Syntheses, Structures and Luminescence of Several Coordination Complexes Based on β octamolybdate and Ag/Cu Phosphine Units

Yi-qi Yu,^{a,†} Shang-Bin Sun,^{a,†} Wen-Hao Deng,^{b,†}Jian Li,^a Zhi-Yi Lu,^a Jia-Hui He,^a Long-Sheng Wang,^{a,*} Xiang-Gao Meng,^{c,*}

^a School of Materials and Chemical Engineering, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Hubei University of Technology, Hubei Wuhan, 430068, P.R. China Email: <u>wangls@mail.hbut.edu.cn</u>

^b Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

^c School of Chemistry, Central China Normal University, Hubei Wuhan, 430079, P.R. China Email: <u>mengxianggao@ccnu.edu.cn</u>

KEYWORDS: Polyoxometalates, Metal complexes, Luminescence, Self-assembly

Scheme S1 Synthetic formula of compounds 1 - 4.

Table S1. Crystal data collection and structure refinement parameters for compounds 1-4.

Table S2 Selected bond lengths of compounds 1 - 4.

Table S3 Summary of hydrogen bonding in compounds 1-4.

Table S4 BVS results of compound 1.

Table S5 BVS results of compound 2

Table S6 BVS results of compound 3

Table S7 BVS results of compound 4

Table S8 NBO Calculation Results of compounds 1-4.

Table S9 Solubility of compounds 1-4 in common solvents.

Figure S1. FT-IR spectrum of compound 1.

Figure S2. FT-IR spectrum of compound 2

Figure S3. FT-IR spectrum of compound 3

Figure S4. FT-IR spectrum of compound 4

Figure S5. Diagrams of coordination sphere in compounds 1-4 and β -octamolybdates.

Figure S6. Diagrams of cluster skeleton of β -octamolybdates, compounds 1-4

Figure S7. The distances between the planes of two adjacent Mo₄ rings (light yellow) and the

planes of two adjacent Mo₂O₂ rings (light green) in compounds 1-4 and β -octamolybdates.

Figure S9. XRD spectrum of compound 1.

Figure S10. XRD spectrum of compound 2.

Figure S11. XRD spectrum of compound **3**.

Figure S12. XRD spectrum of compound 4.

Figure S13. TGA and DTG of compound 1.

Figure S14. TGA and DTG of compound 2.

Figure S15. TGA and DTG of compound **3**.

Figure S16. TGA and DTG of compound 4.

Figure S17. Luminescent spectra of compounds 1 (a), 2 (b), 3 (c),4 (d) in their DMF solutions.

Figure S18. Luminescent spectra of $CuTPP_2$ (a), $AgTPP_2$ (b), Cu_2DPPM_2 (c), Ag_2DPPM_2 (d) in their DMF solutions.

Figure S19. Luminescence lifetime of compounds 1 (a), 2 (b), 3 (c), 4 (d).

Figure S20. Luminescence lifetime of CuTPP₂ (a), AgTPP₂ (b), Cu₂DPPM₂ (c), Ag₂DPPM₂ (d).

- $1 \ [Cu(TPP)_2(CH_3CN)_2]_2 \{ [Cu(TPP)_2]_2(\beta Mo_8O_{26}) \} \bullet 2CH_3CN$
- $\label{eq:constraint} \textbf{2} \hspace{0.1 in} \{[Ag(TPP)]_2 \bullet [Ag(TPP)_2]_2 \bullet (\beta \hbox{-} Mo_8O_{26})\} \bullet 6DMF \\$
- **3** {[Cu₂(DPPM)₂(CH₃CN)]₂(β -Mo₈O₂₆)}•2CH₃CN•2DCM
- $4 \ \{[Ag_2(DPPM)_2^{-}(CH_3CN)]_2(\beta \text{-}Mo_8O_{26})\} \bullet 2CH_3CN \bullet 2DCM$

Scheme S1 Synthetic formula of compounds 1 - 4.

	1	2	3	4
Empirical formula	$C_{156}H_{138}N_6O_{26}P_8Cu_4Mo_8\\$	$C_{126}H_{132}N_6O_{32}P_6Ag_4Mo_8\\$	$C_{110}H_{104}N_4O_{26}Cu_4Mo_8P_8Cl_4\\$	$C_{110}H_{104}N_4O_{26}Ag_4Mo_8P_8Cl_4$
Formula weight	3782.16	3627.19	3309.21	3486.53
Crystal description	red, Block	yellow, Block	Yellow, Block	white, Block
Temperature(K)	200.00	200.00	150(2) K	200.00
Crystal system.	Triclinic	Triclinic	Monoclinic	orthorhombic
Space group	P-1	P-1	P2(1)/c	Pna2 ₁
$a(\text{\AA})$	15.9275(6)	13.0333(5)	13.265(3)	23.7515(8)
$b(\text{\AA})$	16.1794(6)	15.0730(6)	21.934(4)	17.9116(6)
$c(\text{\AA})$	19.0604(8)	18.2889(7)	23.266(5)	33.5518(11)
$lpha(\circ)$	81.001(2)	106.8400(10)	90	90
$\beta(\degree)$	78.9540(10)	92.6010(10)	91.29(3)	90
𝒴(°)	88.4190(10)	97.4600(10)	90	90
$V(Å^3)$	4761.5(3)	3396.6(2)	6768(2)	14273.9(8)
Ζ	1	1	2	4
$ ho_{ m calc}/ m g\cdot m cm^{-3}$	1.319	1.773	1.624	1.622
2θ range /deg	3.64 - 52.742	4.094 - 60.734	3.714 - 50.098	6.476 - 114.65
$\mu(\mathrm{mm}^{-1})$	1.068	1.419	1.565	7.975
<i>F</i> (000)	1896.0	1800.0	3280	6848
Reflections collected.	106468	48101	37944	136260
Data/restranints/Parameters	19329/81/941	16250/282/917	11941 / 297/ 751	26085/500/1290
$R1, wR_2(I \ge 2\sigma(I))^*$	$R_1 = 0.0483, wR_2 = 0.1467$	$R_1 = 0.0425, wR_2 = 0.1161$	R1 = 0.0789, wR2 = 0.1871	R1 = 0.0539, wR2 = 0.1373
R1, wR ₂ (all data)**	$R_1 = 0.0665, wR_2 = 0.1563$	$R_1 = 0.0494, wR_2 = 0.1200$	R1 = 0.0960, wR2 = 0.1954	R1 = 0.0574, $wR2 = 0.1396$
GOF (F^2)	1.122	1.048	1.115	1.054
Largest diff. peak/hole / e Å-3.	0.76/-1.11	1.73/-1.29	1.61/-1.54	1.60/-0.96
CCDC NO.	2355794	2355793	2355795	2355796

Table S1. Crystal data collection and structure refinement parameters for compounds 1-4

* $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ and $Rw^b = [\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma w(F_o^2)^2]^{1/2}$

1 2 3 4 β-Mo₈O₂₆ 1.693(3) Mo-O_t 1.6844(15)1.686(7)1.664(7)1.690(2)1.695(3) 1.7019(13) 1.692(7)1.676(9) 1.695(2) 1.702(3) 1.698(7) 1.698(2) 1.7030(14) 1.688(10)1.704(4)1.7090(11) 1.701(7) 1.692(8) 1.700(2) 1.709(3) 1.7108(12) 1.709(8) 1.694(8) 1.706(2)1.728(3) 1.7167(13) 1.724(7)1.696(8) 1.709(2) 1.730(3)1.7199(13) 1.739(6) 1.707(8) 1.713(2)1.717(8) 1.720(8) 1.728(8) 1.730(9) 1.738(7) 1.741(8) 1.743(10) Mo-O_b 1.737(3) 1.7461(13) 1.745(7)1.746(9) 1.745(2)1.880(3) 1.8746(12) 1.854(6) 1.811(8) 1.881(2)1.880(3)1.8949(13) 1.875(6) 1.889(8) 1.893(2) 1.916(3) 1.945(6) 1.889(8) 1.931(2) 1.9175(12) 1.921(3) 1.9355(10) 1.966(6) 1.905(8) 1.933(2) 2.267(3)2.2771(13) 2.262(6) 1.909(8) 2.296(2) 1.915(8) 1.916(8) 1.920(7) 1.940(7) 2.265(9) 2.267(8) 1.932(3) 1.9350(10) 1.937(6) 1.935(7)1.944(2) Mo-µ₃-O 1.935(3) 1.9482(10) 1.939(6) 1.945(7)1.951(2) 1.985(3) 2.0116(12) 2.009(6) 1.953(7)1.982(2)1.992(3) 2.0145(12) 2.010(6) 1.998(2) 1.960(7)2.2736(12) 2.323(6) 2.357(3) 1.961(7)2.331(2) 2.373(3)2.3003(12) 2.352(6) 1.974(7)2.343(2)2.006(8) 2.024(7)2.322(7)2.346(7) 2.362(7)2.375(7)

Table S2 Selected bond lengths of compounds 1 - 4.

Mo-µ5-O	2.146(3)	2.1720(11)	2.183(6)	2.150(7)	2.150(1)
	2.256(3)	2.2683(9)	2.256(6)	2.158(8)	2.309(2)
	2.262(3)	2.3045(10)	2.306(6)	2.255(7)	2.325(1)
	2.457(3)	2.3387(12)	2.401(6)	2.278(7)	2.382(2)
	2.560	2.5059(11)	2.474(6)	2.310(8)	2.463(2)
				2.322(8)	
				2.397(8)	
				2.425(7)	
				2.492(8)	
				2.536	
	I		L		
Cu-O	2.078(3)		2.094(6)		
	2.081(3)		2.137(7)		
	·	·		·	·
Cu-P	2.2415(14)		2.232(3)		
	2.2447(13)		2.241(3)		
	2.2735(14)		2.254(3)		
	2.2782(14)		2.245(3)		
Cu-N	2.032(5)		1.98(1)		
	2.048(4)				
Ag-O		2.3713(11)		2.366(8)	
		2.3806(13)		2.439(8)	
		2.3884(13)		2.491(7)	
		2.5002(12)		2.506(8)	
Ag-N				2.437(12)	
				2.459(12)	
Ag-P		2.3613(5)		2.417(3)	
		2.4164(5)		2.423(3)	
		2.4365(5)		2.434(3)	
				2.433(3)	
				2.442(3)	
				2.442(3)	
				2.464(3)	
				2.467(3)	

The bond lengths of β -Mo₈O₂₆ were obtained from the Ref "Polyhedron 18 (1999) 3371– 3375"

Compound 1							
D-HA	d(D-H) Å	d(HA) Å	d(DA) Å	<(DHA) °			
C116-H116O12	0.95	2.54	3.2110(1)	128			
C124-H124O9#1	0.95	2.55	3.1452(1)	122			
C132-H132O6	0.95	2.51	3.4025(1)	157			
С232-Н232О10	0.95	2.36	3.2195(1)	150			
С335-Н335О8	0.95	2.38	3.1792(1)	141			
C232-H232O10#1	0.95	2.36	3.2801(1)	162			
Symmetry code: #1: 1-	-x, -y, 1-z;						
Compound 2							
C115-H115O8 ^{#1}	0.95	2.50	3.3353(1)	146			
C124-H124O12#2	0.95	2.41	3.4568(1)	160			
С222-Н222О8	0.95	2.57	3.3618(1)	141			
Symmetry code: #1: 1-	-x, 1-y, 1-z; ^{#2} :	-1+x, y, z					
Compound 3							
C4-H4AO8	0.98	2.52	3.4685(8)	163			
С32-Н32О9	0.95	2.41	3.2831(7)	144			
C32-H32O6#1	0.95	2.58	3.3889(8)	143			
C35-H35O3#2	0.95	2.55	3.3351(8)	140			
C76-H76O10 ^{#1}	0.95	2.29	3.1299(7)	147			
C82-H82O7#3	0.95	2.58	3.2449(7)	127			
C76-H76O10 ^{#3}	0.95	2.52	3.2698(7)	136			
Symmetry code: #1: -x	x, -y, 2-z; #2: 1-x	x, -y, 2-z; ^{#3} : -x,	1/2+y, 3/2-z;				
Compound 4							
C3-H3BO3#1	0.99	2.40	3.3203(1)	155			
C116-H116O19#2	0.95	2.48	3.0974(1)	123			
C213-H213O2#2	0.95	2.38	3.2471(1)	151			
C512-H512O3#3	0.95	2.44	3.3634(1)	163			
C513-H513O15#3	0.95	2.44	3.1964(1)	136			
Symmetry code: #1: 1/2-x, -1/2+y, -1/2+z; #2: 1/2+x, 3/2-y, z; #3: -1/2+x, 1/2-y, z;							

Table S3 Summary of hydrogen bonding in compounds 1-4.

Compound 1	$[Cu(TPP)_2(CH_3CN)_2]_2\{[Cu(TPP)_2]_2(\beta-Mo_8O_{26})\}\cdot 2CH_3CN$						
	Mo1	Mo2	Mo3	Mo4		Cu1	Cu2
O(1)	1.61				P(1)	0.48	
O(2)	1.80				P(2)	0.48	
O(3)		1.73			P(3)		0.44
O(4)		1.71			P(4)		0.43
O(5)			1.74		N(1)		0.32
O(6)			1.62		N(2)		0.31
O (7)				1.77	O(1)	0.27	
O(8)		0.38		1.58	O(6)	0.27	
O(9)	1.08	0.96					
O(10)	0.79		0.30	0.93			
O (11)		0.98	1.08				
O(12)	0.28		0.81	0.93			
O(13)	0.39	0.17	0.38	0.52			
O(13) ¹				0.23			
\sum s	5.95	5.93	5.75	5.96		1.50	1.50

Table S4 BVS results of compound 1.

Compound 2		$\{[Ag(TPP)]_2 \cdot [Ag(TPP)_2]_2 \cdot (\beta \cdot Mo_8O_{26})\} \cdot 6DMF$						
	Mo1	Mo2	Mo3	Mo4		Agl	Ag2	
O(1)	1.67				P(1)	0.68		
O(2)	1.83				P(2)		0.56	
O(3)		1.66			P(3)		0.59	
O(4)		1.71			O(1)	0.21		
O(5)			1.74	0.31	O(3)	0.22		
O(6)	0.37		1.54		O(4)		0.15	
O (7)				1.74	O(5)	0.08		
O(8)				1.70	O(7)	0.11		
O(9)	0.93	1.09			O(8)		0.21	
O(10)		0.75	0.93					
O (11)		0.37	0.89	0.75				
O(12)	0.97			1.03				
O(13)	0.20	0.34	0.49	0.38				
O(13) ¹			0.31					
\sum s	5.97	5.92	5.90	5.91		1.30	1.51	

Table S5 BVS results of compound ${f 2}$

Compound 3	$\{ [Cu_2(DPPM)_2(CH_3CN)]_2 [\beta - Mo_8O_{26}] \} \cdot 2CH_3CN \cdot 2DCM$						
	Mo1	Mo2	Mo3	Mo4		Cu1	Cu2
O (1)	1.59				P(1)	0.48	
O(2)	1.83				P(2)		0.47
O(3)		1.80			P(3)	0.49	
O(4)		1.55			P(4)		0.48
O(5)			1.75	0.38	O(1)		0.26
O(6)			1.65		O(6)		0.23
O (7)				1.74	N(1)	0.37	
O(8)				1.72			
O(9)	0.74	0.92	0.30				
O(10)	0.41	0.92	0.76				
O (11)	1.16		1.09	0.91			
O(12)		0.26		0.84			
O(13)	0.35	0.46	0.38	0.22			
∑s	6.01	5.92	5.93	5.81		1.34	1.44

Table S6 BVS results of compound **3**

Compound 4	$\{[Ag_2(DPPM)_2 \cdot (CH_3CN)]_2(\beta - Mo_8O_{26})\} \cdot 2CH_3CN \cdot 2DCM$							
	Mo1	Mo2	Mo3	Mo4	Mo5	Mo6	Mo7	Mo8
O (1)	1.63							
O(2)	1.78							
O(3)		1.74						
O (4)		1.77						
O(5)			1.86					
O(6)			1.79					
O (7)			0.38	1.56				
O(8)				1.92				
O(9)					1.28	0.38		
O(10)					1.66			
O (11)						1.61		
O(12)						1.56		
O(13)							1.57	
O(14)							1.77	
O(15)								1.67
O(16)								1.57
O (17)	1.05		1.00					
O(18)		0.97				0.99		
O(19)			0.96				1.05	
O(20)						0.91		1.01
O(21)	0.30	0.85		0.89				
O(22)	0.77	0.29			0.93			
O(23)				0.88			0.29	0.86
O(24)					0.86		0.73	0.33
O(25)	0.39		0.18	0.25	0.52		0.37	
O(26)		0.34		0.51	0.26	0.21		0.36
$\sum \mathbf{s}$	5.92	5.96	6.17	6.01	5.51	5.66	5.78	5.80
	Ag1	Ag2	Ag3	Ag4				
P(1)	0.55							

Table S7 BVS results of compound 4

P(2)		0.55			
p(3)	0.57				
P(4)		0.57			
P(5)			0.56		
P(6)				0.58	
P(7)			0.52		
P(8)				0.51	
O (1)	0.18				
O(4)		0.22			
O(13)			0.22		
O(16)				0.16	
N(1)	0.20				
N(2)				0.18	
∑s	1.50	1.34	1.30	1.43	

	Mo	Cu1	Cu2	Ag1	Ag2	Ag3	Ag4
1	1.26~1.42	0.45		-	-	-	-
2	1.39~1.49	-	-	0.58	0.52	-	-
3	1.17~1.44	0.33	0.55	-	-	-	-
4	1.31~1.36	-	-	0.39	0.49	0.48	0.41

Table S8 NBO Calculation Results of compounds 1-4.

Computational Details

To perform natural population analysis for the obtained compounds, quantum chemical calculations were carried out using density functional theory with the hybrid functional B3LYP-D3 as implemented in the Gaussian 16 program. Here, the empirical formula DFT-D3 was used for dispersion corrections. All geometry optimizations were carried out with the 6–31G(d,p) basis sets for the H, C, N, O and P elements, and the LanL2DZ pseudopotential and its corresponding basis sets for all metal atoms, including Mo, Cu and Ag.

	1	2	3	4
DCM	<0.01mg/ml	<0.01mg/ml	<0.01mg/ml	<0.01mg/ml
CH ₃ CN	<0.01mg/ml	<0.01mg/ml	<0.01mg/ml	<0.01mg/ml
CH ₃ OH	<0.01mg/ml	<0.01mg/ml	<0.01mg/ml	<0.01mg/ml
H ₂ O	<0.01mg/ml	<0.01mg/ml	<0.01mg/ml	<0.01mg/ml
DMF	0.28mg/ml	0.43mg/ml	<0.01mg/ml	<0.01mg/ml

Table S9 Solubility of compounds 1-4 in common solvents.

The gravimetric method was used to measure solubility (Table **S9**). Firstly, the excess compound and solvent were mixed in a round-bottomed flask and stirred for more than 5h using a magnetic stirrer at room temperature. After stopping stirring for a period of time, about 10mL of the upper clarified solution was filtered with a filter with $0.22\mu m$ pores and transferred into a preweighed vial to obtain a saturated solution. The total weight was then immediately measured by the balance and then put it in the vacuum oven to evaporate the solvent. The round-bottomed flask was reweighed after complete drying. Each experiment was performed three times, and the arithmetic mean was used as the final result.

Figure S1. FT-IR spectrum of compound 1

Figure S2. FT-IR spectrum of compound 2

Figure S3. FT-IR spectrum of compound **3**

Figure S4. FT-IR spectrum of compound 4

Figure S5. Diagrams of coordination sphere in compounds 1 (a), 2 (b), 3 (c), 4 (d) and β -octamolybdates (e).

Figure S6. Diagrams of cluster skeleton of β -octamolybdates (a), compounds 1 (b), 2 (c), 3 (d) and 4 (e).

Figure S7. The distances between the planes of two adjacent Mo₄ rings (light yellow) and the planes of two adjacent Mo₂O₂ rings (light green) in compounds 1 (a), 2 (b), 3 (c) and 4 (d) and β -octamolybdates (e).

Figure S8. Solid UV/Vis absorption spectra of compounds 1-4.

Figure S9. XRD spectrum of compound 1.

Figure S10. XRD spectrum of compound 2.

Figure S11. XRD spectrum of compound 3

Figure S12. XRD spectrum of compound 4

Figure S14. TGA and DTG of compound **2**.

Figure S16. TGA and DTG of compound 4.

Figure S17. Luminescent spectra of compounds 1 (a),2 (b),3 (c),4 (d) in their DMF solutions.

Figure S18. Luminescent spectra of CuTPP₂ (a), AgTPP₂ (b), Cu₂DPPM₂ (c), Ag₂DPPM₂ (d) in their DMF solutions.

Figure S19. Luminescence lifetime of compounds 1(a), 2(b), 3(c), 4(d).

Figure S20. Luminescence lifetime of $CuTPP_2$ (a), $AgTPP_2$ (b), Cu_2DPPM_2 (c), Ag_2DPPM_2 (d).