## **Supporting Information**

Structural revolution of PVDF crystallized on MWCNT film on a gradient temperature and its dielectric properties

Shuhui Lia, Hai Wanga, Xiaobin Liang b\*, Meijie Qua, Mingshuai Fana, Rui Zhanga, Ken Nakajima

Table S1. The sample names under different preparation conditions

| Nucleus $T_{\rm c}(^{\circ}{\rm C})$ | MWCNT    | No nucleus |
|--------------------------------------|----------|------------|
| 117                                  | PCNT-117 | PN-117     |
| 111                                  | PCNT-111 | PN-111     |
| 104                                  | PCNT-104 | PN-104     |
|                                      |          |            |
| 51                                   | PCNT-51  | PN-51      |
| 45                                   | PCNT-45  | PN-45      |

b, Yuezhen Bina\*

<sup>&</sup>lt;sup>a</sup> Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China

<sup>&</sup>lt;sup>b</sup> Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan

<sup>&</sup>lt;sup>a</sup>\*E-mail: binyz@dlut.edu.cn

b\*E-mail: liang.x.ac@m.titech.ac.jp



Figure S1. The samples' observation surface after slicing for AFM.

Table S2. The detail crystal characteristics of PN.

| Samples | $X_{\rm c}$ /% | q/nm <sup>-1</sup> | L/nm | $L_{ m c}/{ m nm}$ | $L_{ m a}/{ m nm}$ |
|---------|----------------|--------------------|------|--------------------|--------------------|
| PN-117  | 43.4           | 0.535              | 11.7 | 5.1                | 6.6                |
| PN-111  | 44.4           | 0.553              | 11.4 | 5.0                | 6.3                |
| PN-104  | 43.4           | 0.559              | 11.2 | 4.9                | 6.3                |
| PN-98   | 43.2           | 0.588              | 10.7 | 4.6                | 6.1                |
| PN-93   | 42.2           | 0.599              | 10.5 | 4.4                | 6.1                |
| PN-87   | 41.1           | 0.626              | 10.0 | 4.1                | 5.9                |
| PN-81   | 35.6           | 0.663              | 9.5  | 3.4                | 6.1                |
| PN-71   | 28.7           | 0.79               | 8.0  | 2.3                | 5.7                |
| PN-61   | 27.1           | 0.801              | 7.8  | 2.1                | 5.7                |

 $X_c$  is calculated by equation (2):

$$X_{c} = \sum A_{cryst} / (\sum A_{cryst} + \sum A_{amorp})$$
 (2)

where  $A_{\rm cryst}$  and  $A_{\rm amorp}$  are the peaks area of crystal and amorphous regions.

 $X_{\rm c}$  can also be calculated from DSC by equation (3):

$$X_C = \frac{\Delta H}{\Delta H_0}$$

where  $X_c$  is crystallinity;  $\Delta H$  is the enthalpy of melting of PVDF samples, expressed in

J/g;  $\Delta H_0$  is the standard enthalpy of melting of 100% crystallinity PVDF, expressed in 104.6 J/g.



Figure S2. Crystallinity of PN crystallized at different  $T_c$  calculated from DSC.

The crystal structure was composed of lamellar regions and amorphous regions which was shown in Figure 5(e). The q value was calculated by equation (3):

$$q = 4\pi \sin\theta/\lambda \tag{3}$$

where  $\theta$  is the Bragg angle;  $\lambda$  is the wavelength of X-ray,  $\lambda$ =0.154 nm.

The L of PVDF is corresponding to q value, which is calculated by equation (4):

$$L = 2\pi/q \tag{4}$$

The  $L_c$  is calculated by equation (5):

$$L_c = L \cdot X_c \tag{5}$$

The  $L_a$  is caculated by equation (6):

$$L_a = L - L_c \tag{6}$$

where L is long period,  $L_c$  is lamellar thickness,  $L_a$  is amorphous thickness, q is scattering vector,  $X_c$  is crystallinity.

Table S3. The calculated peak area ratio of  $\gamma$  (021) plane.

| $T_{\rm c}(^{\circ}{ m C})$ | 117  | 111  | 104  | 98    | 93   | 87   | 81  | 71    | 61    |
|-----------------------------|------|------|------|-------|------|------|-----|-------|-------|
|                             |      |      |      |       |      |      |     | 14.2% |       |
| PCNT                        | 7.0% | 7.4% | 8.8% | 10.6% | 9.0% | 9.4% | 89% | 14.2% | 17.1% |

Table S4. The detail crystal characteristics of PCNT.

| Samples  | X <sub>c</sub> /% | q/nm <sup>-1</sup> | L/nm | L <sub>c</sub> /nm | $L_{\rm a}/{ m nm}$ |
|----------|-------------------|--------------------|------|--------------------|---------------------|
| PCNT-117 | 44.8              | 0.544              | 11.5 | 5.2                | 6.4                 |
| PCNT-111 | 45.2              | 0.580              | 10.8 | 4.9                | 5.9                 |
| PCNT-104 | 43.7              | 0.604              | 10.4 | 4.6                | 5.9                 |
| PCNT-98  | 41.5              | 0.613              | 10.2 | 4.3                | 6.0                 |
| PCNT-93  | 40.6              | 0.646              | 9.7  | 3.9                | 5.8                 |
| PCNT-87  | 38.5              | 0.665              | 9.5  | 3.6                | 5.8                 |
| PCNT-81  | 38.4              | 0.660              | 9.5  | 3.7                | 5.9                 |
| PCNT-71  | 31.7              | 0.778              | 8.1  | 2.6                | 5.5                 |
| PCNT-61  | 28.3              | 0.711              | 8.8  | 2.5                | 6.3                 |



Figure S3. SEM of PVDF films which was crystallized at 117 °C, 87 °C and 61 °C.