Supporting Information

Constructing Layered Structure Amidine-Based Pentazolate Salts

with Low Sensitivity

Pengfei Wang¹, Lile Liu¹, Zebang Sun¹, Feng qin¹, Lei Shi¹, Chao gao¹, Yang Du¹, Chong Zhang¹ Bingcheng Hu¹ and Chengguo Sun^{1,2} *

¹ School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China;

² School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, China;

E-mail: cgsun@njust.edu.cn

Contents

1.	Experimental section.	3
2.	IR, Raman and ¹ H NMR spectrum	5
3.	Crystal structure data	8
4.	TG analysis	15
5.	ESP and NCI analysis	15
7.	References	20

1. Experimental section.

Caution! Although the authors did not encountered difficulties in dealing with these energetic materials, some compounds in this study are extremely dangerous. Every step must be carried out on a small scale and according to the best safety practices such as wearing face shields and leather gloves.

1.1 Reagents and instruments

All reagents and solvents were purchased from MACKLIN and Aladdin as analytical grade and were used as received. TG and DSC plots were acquired on a simultaneous thermal analyzer (Netzsch STA449 F3) at a scan rate of 10 °C/min⁻¹ in perforated Al containers under a nitrogen flow of 50 mL /min⁻¹. IR spectra were recorded on a Bruker ALPHA II fourier transform infrared spectrometer. Mass spectrum analyses were carried out on a Thermo Scientific mass spectrometer. Powder X-ray diffraction (PXRD) measurements were performed on a Bruker D8 QUEST X-ray diffractometer using Mo K α (λ =0.71073Å) radiation. Morphology scanning were performed under thermal field emission scanning electron microscope (Apreo s). Impact and friction sensitivity measurements were performed using a standard BAM Fallhammer and BAM friction tester. The 1H spectra were recorded on a 500MHz (Bruker AVANCE III 500) nuclear magnetic resonance spectrometer. Elemental analyses were performed on a vario EL III CHNOS elemental analyzer.

1.2 Computational methods

All enthalpy calculations were performed with the Gaussian09 (Revision D.01) suite of programs¹. The geometric optimization, frequency analysis and single-point energies were accomplished at the B3LYP/6-311+G** level. The enthalpy of an isodesmic reaction was obtained by combining the B3LYP/6-311+G** energy difference for the reactions, the scaled zero point energies (ZPE), values of thermal correction (HT), and other thermal factors. The solid phase heat of formation was calculated based on the Born–Haber energy cycle according to the literature method. The NCI and ESP plots were calculated using Multiwfn and visualized using the VMD program²⁻⁶. Hirshfeld surfaces and associated 2D fingerprints were generated using CrystalExplorer17⁷.

1.3 X-ray crystallography

The single-crystal X-ray diffraction measurements for all the compounds were conducted on a Bruker D8 QUEST diffractometer using Mo-K α radiation (λ =0.71073Å) with a graphite monochromator at 150K or 293 K. An Oxford Cobra low temperature device was used to maintain the low temperature. Integration and scaling of intensity data were accomplished using the SAINT program. The structures were solved by intrinsic methods using SHELXT2018 and refinement was carried out by a full-matrix least-squares technique using SHELXL2018/3 Hydrogen atoms were refined isotropically, and the heavy atoms were refined anisotropically. N–H and O–H hydrogens were located from different electron density maps, and C–H hydrogens were placed in calculated positions and refined with a riding model. Data were corrected for the effects of absorption using SADABS. Relevant crystal data and refinement results are summarized in Table S1-S28.

1.4 Synthetic procedures

AgN₅ was synthesized according to our previous method.

Formamidine pentazolate (1): Dispersed 1.05 mmol of pentazolate silver salt in a mixed solution of methanol and water in a ratio of 9:1. Added 1.00 mmol of methanol solution of methylamine hydrochloride to the above mixed solution. The reaction was stirred at room temperature for 6 hours under dark conditions. Filtered to remove silver chloride precipitate, and dried the filtrate under reduced pressure to obtain a white solid. Yield:109.2 mg (0.95 mmol, 95%). Td (onset): 105 °C. IR:

 \tilde{v} = 3152, 3035, 1702, 1418, 1327, 1215, 1067, 655, 559 cm⁻¹. Raman: \tilde{v} = 3037, 1674, 1413, 1170, 1124, 1064, 690, 563 cm⁻¹. m/z (ESI⁺-MS): 44.83 [M-N₅]⁺. IS: >40 J. FS: >360 N. 1H NMR (500 MHz, DMSO-d6) δ 8.74 (s, 4H), 7.77 (s, 1H). Elemental analysis (%) calcd. for CH₅N₇ (115.12): C, 10.44; H, 4.38; N, 85.18; found: C, 10.27; H, 4.03; N, 85.70.

Acetamidine pentazolate (2): Dispersed 1.05 mmol of pentazolate silver salt in a mixed solution of methanol and water in a ratio of 9:1. Added 1.00 mmol of methanol solution of methylamine hydrochloride to the above mixed solution. The reaction was stirred at room temperature for 6 hours under dark conditions. Filtered to remove silver chloride precipitate, and dried the filtrate under reduced pressure to obtain a white solid. Yield:120.0 mg (0.93 mmol, 93%). Td (onset): 116 °C. IR: $\tilde{v} = 3311, 3133, 2779, 1706, 1403, 1327, 1211, 1067, 997, 655, 552 cm⁻¹. Raman: <math>\tilde{v} = 1412, 1172, 1122, 1095, 1011, 565 cm⁻¹. m/z (ESI⁺-MS): 59.11 [M-N₅]⁺. IS: >40 J. FS: >360 N. 1H NMR (500 MHz, DMSO-d6) <math>\delta$ 2.00 (s, 3H), 9.10 (s, 2H), 8.62 – 8.58 (m, 2H). Elemental analysis (%) calcd. for C₂H₇N₇ (129.15): C, 18.60; H, 5.47; N, 75.93; found: C, 18.28; H, 5.63; N, 76.09.

Cyclopropane-1-carboximidamide pentazolate (3): Dispersed 1.05 mmol of pentazolate silver salt in a mixed solution of methanol and water in a ratio of 9:1. Added 1.00 mmol of methanol solution of methylamine hydrochloride to the above mixed solution. The reaction was stirred at room temperature for 6 hours under dark conditions. Filtered to remove silver chloride precipitate, and dried the filtrate under reduced pressure to obtain a white solid. Yield:145.8 mg (0.94 mmol, 94%). Td (onset): 122 °C. IR: $\tilde{v} = 3309$, 3086, 2781, 1688, 1519, 1439, 1210, 1106, 924, 813, 755, 644, 565, 454 cm⁻¹. Raman: $\tilde{v} = 3026$, 1530, 1436, 1339, 1194, 1172, 1040, 918, 815, 766, 566, 459 cm⁻¹. m/z (ESI⁺-MS): 84.96 [M-N₅]⁺. IS: >40 J. FS: >360 N. 1H NMR (500 MHz, DMSO-d6) δ 8.44 (d, J = 123.3 Hz, 4H), 1.77 (tt, J = 8.3, 5.1 Hz, 1H), 1.11 (dddd, J = 13.8, 11.4, 8.7, 4.2 Hz, 4H). Elemental analysis (%) calcd. for C₄H₉N₇ (155.18): C, 30.96; H, 5.85; N, 63.19; found: C, 31.22; H, 5.52; N, 63.26.

Benzamidine pentazolate (4): Dispersed 1.05 mmol of pentazolate silver salt in a mixed solution of methanol and water in a ratio of 9:1. Added 1.00 mmol of methanol solution of methylamine hydrochloride to the above mixed solution. The reaction was stirred at room temperature for 6 hours under dark conditions. Filtered to remove silver chloride precipitate, and dried the filtrate under reduced pressure to obtain a white solid. Yield:172.1 mg (0.90 mmol, 90%). Td (onset): 113 °C. IR: $\tilde{v} = 3077, 2024, 1677, 1603, 1523, 1471, 1219, 1086, 782, 683, 510 \text{ cm}^{-1}$. Raman: $\tilde{v} = 3075, 1608, 1532, 1483, 1179, 1032, 995, 766 \text{ cm}^{-1}$. m/z (ESI⁺-MS):120.93 [M-N₅]⁺. IS: >40 J. FS: >360 N. 1H NMR (500 MHz, DMSO-d6) δ 9.08 (s, 4H), 7.84 – 7.78 (m, 2H), 7.78 – 7.70 (m, 1H), 7.63 (t, J = 7.8 Hz, 2H). Elemental analysis (%) calcd. for C₇H₉N₇ (191.21): C, 43.97; H, 4.75; N, 51.28; found: C, 43.64; H, 4.59; N, 51.77.

1H-1,2,4-triazole-1-carboxamidine pentazolate (5): Dispersed 1.05 mmol of pentazolate silver salt in a mixed solution of methanol and water in a ratio of 9:1. Added 1.00 mmol of methanol solution of methylamine hydrochloride to the above mixed solution. The reaction was stirred at room temperature for 6 hours under dark conditions. Filtered to remove silver chloride precipitate, and dried the filtrate under reduced pressure to obtain a white solid. Yield:167.6 mg (0.92 mmol, 92%). Td (onset): 112 °C. IR: $\tilde{v} = 3384$, 3120, 1718, 1657, 1532, 1394, 1282, 1223, 1132, 1095, 977, 872, 730, 659, 523, 461 cm⁻¹. Raman: $\tilde{v} = 3131$, 1541, 1398, 1351, 1285, 1181, 1134, 1100, 977, 692, 465 cm⁻¹. m/z (ESI⁺-MS): 111.84 [M-N₅]⁺. IS: >40 J. FS: >360 N. 1H NMR (500 MHz, DMSO-d6) δ 9.68 (s, 4H), 9.36 (dd, J = 5.9, 2.3 Hz, 1H), 8.59 – 8.46 (m, 1H). Elemental analysis (%) calcd. for C₃H₈N₁₀O (200.19): C, 18.00; H, 4.03; N, 69.98; O, 7.99; found: C, 18.33; H, 4.15;

N, 69.83; O, 7.69.

Malonamideamidine pentazolate (6): Dispersed 1.05 mmol of pentazolate silver salt in a mixed solution of methanol and water in a ratio of 9:1. Added 1.00 mmol of methanol solution of methylamine hydrochloride to the above mixed solution. The reaction was stirred at room temperature for 6 hours under dark conditions. Filtered to remove silver chloride precipitate, and dried the filtrate under reduced pressure to obtain a white solid. Yield:165.2 mg (0.96 mmol, 96%). Td (onset): 120 °C. IR: $\tilde{v} = 3067$, 1663, 1398, 1274, 1216, 870, 748, 554 cm⁻¹. Raman: $\tilde{v} = 2951$, 1505, 1421, 1176, 931, 888, 708, 561, 524 cm⁻¹. m/z (ESI⁺-MS): 101.85 [M-N₅]⁺. IS: >40 J. FS: >360 N. 1H NMR (500 MHz, DMSO-d6) δ 8.74 (d, J = 125.8 Hz, 4H), 7.70 (s, 1H), 7.34 (s, 1H), 3.35 (s, 2H). Elemental analysis (%) calcd. for C₃H₈N₈O (172.17): C, 20.93; H, 4.69; N, 65.09; O, 9.29; found: C, 21.05; H, 4.54; N, 65.03; O, 9.38.

Glycine pentazolate (7): Dispersed 1.05 mmol of pentazolate silver salt in a mixed solution of methanol and water in a ratio of 9:1. Added 1.00 mmol of water solution of methylamine hydrochloride to the above mixed solution. The reaction was stirred at room temperature for 6 hours under dark conditions. Filtered to remove silver chloride precipitate, and dried the filtrate under reduced pressure to obtain a white solid. Yield:128.5 mg (0.88 mmol, 88%). Td (onset): 116 °C. IR: $\tilde{v} = 3146, 2921, 2590, 1734, 1577, 1503, 1407, 1254, 1221, 1120, 1042, 889, 646, 492 cm⁻¹. Raman: <math>\tilde{v} = 2977, 1750, 1260, 1179, 1112, 1047, 868, 646 cm⁻¹. m/z (ESI⁺-MS): 75.85 [M-N₅]⁺. IS: >40 J. FS: >360 N. 1H NMR (500 MHz, DMSO-d6) <math>\delta$ 8.31 (s, 3H), 3.50 (s, 2H). Elemental analysis (%) calcd. for C₂H₆N₆O₂ (146.13): C, 16.44; H, 4.14; N, 57.52; O, 21.90; found: C, 16.13; H, 4.36; N, 57.82; O, 21.69.

2. IR, Raman and ¹H NMR spectrum

Figure S1. (a) IR spectra and (b) Raman spectra of compound 1-7

Figure S2. ¹H NMR analysis of compound 1

Figure S3. ¹H NMR analysis of compound 1

Figure S4. ¹H NMR analysis of compound 3

Figure S5. ¹H NMR analysis of compound 4

Figure S6. ¹H NMR analysis of compound 5

Figure S7. ¹H NMR analysis of compound 6

Figure S8. ¹H NMR analysis of compound 7

3. Crystal structure data

Table S1. Crystal data and structure remement for 1-4				
Crystal	1	2	3	4
CCDC number	2322435	2322436	2322437	2322438
Empirical formula	CH5N7	C2H7N7	C4H9N7	C7H9N7
Formula weight	115.12	129.125	155.163	191.21
Temperature [K]	296(2)	273.15	273.15	296(2)
Createl and	monoclinic	orthorhombi	monoclinic	triclinic
Crystal system		с		
Space group (number)	C2/c (15)	Pnma (62)	<i>P</i> 2 ₁ / <i>m</i> (11)	$P\overline{1}$ (2)
<i>a</i> [Å]	4.9752(6)	13.629(1)	7.0037(15)	3.9161(5)
<i>b</i> [Å]	15.7038(18)	6.5997(6)	7.0175(15)	9.7152(11)
<i>c</i> [Å]	7.0385(10)	7.4672(5)	7.7191(16)	12.5718(14)
α [°]	90	90	90	84.813(3)
β [°]	107.756(4)	90	96.937(7)	86.135(4)
γ [°]	90	90	90	83.993(4)
Volume [Å ³]	523.72(12)	671.65(9)	376.60(14)	472.92(10)
Ζ	4	4	2	2
$ ho_{ m calc} [m gcm^{-3}]$	1.460	1.277	1.368	1.343
$\mu [\mathrm{mm}^{-1}]$	0.116	0.098	0.100	0.094
<i>F</i> (000)	240	272.210	164.119	200
	0.180×0.170×0.1	0.22×0.2×0.	0.4×0.2×0.2	0.200×0.030×0.0
Crystal size [mm ³]	60	19		10
Crystal colour	colourless	colourless	colourless	colourless
Crystal shape	block	plate	block	needle
	ΜοΚα	Μο Κα	Μο Κα	ΜοΚα
Radiation	(λ=0.71073 Å)	(λ=0.71073	(λ=0.71073	(λ=0.71073 Å)
		Å)	Å)	
20 [0]	5.19 to 54.86	6.22 to 54.90	5.32 to 50.12	4.23 to 55.13
20 range [°]	(0.77 Å)	(0.77 Å)	(0.84 Å)	(0.77 Å)
	$-6 \le h \le 5$	$-14 \le h \le 17$	$-8 \le h \le 7$	$-5 \le h \le 5$
Index ranges	$-20 \le k \le 20$	$-8 \le k \le 8$	$-8 \le k \le 8$	$-12 \le k \le 12$
	$-8 \le l \le 9$	$-8 \le l \le 9$	$-8 \le l \le 9$	$0 \le l \le 16$
Reflections collected	2234	5669	5041	2115
	596	836	727	2115
	Rint = 0.0258	Rint =	Rint =	Rint = ?
Independent reflections	Rsigma = 0.0253	0.0333	0.1434	Rsigma = 0.0510
		Rsigma =	Rsigma =	
		0.0244	0.0714	
Completeness to θ =	98.3 %	99.6 %	99.3 %	97.7 %
22.734°				
Data/Restraints/Paramet	596/0/38	836/0/62	727/1/87	2115/0/128
ers				

Table S1. Crystal data and structure refinement for 1-4

Goodness-o	of-fit on F^2	1.090	1.0424	1.0564	1.043
Final <i>R</i> indexes		R1 = 0.0341 wR2 = 0.0805	R1 = 0.0444 wR2 =	R1 = 0.0580 wR2 =	R1 = 0.0547 wR2 = 0.1222
[1226(1)]			0.1078	0.1201	
Final <i>R</i> ind [all data]	exes	R1 = 0.0453 wR2 = 0.0855	R1 = 0.0687 wR2 =	R1 = 0.0881 wR2 =	R1 = 0.0969 wR2 = 0.1373
Largest	peak/hole	0.16/-0.13	0.1230 0.22/-0.22	0.1406 0.35/-0.37	0.17/-0.17
$ eA^{-3} $					

Table S2. Crystal data and structure refinement for 5-7

Crystal	5	6	7
CCDC number	2322439	2322440	2322441
Empirical formula	$C_3H_8N_{10}O$	$C_3H_8N_8O$	$C_2H_6N_6O_2$
Formula weight	200.19	172.17	146.13
Temperature [K]	273.15	273.15	273.15
Crystal system	monoclinic	monoclinic	triclinic
Space group (number)	<i>P2</i> ₁ / <i>c</i> (14)	$P2_1/c$ (14)	$P\overline{1}$ (2)
<i>a</i> [Å]	6.450(5)	4.8465(4)	5.2112(15)
<i>b</i> [Å]	12.008(10)	9.6906(7)	7.849(2)
<i>c</i> [Å]	12.141(11)	16.5974(12)	7.880(3)
α [°]	90	90	78.116(9)
β [°]	102.19(3)	92.765(2)	76.103(10)
γ [°]	90	90	73.730(9)
Volume [Å ³]	919.0(13)	778.60(10)	297.01(16)
Ζ	4	4	2
$ ho_{ m calc} [m gcm^{-3}]$	1.447	1.469	1.634
$\mu [\mathrm{mm}^{-1}]$	0.117	0.118	0.141
<i>F</i> (000)	416	360	152
Crystal size [mm ³]	0.18×0.12×0.11	0.13×0.12×0.11	0.3×0.2×0.2
Crystal colour	light colourless	colourless	colourless
Crystal shape	block	block	block
Dediction	MoK_{α}	ΜοΚα	MoK_{α}
Kaulation	(λ=0.71073 Å)	(λ=0.71073 Å)	(λ=0.71073 Å)
20 man and [0]	4.83 to 48.60	4.87 to 50.05	5.39 to 49.98
	(0.86 Å)	(0.84 Å)	(0.84 Å)
	$-7 \le h \le 6$	$-5 \le h \le 5$	$-6 \le h \le 6$
Index ranges	$-13 \le k \le 12$	$-10 \le k \le 11$	$-9 \le k \le 9$
	$-10 \le l \le 14$	$-19 \le l \le 19$	$-9 \leq l \leq 9$
Reflections collected	3729	6507	2455
	1478	1376	1030
Independent reflections	$R_{\rm int} = 0.0800$	$R_{\rm int} = 0.0541$	$R_{\rm int} = 0.0265$
	$R_{\rm sigma} = 0.1197$	$R_{\rm sigma} = 0.0461$	$R_{\rm sigma} = 0.0327$
Completeness to	98.7 %	99.9 %	97.7 %

$\theta = 24.302^{\circ}$			
Data/ Restraints /	1478/0/120	1276/0/100	1020/0/115
Parameters	14/8/0/130	1370/0/109	1030/0/113
Goodness-of-fit on F^2	1.034	1.040	1.080
Final R indexes	$R_1 = 0.0625$	$R_1 = 0.0404$	$R_1 = 0.0315$
[<i>I</i> ≥2σ(<i>I</i>)]	$wR_2 = 0.1120$	$wR_2 = 0.0929$	$wR_2 = 0.0833$
Final R indexes	$R_1 = 0.1410$	$R_1 = 0.0573$	$R_1 = 0.0346$
[all data]	$wR_2 = 0.1341$	$wR_2 = 0.1013$	$wR_2 = 0.0855$
Largest peak/hole	0.21/0.28	0.22/0.26	0.20/0.16
[eÅ ⁻³]	0.21/-0.28	0.23/-0.20	0.20/-0.10

 Tab S3. Bond length of pentazole formamidine						
Parameter	Bond length(Å)	Parameter	Bond length(Å)			
 N1-N2	1.318(3)	N3-N3	1.323(4)			
N2-N3	1.312(4)	N4-C1	1.294(3)			

Tab S4. Bond angle of pentazole formamidine						
Parameter	Bond angle(o)	Parameter	Bond angle(o)			
N2-N1-N2	108.2(3)	N2-N3-N3	108.1(13)			
N3-N2-N1	107.8(2)	N4-C1-N4	125.2(5)			

Table S5.	Torsion	angle of	of pentaz	ole for	rmamidine
-----------	---------	----------	-----------	---------	-----------

Parameter	Torsion angle(°)	Parameter	Torsion angle(°)
N1-N2-N3-N3	-0.8(3)	N2-N1-N2-N3	-0.32(12)

Table S6. Bond length of pentazole acetamidine					
Parameter	Bond length(Å)	Parameter	Bond length(Å)		
N1-N5	1.302(4)	N4-N5	1.306(4)		
N1-N2	1.313(4)	N6-C2	1.296(4)		
N2-N3	1.297(4)	C1-C2	1.486(5)		
N3-N4	1.313(4)	C2-N7	1.295(4)		

Table S7.	Bond angle of pentazole acetami	dine

Parameter	Bond angle(o)	Parameter	Bond angle(o)			
N5-N1-N2	108.4(2)	N1-N5-N4	107.6(2)			
N3-N2-N1	107.8(3)	N7-C2-N6	121.7(3)			
N2-N3-N4	108.1(3)	N7-C2-C1	119.5(3)			
N5-N4-N3	108.1(3)	N6-C2-C1	118.8(3)			

Table S8. Torsion angle of pentazole acetamidine

ParameterTorsion angle(°)ParameterTorsion angle(°)		8	1	
	Parameter	Torsion angle(°)	Parameter	Torsion angle(°)

N4-N3-N2-N1	-0.14(2)	C1-C2-N6-N7	178.95(3)	
N3-N4-N5-N1	-0.10(2)	N6-N7-C1-C2	178.92(3)	
N6-C3-C2-N7	178.95(3)	N5-N4-N3-N2	0.12(2)	
N2-N1-N5-N4	0.00(2)	N5-N1-N2-N3	0.10(2)	
	. ,			

Table S9. Bond length of pentazole cyclopropane-1-carboxi-midamide

Parameter	Bond length(Å)	Parameter	Bond length(Å)
N1-N2	1.302(4)	N7-C1	1.304(4)
N1-N5	1.305(4)	C1-C2	1.456(5)
N2-N3	1.314(4)	C2-C3	1.505(3)
N3-N4	1.312(4)	C2-C3	1.505(3)
N4-N5	1.309(4)	C3-C3	1.470(5)
N6-C1	1.316(4)		

Table S10. Bond angle of pentazole cyclopropane-1-carboxi-midamide

Parameter	Bond angle(°)	Parameter	Bond angle(°)
N2-N1-N5	108.6(3)	N7-C1-C2	118.7(3)
N1-N2-N3	107.5(3)	N6-C1-C2	121.0(3)
N4-N3-N2	108.3(3)	C1-C2-C3	120.3(2)
N5-N4-N3	107.4(3)	C1-C2-C3	120.3(2)
N1-N5-N4	108.2(3)	C3-C2-C3	58.5(2)
N7-C1-N6	120.3(3)	C3-C3-C2	60.76(11)

Table S11. Torsion angle of pentazole cyclopropane-1-carboxi-midamide

Parameter	Torsion angle(°)	Parameter	Torsion angle(°)
N4-N3-N2-N1	-0.14(11)	C3-C3-C2-C1	-109.10(11)
N3-N4-N5-N1	-0.1(3)	C1-C2-N7-N6	180.00(4)
N6-C2-C2-C3	34.46(11)	N5-N4-N3-N2	0.12(2)
N2-N1-N5-N4	0.00(2)	N5-N1-N2-N3	0.10(2)
N7-C1-C2-C3	-145.54(11)	C3-C3-N6-N7	89.40(11)

Table S12. Bond length of pentazole Benzamidine

Parameter	Bond length(Å)	Parameter	Bond length(Å)
N1-N5	1.318(6)	C1-C2	1.470(7)
N1-N2	1.330(6)	C2-C3	1.383(7)
N2-N3	1.322(7)	C2-C7	1.392(7)
N3-N4	1.302(6)	C3-C4	1.391(8)
N4-N5	1.317(6)	C4-C5	1.350(9)
N6-C1	1.295(6)	C5-C6	1.363(8)
N7-C1	1.311(6)	C6-C7	1.372(8)

Table S13. Bond angle of pentazole Benzamidine

Parameter	Bond angle(°)	Parameter	Bond angle(°)
N5-N1-N2	107.4(4)	C3-C2-C7	119.3(5)
N3-N2-N1	107.9(4)	C3-C2-C1	120.1(5)
N4-N3-N2	107.9(4)	C7-C2-C1	120.6(5)
N3-N4-N5	108.9(4)	C2-C3-C4	118.5(6)
N4-N5-N1	108.0(4)	C5-C4-C3	121.5(6)
N6-C1-N7	121.8(5)	C4-C5-C6	120.2(6)
N6-C1-C2	119.5(4)	C5-C6-C7	120.0(6)
N7-C1-C2	118.7(4)	C6-C7-C2	120.4(5)

Table S14. Bond length of pentazole 1H-1,2,4-triazole-1-carboxamidine

Parameter	Bond length(Å)	Parameter	Bond length(Å)
N1-N5	1.311(3)	N4-N5	1.321(2)
N1-N2	1.313(2)	N6-C2	1.357(2)
N2-N3	1.313(2)	N7-C1	1.309(2)
N3-N4	1.314(2)	C1-N8	1.299(2)

Table S15. Bond angle of pentazole 1H-1,2,4-triazole-1-carboxamidine

Parameter	Bond angle(°)	Parameter	Bond angle(°)
N5-N1-N2	108.14(16)	N1-N5-N4	108.17(16)
N3-N2-N1	107.85(16)	N7-C1-N6	118.06(16)
N2-N3-N4	108.43(15)	N10-C2-N6	110.14(17)
N5-N4-N3	107.42(16)	N9-C3-N10	115.20(19)

Table S16. Torsion angle of pentazole 1H-1,2,4-triazole-1-carboxamidine

	8 1	,,,	
Parameter	Torsion angle(°)	Parameter	Torsion angle(°)
N4-N3-N2-N1	0.00(2)	C3-N10-C2-N6	-0.10(2)
N3-N4-N5-N1	0.10(2)	C2-N6-N9-C3	0.70(2)
C1-N6-N9-C3	177.40(16)	C2-N6-C1-N7	-15.40(3)
N2-N1-N5-N4	-0.10(2)	C2-N6-C1-N8	164.97(18)
C1-N6-C2-N10	-176.52(17)	C2-N10-C3-N9	0.70(3)

Table S17. Bond length of pentazole 3-amino-3-iminopropanamide

Parameter	Bond length(Å)	Parameter	Bond length(Å)
O1-C1	1.229(2)	N8-C3	1.298(2)
N4-N3	1.306(2)	N7-C3	1.309(2)
N4-N5	1.324(2)	C3-C2	1.496(2)
N1-N2	1.311(2)	N6-C1	1.321(2)
N1-N5	1.309(2)	C2-C1	1.521(2)
N3-N2	1.328(2)		

	8 1	- 1	1
Parameter	Bond angle(°)	Parameter	Bond angle(°)
N3-N4-N5	107.92(15)	N7-C3-C2	117.75(15)
N5-N1-N2	108.52(15)	N1-N5-N4	107.90(14)
N4-N3-N2	108.18(14)	C3-C2-C1	111.26(13)
N1-N2-N3	107.48(14)	01-C1-N6	123.89(16)
N8-C3-N7	121.89(16)	O1-C1-C2	120.31(15)
N8-C3-C2	120.36(15)	N6-C1-C2	115.75(15)

Table S18. Bond angle of pentazole 3-amino-3-iminopropanamide

Table S19. Torsion angle of pentazole 3-amino-3-iminopropanamide

Parameter	Torsion angle(°)	Parameter	Torsion angle(°)
N4-N3-N2-N1	-0.14(19)	C3-C2-C1-O1	-34.60(2)
N3-N4-N5-N1	-0.10(2)	C3-C2-C1-N6	147.71(15)
N8-C3-C2-C1	113.56(17)	N5-N4-N3-N2	0.12(19)
N2-N1-N5-N4	0.00(2)	N5-N1-N2-N3	0.10(2)
N7-C3-C2-C1	-67.14(19)		

T 11 COO	D 1	1 /1	C	4 1	1 .
Table S20	Bond	lenoth	of r	enfazole	olveine
14010 020.	Dona	rengui	or p	ontabole	Siyeme

	e	1 07	
Parameter	Bond length(Å)	Parameter	Bond length(Å)
O1-C2	1.210(18)	N1-N2	1.315(17)
C1-C2	1.510(18)	N4-N5	1.311(18)
C1-N6	1.469(18)	N3-N2	1.309(17)
C2-O2	1.314(16)	N3-N4	1.315(17)
N1-N5	1.310(17)		

 Table S21.
 Bond angle of pentazole glycine

 Parameter
 Bond angle(°)
 Parameter
 Bond angle(°)

N2-N3-N4	108.25(11)	O2-C2-C1	116.51(11)
N5-N4-N3	107.83(11)	O1-C2-O2	121.82(11)
N5-N1-N2	108.24(12)	O1-C2-C1	121.66(12)
N3-N2-N1	107.68(11)	N6-C1-C2	110.40(11)
N1-N5-N4	108.00(11)		

Table S22. Torsion angle of pentazole glycine				
Parameter	Torsion angle(°)	Parameter	Torsion angle(°)	
N4-N3-N2-N1	0.04(14)	N6-C1-C2-O1	-1.21(17)	
N3-N4-N5-N1	0.18(15)	N5-N4-N3-N2	-0.15(15)	
N2-N3-N4-N5	-0.14(15)	N5-N1-N2-N3	0.07(15)	
N6-C1-C2-O2	177.91(11)			

Figure S9. Intramolecular hydrogen bonds of compound 1-7

Figure S10. (a-g) Dihedral angle of compound1-7 and (h) SEM of 7

4. TG analysis

Figure S11. TG of compound 1–7

Figure S12. ESP-mapped molecular van der Waals (vdW) surfaces of the structurally optimized molecules (Surface local ESP minima and maxima are represented as blue and red spheres, respectively) and vdW surface areas for each ESP range for compound 1-7

Figure S13. Noncovalent interaction analyses and scatter graphs for 1-7 (including hydrogen bonds and π - π interactions, blue: strong attraction; green: weak interaction; red: strong repulsion)

Figure S14. Hirshfeld surface and 2D fingerprint plots in crystal stacking of cyclo- N_5^- of (a, b) compound 1, (c, d) compound 2, (e, f) compound 3, (g, h) compound 4, (i, j) compound 5, (k, l) compound 6, (m, n) compound 7.

6. Physicochemical and Energetic Properties

For energetic salts, the solid-phase heats of formation are calculated on the basis of a Born-Haber energy cycle (Scheme S1).

Based on a Born-Haber energy cycle, the heat of formation of a salt can be simplified by the formula given in Equation (1):

 $\Delta H_{\rm f}({\rm salt}, 298{\rm K}) = \Delta H_{\rm f}({\rm cation}, 298{\rm K}) + \Delta H_{\rm f}({\rm anion}, 298{\rm K}) - \Delta H_{\rm L} \quad (1)$

where ΔH_L is the lattice energy of the salts, which could be predicted by using the formula suggested by Jenkins et al⁸⁻¹⁰. [Eq. (2)]

$$\Delta H_{\rm L} = U_{\rm POT} + [p(n_{\rm M}/2 - 2) + q(n_{\rm X}/2 - 2)]RT \qquad (2)$$

where n_M and n_X depend on the nature of the ions, M_{p+} and X_{q-} , and are equal to 3 for monatomic ions, 5 for linear polyatomic ions, and 6 for nonlinear polyatomic ions.

The equation for lattice potential energy UPOT [Eq. (3)] has the form:

$$V_{\rm POT} (kJ \cdot mol^{-1}) = \gamma (\rho_{\rm m}/M_{\rm m})^{1/3} + \delta$$
 (3)

Where $\rho_m/g \cdot cm^{-3}$ is the density, M_m is the chemical formula mass of the ionic material, and values for the coefficients $\gamma/kJ \cdot mol^{-1}$ cm and $\delta/kJ \cdot mol^{-1}$ are taken from the literature¹¹.

Scheme S1. Born-Haber cycle for the formation of ionic salts.

At the B3LYP/6-311+ G^{**} level¹²⁻¹⁵, geometric optimization and frequency analysis were carried out for cations in all compounds, and the stable structures at the local energy minimum on the potential energy surface were obtained without imaginary frequencies. The enthalpy of formation of the cation section was calculated based on the designed isodesmic reaction. The enthalpy of formation of pentazolate anion has been reported in relevant literature¹⁶.

At 298 K, the standard heat of formation of cations can be calculated by the following equation^{17, 18}:

 ΔH (cation, 298K) = ΔE (cation, 298K) + $\Delta (PV) = \Delta E_0 + \Delta ZPE + \Delta H_T + \Delta nRT$ where ΔE_0 is the difference in total energies between the products and reactants at 0 K, ΔZPE is the difference in zero energy between the product and reactant at 0 K, and ΔHT is the temperature correction factor. As shown in **Scheme S2.**, the following is the isodesmic reactions for all the calculated cations. The heat of formation of small molecules can be found in the literature or calculated with G4.

Scheme S2. Isodesmic reactions for all the calculated cations.

Table 525. Theat of formation

Compound	$\Delta H_{c}^{a}(anion) (kJ \cdot mol^{-1})$	ΔH_c^b (cation) (kJ·mol ⁻¹)	$\Delta H_L^c (kJ \cdot mol^{-1})$	
1	258.70	621.35	567.98	
2	258.70	552.42	533.11	
3	258.70	653.27	516.80	
4	258.70	695.00	480.43	
5	258.70	862.00	502.83	
6	258.70	476.76	508.60	
7	258.70	265.31	550.57	
a. Heat of formation. b. Heat of formation. c. Lattice energy.				

7. References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. A. Petersson, in *Gaussian 09*, Gaussian Inc Wallingford, 2009.
- E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen and W. Yang, J. Am. Chem. Soc., 2010, 132, 6498-6506.
- 3. J. Zhang and T. Lu, *Phys. Chem. Chem. Phys.*, 2021, 23, 20323-20328.
- 4. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graphics, 1996, 14, 33-38.
- 5. T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.
- 6. Z. Liu, T. Lu and Q. Chen, *Carbon*, 2021, **171**, 514-523.
- P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka and M. A. Spackman, *J. Appl. Crystallogr.*, 2021, 54, 1006-1011.
- 8. H. D. B. Jenkins, D. Tudela and L. Glasser, *Inorg. Chem.*, 2002, 41, 2364-2367.
- 9. H. D. B. Jenkins, *Journal of Chemical Education*, 2005, **82**, 950.
- 10. E. F. C. Byrd and B. M. Rice, *The Journal of Physical Chemistry A*, 2009, **113**, 345-352.
- H. D. B. Jenkins, H. K. Roobottom, J. Passmore and L. Glasser, *Inorg. Chem.*, 1999, 38, 3609-3620.
- 12. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem. C*, 1994, **98**, 11623-11627.
- 13. K. Raghavachari, *Theor. Chem. Acc.*, 2000, **103**, 361-363.
- J. A. Pople, J. S. Binkley and R. Seeger, *International Journal of Quantum Chemistry*, 1976, 10, 1-19.
- 15. P. C. Hariharan and J. A. Pople, *Theor. Chem. Acc.*, 1973, 28, 213-222.
- 16. K. O. Christe, D. A. Dixon, M. Vasiliu, R. Haiges and B. Hu, *Propellants, Explosives, Pyrotechnics*, 2019, 44, 263-266.
- 17. Y. Tang, Z. Yin, A. K. Chinnam, R. J. Staples and J. n. M. Shreeve, *Inorg. Chem.*, 2020, **59**, 17766-17774.
- V. Thaltiri, R. J. Staples and J. n. M. Shreeve, *Journal of Materials Chemistry A*, 2024, DOI: 10.1039/D4TA03084B.