Electronic supplementary information (ESI)

Multiresponsive luminescent sensing behaviour of a tetraimidazole ligand and its 3D Cd(II) metal-organic frameworks

Ye-Feng Wu, Jia-Jun Cheng, Tao Jiang, Yu-Chen Ma, Jia-Lei Kou, Guo-Feng Cheng, Xiu-Li Hu, Xiao-Yan Tang, Yun-Sheng Ma*, Wen-Yu Yin* and Hong-Jian Cheng*

School of Materials Engineering, Changshu Insititute of Technology, Changshu, Jiangsu, 215500, P. R. China.

Contents

Preparation of timpb S4
Fig. S1. ¹ H NMR spectra of timpb. S4
Fig. S2. PXRD patterns for 1 and 2. simulated (red) and single-phase polycrystalline (black)
sample of 1 or 2
Fig. S3 (a) FT-IR spectra of 1 with qtimpb and 1,4-H ₂ bdc; (b) FT-IR spectra of 2 with qtim and
4,4'-H ₂ bpdbS5
Fig. S4 (a) 2D net constructed by $[Cd(1,4-bdc)]$ units in 1 (looking down the <i>a</i> axis); (b) 1D chain
constructed by [Cd(4,4'-bpdb)] units in 2 (looking down the <i>a</i> axis)S5
Fig. S5 The 3D struture of 2 containing solvent molecules looking down the b axis (a) or the a
axis.·····S5
Table S1. Selected bond lengths (Å) and angles (°) of 1 and 2·····S6
Fig. S6 (a) The TGA curves for 1; (b) The TGA curves for
2

Fig. S7 (a) UV-visible absorbance spectra of timpb (10^{-6} M) with successively increasing concentration of Fe³⁺ ions (10^{-4} M) from 10 to 100 µL; (b) UV-visible absorbance spectra of timpb (10^{-6} M) with successively increasing concentration of Cu²⁺ ions (10^{-4} M) from 10 to 150 µL; (c) UV-visible absorbance spectra of timpb (10^{-6} M) with successively increasing concentration of Cr₂O₇²⁻ ions (10^{-4} M) from 10 to 100 µL......S7

Fig. S8 Fluorescence emission spectra of **1** in different organic solvents.....S7 **Fig. S9** (a) Fluorescent sensing responses of timpb (10^{-6} M) upon addition of 100 µL of various anions (10^{-4} M) in water; (b) Fluorescence titration profile of timpb (10^{-6} M) with successively increasing concentration of $Cr_2O_7^{2-}$ ions (10^{-4} M) from 5 to 45 µL; (c) K_{sv} plot of timpb for sensing of $Cr_2O_7^{2-}$ (inset: the linear correlation at higher concentrations)......S8

Fig. S10 (a) Fluorescent sensing responses of **1** upon addition of 50 μ L of various anions (10⁻⁴ M) in water; (b) Fluorescence titration profile of **1** with successively increasing concentration of Cr₂O₇²⁻ ions (10⁻⁴ M) from 5 to 100 μ L; (c) K_{sv} plot of **1** for sensing of Cr₂O₇²⁻ (inset: the linear correlation at higher concentrations).....S8

Table S2. Comparison of the detection limits of previously reported sensors with our work for the detection of Cu^{2+} , Fe^{3+} or $Cr_2O_7^{2-}$ ions \cdots S9 **Fig. S11** (a) UV-visible absorbance spectra of timpb (10⁻⁶ M) with successively increasing

concentration of Fe³⁺ ions (10⁻⁴ M) from 10 to 100 µL; (b) UV-visible absorbance spectra of

timpb (10⁻⁶ M) with successively increasing concentration of Cu²⁺ ions (10⁻⁴ M) from 10 to 150 μ L; (c) UV-visible absorbance spectra of timpb (10⁻⁶ M) with successively increasing concentration of Cr₂O₇²⁻ ions (10⁻⁴ M) from 10 to 100 μ L; (d) Fluorescent recovery responses of 2 mL timpb (10⁻⁶ M) + 70 μ L Cu²⁺ ions (10⁻⁴ M) upon addition of EDTA (10⁻⁴ M).....S10

Fig. S12 FTIR spectra of 1 before and after sensing concentrations of Fe^{3+} (a) and $Cr_2O_7{}^{2-}$ (c) at
room temperature.·····S10
Fig. S13 PXRD patterns exhibited by complex 1 after immersion in various solvents for 3
days
Fig. S14 PXRD patterns exhibited by complex 1 after immersion in aqueous solutions containing
Fe ³⁺ or
Cr ₂ O ₇ ²⁻
Fig. S15 The emission spectra of 1 in the solid state after immersion in aqueous solutions
containing Fe^{3+} or $Cr_2O_7^{2-}$ S11

Preparation of timpb

A 10 mL deep porcelain crucible was filled with a mixture of 2.24 g (5.0 mmol) 1,3-dibromo-5-(3,5-dibromo-phenoxymethyl)-benzene, 6.808 g (100.0 mmol) imidazole, 4.146 g (30.0 mmol) anhydrous potassium carbonate and 0.380 g (2.0 mmol) cuprous iodide. The reaction mixture was exposed to microwave irradiation at different temperatures and times. After cooling to room temperature, the residue was diluted with 20 mL H₂O. 0.292 g (1 mmol) ethylenediaminetetraacetic acid and 4 mL NH₃·H₂O (28-29 %) was added, and the resulting mixture was stirred at room temperature for 24 h. The resulting dark brown precipitate was filtered and further purified by recrystallization in methanol to form light gray powder of timpb. Yield: 1.137 g (76 %). Anal. Caled for $C_{25}H_{20}N_8O$: C 66.95; H 4.49; N 24.99; found C 67.34; H 4.36; N 24.26. IR (KBr, cm⁻¹): 3098(w), 1654(m), 1509(s), 1475(w), 1399(m), 1340(m), 1247(w), 1111(w), 1058(m), 960(w), 912(w), 829(m), 730(m), 525(m). ¹H NMR (DMSO-*d*₆, 400 MHz, ppm) δ 8.47 (s, 4H), 8.01 (s, 1H), δ 7.95 (s, 3H), 7.83 (s, 2H), 7.64 (s, 1H), δ 7.43 (s, 2H), 7.18 (s, 3H), 5.37 (s, 2H).

Fig. S1. ¹H NMR spectra of timpb.

Fig. S2. PXRD patterns for 1 and 2. simulated (red) and single-phase polycrystalline (black) sample of 1 or 2.

Fig. S3 (a) FT-IR spectra of 1 with timpb and 1,4-H₂bdc; (b) FT-IR spectra of 2 with timpb and 4,4'-H₂bpdb.

Fig. S4 (a) 2D net constructed by [Cd(1,4-bdc)] units in **1** (looking down the *a* axis); (b) 1D chain constructed by [Cd(4,4'-bpdb)] units in **2** (looking down the *a* axis).

Fig. S5 The 3D struture of 2 containing solvent molecules looking down the b axis (a) or the a axis.

Complex 1			
Cd(1) N(1)	2 260(6)	$C_{1}(1) N(5) \# 1$	2 202(6)
Cd(1)-O(6)	2.209(0)	Cd(1)-N(3)#1	2.303(0)
Cd(1) - O(0)	2.303(0)	Cd(1) - O(7) + 2	2.521(0)
Cd(2) N(2)	2.351(0)	Cd(1) - O(3)	2.328(7)
Cd(2) - N(3)	2.200(7)	Cd(2) - N(7) # 5	2.265(6)
Cd(2) - O(9)#4	2.343(0)	Cd(2) - O(4) # 5	2.303(0)
Cd(2) - O(8) # 2	2.572(6)	Ca(2)-O(3)#3	2.438(0)
Cd(2)-O(9)#2	2.553(6)		101.1(2)
N(1)-Cd(1)-N(5)#1	1/4.9(2)	N(1)-Cd(1)-O(6)	101.1(2)
N(5)#1-Cd(1)-O(6)	82.2(2)	N(1)-Cd(1)-O(7)#2	91.8(2)
N(5)#1-Cd(1)-O(7)#2	83.1(2)	O(6)-Cd(1)-O(7)#2	121.66(19)
N(1)-Cd(1)-O(2)	91.9(2)	N(5)#1-Cd(1)-O(2)	92.1(2)
O(6)-Cd(1)-O(2)	89.3(2)	O(7)#2-Cd(1)-O(2)	147.3(2)
N(1)-Cd(1)-O(3)	90.2(2)	N(5)#1-Cd(1)-O(3)	89.7(2)
O(6)-Cd(1)-O(3)	141.0(2)	O(7)#2-Cd(1)-O(3)	94.8(2)
O(2)-Cd(1)-O(3)	52.75(18)	N(3)-Cd(2)-N(7)#3	174.2(2)
Cd(1)-N(1)	2.269(6)	Cd(1)-N(5)#1	2.303(6)
Complex 2			
Cd(1)-O(3)	2.201(4)	Cd(1)-O(7)	2.215(4)
Cd(1)-N(1)	2.246(4)	Cd(1)-N(8)#1	2.251(5)
Cd(2)-N(3)	2.258(4)	Cd(2)-O(5)#2	2.270(4)
Cd(2)-N(5)#3	2.293(5)	Cd(2)-O(8)#4	2.354(4)
Cd(2)-O(9)#4	2.370(4)	Cd(2)-O(4)#2	2.471(4)
O(3)-Cd(1)-O(7)	104.79(15)	O(3)-Cd(1)-N(1)	95.35(16)
O(7)-Cd(1)-N(1)	131.90(15)	O(3)-Cd(1)-N(8)#	132.16(17)
O(7)-Cd(1)-N(8)#1	90.54(16)	N(1)-Cd(1)-N(8)#1	107.49(17)
N(3)-Cd(2)-O(5)#2	96.82(17)	N(3)-Cd(2)-N(5)#3	107.58(18)
O(5)#2-Cd(2)-N(5)#3	91.73(16)	N(3)-Cd(2)-O(8)#4	136.84(17)
O(5)#2-Cd(2)-O(8)#4	119.01(15)	N(5)#3-Cd(2)-O(8)#4	95.32(16)
N(3)-Cd(2)-O(9)#4	88.09(15)	O(5)#2-Cd(2)-O(9)#4	174.23(15)
N(5)#3-Cd(2)-O(9)#4	89.65(16)	O(8)#4-Cd(2)-O(9)#4	55.26(13)
N(3)-Cd(2)-O(4)#2	94.73(17)	O(5)#2-Cd(2)-O(4)#2	55.28(15)
N(5)#3-Cd(2)-O(4)#2	142.58(16)	O(8)#4-Cd(2)-O(4)#2	87.75(14)
O(9)#4-Cd(2)-O(4)#2	121.46(15)		

Table S1. Selected bond lengths (Å) and angles (°) of 1 and 2 $\,$

^{*a*} Symmetry codes: for 1: #1 x + 1, y - 1, z; #2 - x + 2, - y, - z + 1; #3 x + 1, y, z + 1; #4 x, y + 1, z + 1; #5 - x + 1, - y, - z + 2. For **2**, #1 x - 1, y, z; #2 x + 1, y - 1, z + 1; #3 x, y + 1, z; #4 x, y + 1, z + 1; #5 x - 1, y + 1, z - 1; #6 x, y - 1, z - 1; #7 x, y - 1, z; #8 x + 1, y, z

Fig. S6 (a) The TGA curves for 1; (b) The TGA curves for 2.

Fig. S7 (a) UV-visible absorbance (left) and emission spectra (right) of timpb in dilute mathanol or dichlorom solutions $(1 \times 10^{-4} \text{ mg mL}^{-1})$; (b) Fluorescence emission spectra of timpa in different organic solvents.

Fig. S8 Fluorescence emission spectra of 1 in different organic solvents.

Fig. S9 (a) Fluorescent sensing responses of timpb (10^{-6} M) upon addition of 100 µL of various anions (10^{-4} M) in water; (b) Fluorescence titration profile of timpb (10^{-6} M) with successively increasing concentration of $\text{Cr}_2\text{O}_7^{2-}$ ions (10^{-4} M) from 5 to 45 µL; (c) K_{sv} plot of timpb for sensing of $\text{Cr}_2\text{O}_7^{2-}$ (inset: the linear correlation at higher concentrations).

Fig. S10 (a) Fluorescent sensing responses of 1 upon addition of 50 μ L of various anions (10⁻⁴ M) in water; (b) Fluorescence titration profile of 1 with successively increasing concentration of Cr₂O₇²⁻ ions (10⁻⁴ M) from 5 to 100 μ L; (c) K_{sv} plot of 1 for sensing of Cr₂O₇²⁻ (inset: the linear correlation at higher concentrations).

Sensor	ions	LOD	Ref.
Acetylenic-indole conjoined organosilatrane	Cu ²⁺	0.41 μM	33a
Graphene quantum dots	Cu^{2+}	0.226 μM	33b
Rhodamine spirolactam derivative	Cu^{2+}	$3 imes 10^{-4} \ \mu M$	33c
Inclusion complex with β -cyclodextrin and 1,5-	Cu^{2+}	10 nM	33d
Dihydroxyanthraquinone	$Cr_2O_7{}^{2-}$	0.8 nM	
4-bromo-2-hydroxyben Rhodamine B hydrazide	Cu^{2+}	$1.7 imes 10^{-4} \ \mu M$	33e
Zn(II)-MOFs	Fe ³⁺	$2.75 imes 10^{-3} \ \mu M$	34a
	$Cr_2O_7{}^{2-}$	$4.43\times 10^{-4}~\mu M$	
${[Eu(L)(H_2O)]\cdot 7H_2O}_n$	Fe ³⁺	0.67 μM	34b
$H_3L = 5-(3',5'-dicarboxylphenyl)$ picolinic acid	$Cr_{2}O_{7}^{2-}$	0.32 μM	
${[(CH_3)_2NH_2]_4[Ca_2Zn_4(L)_4]\cdot 4DMF}_n$	Fe ³⁺	18.8 μM	34c
$H_4L = 5,5'$ -(propanen-1,3-diyl)-bisIJoxy)diisophthalic acid	$Cr_{2}O_{7}^{2-}$	29.1 μM	
Eu ³⁺ @MIL-124	Fe ³⁺	0.28 μM	34d
2,2'-bisbenzimidazole derivative	Fe ³⁺	$1.0 imes 10^{-6} \ \mu M$	34e
${[Cu(L)_2(H_2O)_2] \cdot (SiF_6)(H_2O)}_n$		0.79 μΜ	35a
L = 4,4'-azobispyridine			
${[Zn_2(\mu_3-OH)(cpta)(4,4'-bipy)] \cdot H_2O}_n$	$Cr_{2}O_{7}^{2-}$	$6.91 \times 10^{-3} \ \mu M$	35b
H_3 cpta = 2–(-carboxyphenoxy)terephthalic acid			
$[Ln(TCPB)(DMF)_3]_n$	$Cr_2O_7{}^{2-}$	$3.0 imes 10^{-4} \ \mu M$	35c
$H_3TCPB = 1,3,5$ -tris(1-(2-carboxyphenyl)-1H-pyrazol-3-yl)			
$[Cd(TPA)(BIYB)]_n$	$Cr_2O_7{}^{2-}$	$2.4\times 10^{-4}~\mu M$	35d
$H_2TPA = 3,3'$ -thiodipropionic acid			
BIYB = 4,4-bis(imidazol-1-ylmethyl)biphenyl			
Water-soluble carbon dots	$Cr_{2}O_{7}^{2-}$	140 nM	35e
${[Tb(dppa)(H_2O)_2] \cdot dima \cdot H_2O}_n$	$Cr_{2}O_{7}^{2-}$	0.55 μΜ	35f
H_4 dppa = 5-(3', 4'-dicarboxylphenoxy) isophthalic acid			
dima = dimethylamine			

Table S2. Comparison of the detection limits of previously reported sensors with our work for the detection of Cu^{2+} , Fe^{3+} or $Cr_2O_7^{2-}$ ions

Fig. S11 (a) UV-visible absorbance spectra of timpb (10^{-6} M) with successively increasing concentration of Fe³⁺ ions (10^{-4} M) from 10 to 100 µL; (b) UV-visible absorbance spectra of timpb (10^{-6} M) with successively increasing concentration of Cu²⁺ ions (10^{-4} M) from 10 to 150 µL; (c) UV-visible absorbance spectra of timpb (10^{-6} M) with successively increasing concentration of Cr₂O₇²⁻ ions (10^{-4} M) from 10 to 100 µL; (d) Fluorescent recovery responses of 2 mL timpb $(10^{-6} \text{ M}) + 70 \text{ µL Cu}^{2+}$ ions (10^{-4} M) upon addition of EDTA (10^{-4} M) .

Fig. S12 FTIR spectra of 1 before and after sensing concentrations of Fe^{3+} (a) and $Cr_2O_7^{2-}$ (c) at room temperature.

Fig. S13 PXRD patterns exhibited by complex 1 after immersion in various solvents for 3 days.

Fig. S14 PXRD patterns exhibited by complex 1 after immersion in aqueous solutions containing Fe^{3+} or $Cr_2O_7^{2-}$.

Fig. S15 The emission spectra of 1 in the solid state after immersion in aqueous solutions containing Fe^{3+} or $Cr_2O_7^{2-}$.