <sup>4</sup>1-X,-Y,2-Z; <sup>5</sup>2-X,-Y,2+Z



Figure S6. A basic motif of 1, with total labeling scheme provided. All hydrogens were omitted for clarity.



Figure S7. A basic motif of 2 molecules, with total labeling scheme provided. All hydrogens were omitted for clarity.



Figure S8. 2-periodic framework of 2 (green – Ni, cyan– Cu, blue – N, grey – C, red-O)



Figure S9. Bilayers and hydrogen bonds in 2 (a and b) formed by 2 separated neighboring 2periodic frameworks through the hydrogen bonds. All hydrogens and crystallization waters were omitted for clarity.



**Figure S10.** Potential void spaces without solvent molecules (coordinated and uncoordinated) in compound **1** as viewed along the a-axis directions.



**Figure S11.** Potential void spaces without solvent molecules (coordinated and uncoordinated) in compound **2** as viewed along the a-axis directions.

#### Variable-temperature powder X-ray diffraction of 1 and 2



**Figure S12.** VT-PXRD patterns of **1** and **2** (a and b respectively) in the range 25–350 °C, returned to 25 °C under vacuum and subsequent exposure to air at room temperature.

The variable-temperature powder X-ray diffraction (VT-PXRD) patterns for 1 and 2 (see Figure 6) show that the material earlier transforms to an intermediate phase at 25  $^{\circ}$ C (under

vacuum), indicated mainly in the case of **1** (see Figure 6a) by the disappearance of the peak at 10.7, 15.9, 17.3, 20.7, 21,5 and all the peak after 30° and the appearance of the new peaks at 11.4, 18.5 and 24.3°. In the case of **2** (see Figure 6b), of the peak at 16.9° is disappeared while a new peaks at 14.7, 22.8 and 29.3° are appeared. The final phase in each material appears at 50 °C (under the vacuum), indicated mainly by the disappearance of the peaks at 11.4 and 24.3° 20 and the appearance of the new peaks at 13.6, 14.5, 21.5, 28.4, 36.5 and 37.4° 20 for **1** while for **2**, only the peak at 11.04° is disappeared indicating that the desolvation, both materials have different crystalline structure. The structure of **1** and **2** remain relatively crystalline up to 350 °C and remains the same after returning to 25°C. After 24h exposition to air, **1** and **2** remains unchanged.



**Figure S13.** Potential void spaces without terminal cyanide group (the one with a disorder structure) in compound **1** as viewed along the a-axis directions.



**Figure S14.** Potential void spaces without terminal cyanide group in compound **2**as viewed along the a-axis directions.



Figure S15. Thermogravimetric curve of compound 1 when dehydrated at 70°C.



Figure S16. Diffusion system employed for the rehydration of powder of 1.



Figure S17. Thermogravimetric curve of compound 1 after exposure to air for 24 hours.



Figure S18. Heat of adsorption plot based on  $CO_2$  isotherms from 273-298 K of 1 and 2 Note that the maxima of load range values are determined by the maxima of 298 K isotherms for the MOF because 298 K  $CO_2$  isotherms have the lowest sorption [9]



Figure S19. Powder X-ray diffraction patterns of 1 before and after water vapor adsorption analysis.



Figure S20. Powder X-ray diffraction patterns of 2 before and after water vapor adsorption analysis.

#### References

- 1. N. Vannerberg, Acta Chem. Scand., 1964, 18, 2385.
- E. Sayın, G. S. Kürkçüoğlu, O. Z. Yeşilel and M. Taş, J. Coord. Chem., 2016, 69, 1226-1235.
- F. Çetinkaya, G. S. Kürkçüoğlu, O. Z. Yeşilel, T. Hökelek and H. Dal, *Polyhedron*, 2012, 47, 126-133.
- 4. J. Černák and K. A. Abboud, *Acta Crystallogr. C Struct. Chem Acta Commun*, 2000, **56**, 783-785.
- W. Wong-Ng, J. T. Culp, Y.-S. Chen, J. R. Deschamps and A. Marti, *Solid State Sci.*, 2016, **52**, 1-9.
- N. de la Pinta, S. Martín, M. K. Urtiaga, M. G. Barandika, M. I. Arriortua, L. Lezama, G. Madariaga and R. Cortés, *Inorg. Chem.*, 2010, 49, 10445-10454.
- M. A. Susano, P. Martín-Ramos, T. M.R. Maria, S. Folkersma, L. C. J. Pereira, and M R. Silva, J. Mol. Struct, 2017, 1147, 76-83.

- M. A. Halim, S. Karmakar, M. A. Hamid, C. S. S. Chandan, I. Rahaman, M. E. Urena, A. Haque, M. Y. Chen, C. P. Rhodes and G. W. Beall, *ACS Appl. Mater. Interfaces*, 2023, 15, 53568-53583.
- 9. N. Chatterjee and C. L. Oliver, Inorg. Chem., 2022, 61, 3516-3526.