## **Supporting Information**

## Two polyoxovanadates for visible light driven photocatalytic performance

Li Huang<sup>#</sup>, Yufan Yang<sup>#</sup>, Xiaoyang Yu, Xiaonan Li, Yuan Shen, Runhong Song and Hong Zhang\*

Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.

Corresponding Author

\*E-mail: hope20130122@163.com, zhangh@nenu.edu.cn (H. Zhang).



Fig S1. C-H... $\pi$  interaction in compound 1.



Fig S2. Hydrogen bond interaction in compound 2.



Fig S3. Mott-Schottky plots of **2** at selected frequencies of 800 and 1000 Hz. (The Mott-Schottky test for compound **2** was carried out using a three-electrode system in a 0.2 M  $Na_2SO_4$  solution. Carbon paste electrode as a working electrode, Ag/AgCl as the reference electrode, and a Pt slice as the auxiliary electrode.)



Fig S4. The energy band structure of compound 1 and 2.



Fig S5. (a) SEM image of compound 1, (b) EDS pattern of compound 1, (c) Sample image of compound 1 for EDS test, (d) and (E) Element mapping images of V and P for compound 1.



Fig S6. (a) SEM image for compound 2, (b) EDS pattern of compound 2, (c) Sample image of compound 2 for EDS test, (d) and (e) Element mapping images of V and P for compound 2.



Fig S7. TG curves of compound 1 and compound 2.



Fig S8. PXRD patterns of compound 1 and compound 2 before and after photocatalytic reaction.



Fig S9. Photodegradation efficiencies of MB, RhB and MO in the presence of compound 1 under visible-light radiation. Reaction conditions: 5 mL dyes solution (15 mg/L), catalyst dosage: 0.5 mg/mL.

|                                   | e remember et compound i c                   |                                   |
|-----------------------------------|----------------------------------------------|-----------------------------------|
| Empirical formula                 | $C_{70}\overline{H_{102}N_6O_{50}P_8V_{12}}$ | $C_{64}H_{104}N_8O_{56}P_8V_{16}$ |
| Formula weight                    | 2686.61                                      | 2944.35                           |
| Temperature/K                     | 293.15                                       | 294.85                            |
| Crystal system                    | triclinic                                    | monoclinic                        |
| Space group                       | P-1                                          | $P2_1/n$                          |
| a/Å                               | 15.637(8)                                    | 21.110(4)                         |
| b/Å                               | 15.719(5)                                    | 25.413(4)                         |
| c/Å                               | 15.754(6)                                    | 26.005(5)                         |
| $\alpha/^{\circ}$                 | 60.328(11)                                   | 90                                |
| β/°                               | 65.25(4)                                     | 90.082(6)                         |
| $\gamma/^{\circ}$                 | 82.83(3)                                     | 90                                |
| Volume/Å <sup>3</sup>             | 3039(2)                                      | 13951(4)                          |
| Z                                 | 1                                            | 4                                 |
| $\rho_{calc}g/cm^3$               | 1.468                                        | 1.402                             |
| F(000)                            | 1360.0                                       | 5920                              |
| $2\Theta$ range for data          | 6.258 to 101.25                              | 4.46 to 50.236                    |
| collection/°                      |                                              |                                   |
| Reflections collected             | 21198                                        | 205792                            |
| Independent reflections           | $6346 [R_{int} = 0.0782,$                    | 24751 [ $R_{int} = 0.1223$ ,      |
|                                   | $R_{sigma} = 0.0925$ ]                       | $R_{sigma} = 0.0658$ ]            |
| Data/restraints/parameter         | 6346/1359/703                                | 24751/2976/1477                   |
| S                                 |                                              |                                   |
| Goodness-of-fit on F <sup>2</sup> | 1.034                                        | 1.039                             |
| Final R indexes [I>=2σ            | $R_1 = 0.0763, wR_2 =$                       | $R_1 = 0.0804, wR_2 =$            |
| (I)]                              | 0.1951                                       | 0.2105                            |
| Final R indexes [all data]        | $R_1 = 0.1224, wR_2 =$                       | $R_1 = 0.1338, wR_2 =$            |
|                                   | 0.2208                                       | 0.2472                            |

Table S1: Crystal data and structure refinement of compound 1 and compound 2.

|         | Length/Å |                     | Length/Å |
|---------|----------|---------------------|----------|
| V1–O6   | 1.593(8) | V5–O11              | 1.958(7) |
| V1-O10  | 1.990(7) | V5013               | 1.972(8) |
| V1-O111 | 1.969(7) | V5–O16 <sup>1</sup> | 1.983(7) |
| V1016   | 1.965(7) | V5-O22              | 1.961(8) |
| V1–O24  | 1.960(7) | V601                | 1.572(8) |
| V2–O3   | 1.589(7) | V609                | 1.969(8) |
| V2–O4   | 1.975(8) | V6012               | 1.966(7) |
| V2–O5   | 1.956(7) | V6015               | 1.962(7) |
| V2–O17  | 1.965(8) | V6019               | 1.972(7) |
| V2-O181 | 1.967(7) | P1-O13              | 1.525(8) |
| V3–O4   | 1.973(7) | P1-O14              | 1.502(8) |
| V3–O5   | 1.980(7) | P1-O20              | 1.520(8) |
| V3–O8   | 1.571(7) | P209                | 1.511(8) |
| V3014   | 1.972(8) | P2018               | 1.531(8) |
| V3–O231 | 1.982(8) | P2-O22              | 1.518(8) |
| V4–O2   | 1.583(8) | P3019               | 1.522(8) |
| V4–O12  | 1.958(7) | Р3-О23              | 1.523(8) |
| V4015   | 1.970(7) | P3-O24              | 1.520(8) |
| V4–O20  | 1.967(8) | P4-O10              | 1.501(8) |
| V4–O21  | 1.964(7) | P4-017              | 1.522(8) |
| V5–O7   | 1.590(8) | P4-O21              | 1.517(8) |

Table S2: Important bond lengths for compound 1.

<sup>1</sup>1-X,1-Y,1-Z

Table S3: Important bond angles for compound **1**.

|                          | Angle/°  |                        | Angle/°  |
|--------------------------|----------|------------------------|----------|
| O6-V1-O10                | 106.9(4) | O21–V4–O20             | 84.4(3)  |
| O6-V1-O111               | 107.6(4) | O7-V5-O11              | 108.2(4) |
| O6-V1-O16                | 106.4(4) | O7–V5–O13              | 106.8(4) |
| O6-V1-O24                | 106.0(4) | O7–V5–O16 <sup>1</sup> | 105.7(4) |
| O11 <sup>1</sup> -V1-O10 | 90.0(3)  | O7–V5–O22              | 103.8(4) |
| O16-V1-O10               | 146.4(3) | O11-V5-O13             | 144.8(3) |
| O16-V1-O111              | 76.0(3)  | O11-V5-O161            | 75.9(3)  |
| O24–V1–O10               | 84.6(3)  | O11-V5-O22             | 90.9(3)  |
| O24-V1-O111              | 146.0(3) | O13-V5-O161            | 91.0(3)  |
| O24-V1-O16               | 90.2(3)  | O22-V5-O13             | 84.7(3)  |
| O3–V2–O4                 | 107.7(4) | O22-V5-O161            | 150.2(3) |
| O3–V2–O5                 | 107.4(4) | O1-V6-O9               | 106.6(4) |
| O3-V2-O17                | 105.6(4) | O1-V6-O12              | 107.5(4) |
| O3-V2-O181               | 107.5(4) | O1-V6-O15              | 107.7(4) |
| O5–V2–O4                 | 76.2(3)  | O1–V6–O19              | 106.9(4) |
| O5-V2-O17                | 90.7(3)  | O9–V6–O19              | 83.4(3)  |
| O5-V2-O181               | 145.0(3) | O12-V6-O9              | 145.6(3) |
| O17-V2-O4                | 146.5(3) | O12-V6-O19             | 90.3(3)  |
| O17-V2-O181              | 82.3(3)  | O15-V6-O9              | 90.1(3)  |
| O181-V2-O4               | 90.9(3)  | O15-V6-O12             | 76.2(3)  |
| O4–V3–O5                 | 75.7(3)  | O15-V6-O19             | 145.3(3) |
| O4-V3-O231               | 91.0(3)  | V3-O4-V2               | 103.4(3) |
| O5-V3-O231               | 147.3(3) | V2-O5-V3               | 103.9(3) |
| O8–V3–O4                 | 108.9(4) | P209V6                 | 149.6(5) |
| O8–V3–O5                 | 106.5(4) | P4O10V1                | 145.9(5) |
| O8–V3–O14                | 106.0(4) | V5-011-V1 <sup>1</sup> | 104.1(3) |
| O8-V3-O231               | 106.1(4) | V4012V6                | 103.8(3) |
| O14–V3–O4                | 144.8(3) | P1-O13-V5              | 142.8(5) |
| O14V3O5                  | 90.5(3)  | P1014V3                | 146.5(5) |
| O14-V3-O231              | 83.4(3)  | V6015V4                | 103.5(3) |
| O2-V4-012                | 107.9(4) | V1016V51               | 103.4(3) |
| O2-V4-015                | 107.5(4) | P4017V2                | 143.1(5) |
| O2-V4-O20                | 105.0(4) | P2-O18-V21             | 144.3(5) |
| O2-V4-O21                | 107.7(4) | P3-O19-V6              | 144.4(5) |
| O12-V4-O15               | 76.2(3)  | P1-O20-V4              | 144.2(5) |
| O12-V4-O20               | 146.8(3) | P4-O21-V4              | 146.1(5) |
| O12-V4-O21               | 89.7(3)  | P2-O22-V5              | 144.5(5) |
| O20-V4-O15               | 90.1(3)  | P3-O23-V31             | 143.0(5) |
| O21-V4-O15               | 144.6(3) | P3-O24-V1              | 145.9(5) |

<sup>1</sup>1-X,1-Y,1-Z

|        | Length/Å |         | Length/Å |
|--------|----------|---------|----------|
| V1–O2  | 1.950(6) | V11–O10 | 1.969(6) |
| V1–O8  | 1.963(6) | V11–O24 | 1.907(6) |
| V1012  | 1.986(6) | V11–O40 | 1.615(5) |
| V1-O30 | 1.963(6) | V12013  | 1.948(5) |
| V1041  | 1.592(6) | V12015  | 1.984(6) |
| V2–O3  | 1.945(6) | V12–O22 | 1.954(6) |
| V2–O4  | 1.980(6) | V12–O28 | 1.979(6) |
| V2–O9  | 1.962(6) | V12–O52 | 1.577(6) |
| V2-O20 | 1.967(6) | V13–O3  | 1.935(6) |
| V2–O34 | 1.589(6) | V13–O17 | 1.931(6) |
| V3–O7  | 1.949(6) | V13–O37 | 1.992(6) |
| V3014  | 1.965(5) | V13–O44 | 1.984(6) |
| V3–O23 | 1.998(6) | V13–O55 | 1.595(6) |
| V3–O27 | 1.974(6) | V14–O17 | 1.934(6) |
| V3–O35 | 1.586(6) | V14–O29 | 1.972(6) |
| V4016  | 1.963(5) | V14–O36 | 1.985(6) |
| V4–O19 | 1.999(6) | V14–O37 | 1.976(6) |
| V4–O26 | 1.940(6) | V14–O53 | 1.586(6) |
| V4–O32 | 1.975(6) | V15–O2  | 1.932(6) |
| V4–O38 | 1.588(6) | V15–O24 | 1.933(6) |
| V5–O5  | 1.936(6) | V15–O43 | 1.992(6) |
| V5–O6  | 1.966(6) | V15–O47 | 1.978(6) |
| V5–O7  | 1.926(6) | V15–O56 | 1.594(6) |
| V5-O31 | 1.972(6) | V16–O24 | 1.934(6) |
| V5–O54 | 1.610(6) | V16–O39 | 1.976(6) |
| V6013  | 1.944(5) | V16–O42 | 1.979(6) |
| V6016  | 1.986(5) | V16–O43 | 1.976(6) |
| V6021  | 1.979(6) | V16–O45 | 1.595(6) |
| V6026  | 1.942(6) | P1-O18  | 1.538(6) |
| V6049  | 1.598(6) | P1O19   | 1.523(6) |
| V7–O5  | 1.946(5) | P1-O25  | 1.513(6) |
| V7–O7  | 1.942(6) | P204    | 1.508(6) |
| V7–O14 | 1.981(5) | P2-O32  | 1.511(6) |
| V7–O18 | 1.975(6) | P2-O33  | 1.532(6) |
| V7–O46 | 1.591(6) | P3-O21  | 1.535(6) |
| V8–O13 | 1.933(6) | P3-O23  | 1.523(6) |
| V8–O22 | 1.976(6) | P3–O28  | 1.510(6) |
| V8–O26 | 1.931(6) | P4012   | 1.509(6) |
| V8–O33 | 1.968(6) | P4027   | 1.513(6) |

\_

Table S4: Important bond lengths for compound **2**.

| V8–O50  | 1.611(6) | P4O31  | 1.526(6) |
|---------|----------|--------|----------|
| V901    | 1.973(6) | P501   | 1.528(6) |
| V9–O3   | 1.923(6) | P5015  | 1.522(6) |
| V9–O9   | 1.980(6) | P5O29  | 1.516(6) |
| V9–O17  | 1.905(6) | P6O10  | 1.539(6) |
| V9–O51  | 1.614(5) | P6011  | 1.519(6) |
| V10–O5  | 1.942(5) | P6-O39 | 1.506(6) |
| V10–O6  | 1.965(6) | Р7-О20 | 1.517(6) |
| V10-O11 | 1.988(6) | P7042  | 1.526(6) |
| V10-O25 | 1.974(6) | P7–O44 | 1.525(6) |
| V10–O48 | 1.573(6) | P8–O30 | 1.515(6) |
| V11–O2  | 1.913(6) | P8–O36 | 1.524(6) |
| V11–O8  | 1.979(6) | P8–O47 | 1.534(6) |

Table S5: Important bond angles for compound **2**.

|            | Angle/°  |             | Angle/°  |
|------------|----------|-------------|----------|
| O2–V1–O8   | 76.6(2)  | O40-V11-O10 | 111.0(3) |
| O2-V1-O12  | 147.9(2) | O40-V11-O24 | 107.1(3) |
| O2-V1-O30  | 89.1(2)  | O13-V12-O15 | 149.4(2) |
| O8-V1-O12  | 87.9(2)  | O13-V12-O22 | 77.5(2)  |
| O8–V1–O30  | 141.7(3) | O13-V12-O28 | 90.6(2)  |
| O30-V1-O12 | 86.0(2)  | O22-V12-O15 | 88.5(2)  |
| O41-V1-O2  | 106.2(3) | O22-V12-O28 | 143.7(2) |
| O41-V1-O8  | 109.3(3) | O28-V12-O15 | 84.7(2)  |
| O41-V1-O12 | 105.4(3) | O52-V12-O13 | 103.8(3) |
| O41-V1-O30 | 108.7(3) | O52-V12-O15 | 106.3(3) |
| O3–V2–O4   | 147.9(2) | O52-V12-O22 | 108.2(3) |
| O3–V2–O9   | 76.8(2)  | O52-V12-O28 | 107.9(3) |
| O3–V2–O20  | 89.0(2)  | O3-V13-O37  | 145.7(2) |
| O9–V2–O4   | 87.6(2)  | O3-V13-O44  | 90.0(2)  |
| O9–V2–O20  | 141.7(3) | O17-V13-O3  | 81.7(2)  |
| O20–V2–O4  | 86.2(2)  | O17–V13–O37 | 77.2(2)  |
| O34–V2–O3  | 106.0(3) | O17–V13–O44 | 136.4(3) |
| O34–V2–O4  | 105.6(3) | O44-V13-O37 | 87.1(2)  |
| O34–V2–O9  | 109.3(3) | O55-V13-O3  | 106.9(3) |
| O34–V2–O20 | 108.8(3) | O55-V13-O17 | 112.3(3) |
| O7–V3–O14  | 77.9(2)  | O55-V13-O37 | 106.0(3) |
| O7–V3–O23  | 147.8(2) | O55-V13-O44 | 111.0(3) |
| O7–V3–O27  | 89.6(2)  | O17–V14–O29 | 88.7(2)  |
| O14-V3-O23 | 87.8(2)  | O17-V14-O36 | 145.5(3) |
| O14-V3-O27 | 143.9(2) | O17-V14-O37 | 77.5(2)  |
| O27–V3–O23 | 85.3(2)  | O29–V14–O36 | 85.4(3)  |
| O35–V3–O7  | 105.9(3) | O29–V14–O37 | 145.0(3) |
| O35-V3-O14 | 108.4(3) | O37–V14–O36 | 88.2(3)  |
| O35–V3–O23 | 106.0(3) | O53-V14-O17 | 108.4(3) |
| O35–V3–O27 | 107.5(3) | O53–V14–O29 | 106.6(3) |
| O16-V4-O19 | 87.6(2)  | O53-V14-O36 | 105.8(3) |
| O16-V4-O32 | 143.8(2) | O53–V14–O37 | 108.3(3) |
| O26-V4-O16 | 78.0(2)  | O2-V15-O24  | 81.5(2)  |
| O26–V4–O19 | 147.4(2) | O2-V15-O43  | 145.4(2) |
| O26–V4–O32 | 89.6(2)  | O2-V15-O47  | 90.1(2)  |
| O32–V4–O19 | 85.1(2)  | O24-V15-O43 | 77.0(2)  |
| O38–V4–O16 | 108.7(3) | O24–V15–O47 | 136.5(3) |
| O38–V4–O19 | 106.4(3) | O47-V15-O43 | 87.2(2)  |
| O38–V4–O26 | 105.9(3) | O56-V15-O2  | 107.0(3) |
| O38-V4-O32 | 107.4(3) | O56-V15-O24 | 112.1(3) |

| O5–V5–O6   | 77.5(2)  | O56-V15-O43 | 106.1(3) |
|------------|----------|-------------|----------|
| O5-V5-O31  | 142.1(2) | O56-V15-O47 | 111.2(3) |
| O6-V5-O31  | 88.1(2)  | O24-V16-O39 | 88.8(2)  |
| O7–V5–O5   | 82.6(2)  | O24-V16-O42 | 145.5(3) |
| O7–V5–O6   | 146.2(2) | O24-V16-O43 | 77.4(2)  |
| O7–V5–O31  | 91.3(2)  | O39–V16–O42 | 85.5(3)  |
| O54-V5-O5  | 108.8(3) | O39–V16–O43 | 145.0(3) |
| O54-V5-O6  | 106.1(3) | O43-V16-O42 | 88.1(3)  |
| O54-V5-O7  | 106.1(3) | O45-V16-O24 | 107.6(3) |
| O54–V5–O31 | 108.8(3) | O45-V16-O39 | 106.9(3) |
| O13-V6-O16 | 146.0(2) | O45-V16-O42 | 106.5(3) |
| O13-V6-O21 | 90.5(2)  | O45-V16-O43 | 107.9(3) |
| O21-V6-O16 | 87.6(2)  | P5-O1-V9    | 137.2(4) |
| O26-V6-O13 | 82.0(2)  | V11-O2-V1   | 104.5(3) |
| O26-V6-O16 | 77.3(2)  | V11-O2-V15  | 97.5(3)  |
| O26-V6-O21 | 138.6(2) | V15-O2-V1   | 145.2(3) |
| O49-V6-O13 | 104.9(3) | V9-O3-V2    | 104.3(3) |
| O49-V6-O16 | 107.6(3) | V9-O3-V13   | 97.1(3)  |
| O49-V6-O21 | 110.7(3) | V13-O3-V2   | 145.4(3) |
| O49–V6–O26 | 110.5(3) | P2-O4-V2    | 140.5(4) |
| O5–V7–O14  | 146.2(2) | V5-O5-V7    | 97.5(2)  |
| O5–V7–O18  | 90.7(2)  | V5-O5-V10   | 103.3(3) |
| O7–V7–O5   | 81.9(2)  | V10-O5-V7   | 143.6(3) |
| O7–V7–O14  | 77.6(2)  | V10-O6-V5   | 101.3(3) |
| O7–V7–O18  | 139.3(2) | V5-07-V3    | 143.5(3) |
| O18–V7–O14 | 87.7(2)  | V5-07-V7    | 98.0(2)  |
| O46–V7–O5  | 104.9(3) | V7-07-V3    | 103.0(3) |
| O46–V7–O7  | 110.3(3) | V108V11     | 101.6(3) |
| O46-V7-O14 | 107.3(3) | V2-O9-V9    | 101.6(3) |
| O46-V7-O18 | 110.3(3) | P6O10V11    | 136.9(4) |
| O13–V8–O22 | 77.4(2)  | P6011V10    | 137.4(4) |
| O13-V8-O33 | 142.2(3) | P4          | 140.1(4) |
| O26-V8-O13 | 82.5(2)  | V6-O13-V12  | 143.4(3) |
| O26–V8–O22 | 145.8(2) | V8-013-V6   | 97.6(2)  |
| O26–V8–O33 | 91.0(2)  | V8-O13-V12  | 103.2(3) |
| O33–V8–O22 | 88.4(2)  | V3-014-V7   | 101.0(3) |
| O50-V8-O13 | 108.4(3) | P5015V12    | 137.5(4) |
| O50–V8–O22 | 106.2(3) | V4016V6     | 100.9(2) |
| O50–V8–O26 | 106.3(3) | V9-017-V13  | 97.9(3)  |
| O50–V8–O33 | 109.1(3) | V9-017-V14  | 147.9(3) |
| O1–V9–O9   | 87.7(2)  | V13-O17-V14 | 104.5(3) |
| O3-V9-O1   | 139.3(2) | P1018V7     | 135.5(4) |

| O3–V9–O9    | 76.9(2)  | P1-O19-V4   | 139.8(4) |
|-------------|----------|-------------|----------|
| O17–V9–O1   | 89.1(2)  | P7-O20-V2   | 137.2(4) |
| O17–V9–O3   | 82.7(2)  | P3-O21-V6   | 135.8(4) |
| O17–V9–O9   | 144.3(2) | V12-O22-V8  | 101.5(3) |
| O51-V9-O1   | 110.8(3) | P3-O23-V3   | 139.9(4) |
| O51–V9–O3   | 109.7(3) | V11-O24-V15 | 97.6(3)  |
| O51–V9–O9   | 106.9(3) | V11-O24-V16 | 147.7(3) |
| O51-V9-O17  | 107.4(3) | V15-O24-V16 | 104.5(3) |
| O5-V10-O6   | 77.4(2)  | P1-O25-V10  | 136.4(4) |
| O5-V10-O11  | 149.4(2) | V4026V6     | 103.4(3) |
| O5-V10-O25  | 90.3(2)  | V8026V4     | 143.9(3) |
| O6-V10-O11  | 88.6(2)  | V8-O26-V6   | 97.7(2)  |
| O6-V10-O25  | 143.5(2) | P4027V3     | 138.4(4) |
| O25-V10-O11 | 84.9(2)  | P3-O28-V12  | 136.0(4) |
| O48-V10-O5  | 104.3(3) | P5O29V14    | 137.7(4) |
| O48-V10-O6  | 108.4(3) | P8-O30-V1   | 137.5(4) |
| O48-V10-O11 | 105.8(3) | P4          | 136.8(4) |
| O48-V10-O25 | 107.9(3) | P2-O32-V4   | 138.3(4) |
| O2-V11-O8   | 77.1(2)  | P2-O33-V8   | 137.0(4) |
| O2-V11-O10  | 139.3(2) | P8-036-V14  | 140.0(4) |
| O10-V11-O8  | 87.5(2)  | V14-037-V13 | 100.7(3) |
| O24-V11-O2  | 82.7(2)  | P6039V16    | 137.7(4) |
| O24-V11-O8  | 144.6(2) | P7-042-V16  | 140.6(4) |
| O24-V11-O10 | 89.3(2)  | V16-O43-V15 | 100.9(3) |
| O40-V11-O2  | 109.6(3) | P7-044-V13  | 135.8(4) |
| O40-V11-O8  | 107.0(3) | P8047V15    | 136.0(4) |