Effect of Supramolecular Complexation of Alkali Hydrogenselenates with Crown Ethers and solid-solutions with their Hydrogensulfate Counterparts on the Solid-Solid Phase Transition Behaviors

Samet Ocak,^{a,b} Dario Braga,^a Simone d'Agostino^{a,*}

^a The University of Bologna - Department of Chemistry "Giacomo Ciamician", Via F. Selmi 2, 40126, Bologna (BO), 40126, Italy.

^bCurrent address: Institute for Microelectronics and Microsystems - Research National Council (IMM-CNR), Via Pietro Gobetti 101, 40129, Bologna (BO), Italy.

Table of contents	Page			
Crystal data and refinement details for: $1.2H_2O$, $2.H_2O$, and $3.H_2O$	ESI-2			
Comparisons of calculated and experimental powder patterns: a) $1 \cdot 2H_2O$, b) $2 \cdot H_2O$, and c) $3 \cdot H_2O$				
DSC trace of [18-crown-6·K]HSeO ₄ ·2H ₂ O	ESI-3			
VT-PXRD of [18-crown-6·K]HSeO ₄	ESI-3			
Comparison of the powder patterns of [18-crown-6·K]HSeO ₄ and 18-crown-6·KHSO ₄				
DSC trace of [18-crown-6·Rb]HSeO ₄ ·H ₂ O	ESI-5			
Comparison of the powder patterns of [18-crown-6·Rb]HSeO ₄ and [18-crown-6·Rb]HSO ₄	ESI-6			
DSC trace of [18-crown-6·Cs]HSeO ₄ ·H ₂ O	ESI-6			
Comparison of the powder patterns of [18-crown-6·CsHSO ₄], 18-crown-6·CsHSeO ₄ , and [18-				
crown-6·Rb]HSeO ₄				
PXRD of [18-crown-6·K](HSeO ₄) _x (HSO ₄) _{1-x}	ESI-7			
PXRD of $[18$ -crown-6·K](HSeO ₄) _x (HSO ₄) _{1-x} .	ESI-7			
DSC traces of solid-solutions [18-crown-6·K](HSeO ₄) _x (HSO ₄) _{1-x} .	ESI-8			
VT-PXRD of [18-crown-6·K](HSO ₄) _{0.5} (HSeO ₄) _{0.5}	ESI-8			
PXRD of [18-crown-6·Cs](HSeO ₄) _x (HSO ₄) _{1-x}	ESI-9			
DSC traces of $[18$ -crown-6·Cs](HSeO ₄) _x (HSO ₄) _{1-x}	ESI-9			
VT-PXRD of [18-crown-6·Cs](HSO ₄) _{0.5} (HSeO4) _{0.5} .	ESI-10			
VT-PXRD of 18-crown-6·Cs(HSO ₄) _{0.75} (HSeO ₄) _{0.25}	ESI-10			
DSC trace of the trial of [18-crown-6·Rb](HSeO ₄) _{0.5} (HSO ₄) _{0.5}	ESI-11			
Metal coordination and hydrogen bonds in [18-crown-6·K](HSeO ₄) _x (HSO ₄) _{1-x} (with $x = 1, 0.5, 0$)	ESI-11			

	[18-crown-6·K] HSeO4·2H2O	[18-crown-6∙Rb] HSeO₄∙H₂O	[18-crown-6∙Cs] HSeO₄∙H₂O	[18-crown-6·K] HSeO4	[18-crown-6·K] (HSeO4) _{0.5} (HSO ₄) _{0.5}
Formula	$C_{12}H_{25}KO_{10}Se \cdot 2(H_2O)$	$C_{12}H_{25}O_{10}RbSe\cdot H_2O$	C ₁₂ H ₂₄ CsO ₁₁ Se·H ₂ O	C ₁₂ H ₂₄ KO ₁₁ Se	$C_{12}H_5KO_{11}Se_{0.5}S_{0.5}$
FW (g/mol)	483.41	511.76	556.18	447.38	423.93
Cryst. Sys.	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space Group	Cc	C2/c	I2/a	P2 ₁ /n	P2 ₁ /n
a/Å	14.4882(5)	22.1681(14)	23.7101(16)	10.3653(5)	10.3093(8)
b/Å	17.5369(5)	9.9047(4)	8.4597(7)	8.5649(6)	8.5230(6)
c/Å	8.4421(3)	20.5896(12)	21.3553(18)	21.5820(14)	21.5977(15)
α/°	90	90	90	90	90
β/°	100.351	117.183	109.486	100.137(5)	99.684(7)
γ/°	90	90	90	90	90
Volume/Å ³	2110.04(12)	4021.5(5)	4038.1(6)	1886.1(2)	1870.7(2)
Z	4	8	8	4	4
ρ _{calc} g/cm ³	1.522	1.691	1.83	1.576	1.505
μ/mm ⁻¹	2.03	4.32	3.69	2.256	1.358
measd rflns	4271	8182	8935	8987	8510
indep rflns	2952	4533	4576	4269	4312
R ₁	0.054	0.05	0.079	0.0998	0.0800
wR ₂	0.145	0.074	0.189	0.2103	0.1624

Table ESI-1. Crystal data and refinement details for: [18-crown-6·K]HSeO₄·2H₂O, [18-crown-6·Rb]HSeO₄·H₂O, [18-crown-6·Cs]HSeO₄·H₂O,[18-crown-6·K]HSeO₄, and the solid solution [18-crown-6·K](HSeO₄)_{0.5}.

Figure ESI-1. Comparisons of calculated and experimental powder patterns: a) $1.2H_2O$, b) $2.H_2O$, and c) $3.H_2O$.

Figure ESI-2. DSC trace of [18-crown-6·K]HSeO₄·2H₂O

Figure ESI-3. Comparison of the powder patterns of [18-crown-6·K]HSeO₄ and 18-crown-6·KHSO₄ in increasing temperatures.

Figure ESI-4. DSC trace of [18-crown-6·Rb]HSeO₄·H₂O

Figure ESI-5. Comparison of the powder patterns of [18-crown- $6\cdot$ Rb]HSeO₄ and 18-crown- $6\cdot$ RbHSO₄ in increasing temperatures.

Figure ESI-6. DSC trace of [18-crown-6·Cs]HSeO₄·H₂O

Figure ESI-7. Comparison of the powder patterns of [18-crown-6·CsHSO₄], 18-crown-6·CsHSeO₄, and 18-crown-6·RbHSeO₄ in increasing temperatures.

Figure ESI-8. PXRD of [18-crown-6·K](HSeO₄)_x(HSO₄)_{1-x}.

Figure ESI-9. DSC traces of [18-crown-6·K](HSeO₄)_x(HSO₄)_{1-x}. a) x=0.75, b) x=0.5, c) x=0.25.

Figure ESI-10. VT-PXRD of 18-crown-6·K(HSO₄)_{0.5}(HSeO₄)_{0.5}.

Figure ESI-11. PXRD of [18-crown-6·Cs](HSeO₄)_x(HSO₄)_{1-x}.

Figure ESI-12. DSC traces of [18-crown-6·Cs](HSeO₄)_x(HSO₄)_{1-x}. a) x=0.75, b) x=0.5, c) x=0.25.

Figure ESI-13. VT-PXRD of 18-crown-6·Cs(HSO₄)_{0.5}(HSeO₄)_{0.5}.

Figure ESI-14. VT-PXRD of 18-crown-6·Cs(HSO₄)_{0.75}(HSeO₄)_{0.25}.

Figure ESI-15. DSC trace of the trial of [18-crown-6·Rb](HSeO₄)_{0.5}(HSO₄)_{0.5}

Table ESI-2. Metal coordination distances and hydrogen bonding interactions detected within crystalline [18-crown- $6\cdot$ K]HSO₄, [18-crown- $6\cdot$ K]HSeO₄, and their solid solution [18-crown- $6\cdot$ K](HSeO₄)_{0.5}(HSO₄)_{0.5}.

	[18-crown-6·K]HSO ₄	[18-crown-6·K](HSeO ₄) _{0.5} (HSO ₄) _{0.5}	[18-crown-6·K]HSeO ₄
K ⁺ ··· O _{anion}	2.803(7) - 2.850(7)	2.7403 - 2.9966	2.842(7) - 2.881(7)
H-bond			
(O _{anion} O _{anion})	2.561(8)	2.4750 - 2.8815	2.555(8)