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Determination of viscosity and dielectric constant of water/ethanol mixtures

Selected equations that allow to express the trend of physico-chemical parameters of binary mixtures of solvents (such
as drug solubilization, acid dissociation constant, dielectric constant, viscosity, and surface tension) as a function of
their composition and temperature have been reported in the literature. Equation S1 is reported from the work of
Jouyban et al.
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Equation S1. Jouyban — Acree equation for the determination chemico-physical properties of liquid mixtures as function of
temperature and composition.

PCP = physico — chemical property x = molar ratio (x, =1 —x,)
m = mixture T = temperature (K)
1e 2 =solvent 1 e solvent 2 J; = expansion coefficients

Determination of the viscosity of water/ethanol mixtures

The viscosity (nu) of water/ethanol mixtures used in this paper at 20 and -4 °C (Figure S1) was determined using
Equation S1. It was observed that by increasing the wt% of ethanol in water/ethanol mixtures, the viscosity of the
mixtures increases until about 50 wt% of ethanol, then it decreases. Moreover, at low temperature (-4 °C) viscosity is

doubled.
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Figure S1. Water/ethanol mixtures viscosity as a function of EtOH wt% at 20 °C (orange) and -4 °C (light blue). Red region
highlights the range of EtOH wt% employed in this work.
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The following viscosity values of water and ethanol were used (Table S1):2

T(°C) Nw (MPa:s) | ne(mPa-s)
20 1.003 1.187
-4 2.08 1.98

Table S1. Viscosity values for water (w) and ethanol (E) at 20 and -4 °C.

n = Aexp ( )
The viscosity value for ethanol at -4 °C was determined by equation T + CJ/ from the work of Gonalves

et al.3, by assuming A =6.12 - 10* (mPa s), B = 2961 (K), C =97.3 (K), T = 269 (K). Viscosity value of water at -4 °C was
determined by Hallet*.

Expansion coefficient determined by Khattab et al®, exploiting the Jouyban — Acree equation (Equation S1), were
employed, i.e. Jo =724.652; ), = 729.357; J, = 976.050.

Determination of the dielectric constant of water/ethanol mixtures

The dielectric constant of water/ethanol mixtures () used in this work at 20 and -4 °C (Figure S2) was also calculated
by applying Equation S1. It was observed that the dielectric constant of water/ethanol mixtures continuously
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Figure S2. Water/ethanol mixtures dielectric constant as a function of EtOH wt% at 20 °C (orange) and -4 °C (light blue). Red
region highlights the range of EtOH wt% employed in this work.

decreases by increasing the ethanol content into the mixture. In addition, at -4 °C the dielectric constant of the
mixtures was increased of about 10 % with respect to its value at 20 °C.

In Table S2 reference values for the two pure solvents are reported:

T (oc) Ew &
20 80,2 25,5
4 89,3 28,8

Table S2. Dielectric constant values for water (w) and ethanol (E) at 20 and -4 °C.

Dielectric constant values at 20 °C for pure solvent are the one reported into the Handbook of Chemistry and Physics®,
whereas the values at -4 °C were determined through the equation provided also by the Handbook:
e(T) = a + bT + cT*+ dT>,
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Jouyban determined the expansion coefficients J to be used to calculate the dielectric constant’. Since there are lots
of parameters which influence the dielectric constant of a liquid, by following the work of Abraham et al®, Jouyban
inserted the appropriate corrections to Equation S1.

S3



Particles size distribution: bulk vs flow quenching
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Figure S3. Size distribution of samples prepared at room temperature, with pure ethanol as a quencher.
Comparison of bulk vs flow quenching.
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Powder X-ray diffraction patterns of Eu(lll)-doped samples
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Figure S4. XRD pattern of Eu(lll)-doped samples. Miller indexes refers to the powellite phase

of calcium molybdate.
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TEM micrographs of Eu(lll)-doped samples
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Figure S5. TEM micrographs of Eu(lll)-doped samples.
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Photoluminescence decay of Eu(lll)-doped samples
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Figure S6. Experimental photoluminescence decay of Eu(lll)-doped samples.
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Figure S7. Fitted XRD pattern of the samples reported in the paper
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Lattice parameters of calcium molybdate

As a result of the fitting of XRD patterns of the CM samples with the Pawley method we obtained the lattice
parameters:

a=523A
c=11.46 A
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Figure S8. Tauc plots of Eu(lll)-doped samples, a) Eu:CM_01, b) Eu:CM_02, c) Eu:CM_03
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