Construction of porous 2D Dy³⁺ metal organic frameworks: Solvent responsive magnetic dynamics under 0 Oe dc field and luminescent sensor for Fe³⁺ ion

Yangyang Gou,^{#a} Ming Gao,^{#a} Yunlong Wu,^c Wei Zhou,^a Jiancheng Feng,^a Sheng Zhang,^{*a} Xiaohong Wang,^{*} Bing Yin^{*b}

AUTHOR ADDRESS

^a.College of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
^b.Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127 P. R. China
^c.School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China

[#]*These authors contributed equally to the work*

*E-mail: zhangsheng19890501@163.com. (S. Zhang)

*E-mail: wangxiaohong@hainanu.edu.cn

*E-mail: rayinyin@nwu.edu.cn. (B. Yin)

Atom	Atom	Length/Å
Dy1	O24	2.258(2)
Dy1	O22 ¹	2.262(2)
Dy1	O2	2.2765(19)
Dy1	09	2.3056(18)
Dy1	O13	2.3099(18)
Dy1	05	2.362(2)
Dy1	O25	2.489(2)
Dy2	O14	2.249(2)
Dy2	O16 ²	2.254(2)
Dy2	O10	2.2839(19)
Dy2	O11 ³	2.2882(19)
Dy2	O17 ²	2.3499(18)
Dy2	O26	2.404(2)
Dy2	O1W	2.410(2)
Dy2	O25	2.873(2)
Dy3	08	2.2515(19)
Dy3	O6 ⁴	2.270(2)
Dy3	O21	2.277(2)
Dy3	O2W	2.328(2)
Dy3	O1 ⁴	2.3340(19)
Dy3	O27	2.341(2)
Dy3	O23 ⁴	2.3723(19)
Dy4	07	2.2817(18)
Dy4	O12 ⁵	2.3025(19)
Dy4	O18	2.3101(18)
Dy4	O4 ⁵	2.367(2)
Dy4	015	2.368(2)
Dy4	O19 ²	2.454(2)
Dy4	O20 ²	2.4908(18)
Dy4	O3 ⁵	2.667(2)

Table S1 Bond Lengths for **1**.

¹+X,3/2-Y,1/2+Z; ²+X,1/2-Y,1/2+Z; ³+X,1/2-Y,-1/2+Z; ⁴+X,3/2-Y,-1/2+Z; ⁵+X,+Y,-1+Z

Table S2 Bond Lengths for **2**.

Atom	Atom	Length/Å
Dy1	O2	2.237(5)
Dy1	O61	2.287(5)
Dy1	O4 ²	2.321(4)

Dy1	09	2.324(4)
Dy1	O12 ³	2.332(4)
Dy1	O8 ⁴	2.335(4)
Dy1	O13	2.351(6)
Dy2	05	2.259(5)
Dy2	O10	2.274(4)
Dy2	O3 ²	2.282(5)
Dy2	01	2.293(4)
Dy2	O7 ⁵	2.315(5)
Dy2	O11 ⁴	2.396(4)
Dy2	O14	2.507(9)
Dy2	O12 ⁴	2.643(4)

¹3/2-X,-1/2+Y,3/2-Z; ²-1/2+X,1/2-Y,-1/2+Z; ³1-X,-Y,1-Z; ⁴1/2+X,1/2-Y,1/2+Z; ⁵1-X,1-Y,1-Z

Table S3 Bond Angles for 1.

Atom	Atom	Atom	Angle/°
O24	Dy1	O22 ¹	73.40(10)
O24	Dy1	02	127.97(8)
O22 ¹	Dy1	02	78.57(10)
O24	Dy1	09	127.31(9)
O22 ¹	Dy1	09	80.16(9)
02	Dy1	09	88.47(8)
O24	Dy1	013	75.06(8)
O22 ¹	Dy1	013	121.62(10)
02	Dy1	013	155.15(8)
09	Dy1	013	81.76(7)
O24	Dy1	05	79.57(9)
O22 ¹	Dy1	05	132.77(9)
02	Dy1	05	89.04(9)
09	Dy1	05	145.52(7)
013	Dy1	05	86.32(8)
O24	Dy1	O25	143.73(9)
O22 ¹	Dy1	O25	142.08(9)
02	Dy1	O25	70.24(9)
09	Dy1	O25	78.01(7)
013	Dy1	O25	85.35(8)
05	Dy1	O25	68.82(8)
014	Dy2	O16 ²	151.77(9)
014	Dy2	O10	91.55(8)

O16 ²	Dy2	O10	99.37(8)
014	Dy2	O11 ³	81.13(8)
O16 ²	Dy2	O11 ³	77.43(9)
O10	Dy2	O11 ³	153.20(8)
014	Dy2	O17 ²	76.53(8)
O16 ²	Dy2	O17 ²	115.89(7)
O10	Dy2	O17 ²	125.82(8)
O11 ³	Dy2	O17 ²	77.68(7)
014	Dy2	O26	78.39(9)
O16 ²	Dy2	O26	79.13(9)
O10	Dy2	O26	76.06(9)
O11 ³	Dy2	O26	77.22(9)
O17 ²	Dy2	O26	146.77(9)
014	Dy2	O1W	135.15(8)
O16 ²	Dy2	O1W	73.07(8)
O10	Dy2	O1W	73.79(8)
O11 ³	Dy2	O1W	128.57(7)
O17 ²	Dy2	O1W	78.67(8)
O26	Dy2	O1W	134.44(9)
014	Dy2	O25	64.69(8)
O16 ²	Dy2	O25	143.47(8)
O10	Dy2	O25	66.93(7)
O11 ³	Dy2	O25	129.94(7)
O17 ²	Dy2	O25	60.14(6)
O26	Dy2	O25	125.55(8)
O1W	Dy2	O25	70.59(7)
08	Dy3	O64	157.01(8)
08	Dy3	O21	77.65(9)
O6 ⁴	Dy3	O21	117.18(9)
08	Dy3	O2W	81.34(8)
O6 ⁴	Dy3	O2W	104.02(9)
O21	Dy3	O2W	118.19(10)
08	Dy3	O1 ⁴	89.31(7)
O6 ⁴	Dy3	O1 ⁴	77.24(8)
O21	Dy3	O1 ⁴	79.47(9)
O2W	Dy3	O1 ⁴	157.20(9)
08	Dy3	O27	78.81(9)
O6 ⁴	Dy3	O27	80.24(9)
O21	Dy3	O27	147.58(10)

O2W	Dy3	O27	79.52(10)
O1 ⁴	Dy3	O27	78.27(9)
08	Dy3	O23 ⁴	127.40(8)
O6 ⁴	Dy3	O23 ⁴	74.58(8)
O21	Dy3	O23 ⁴	79.38(9)
O2W	Dy3	O23 ⁴	69.23(8)
O14	Dy3	O23 ⁴	131.44(7)
O27	Dy3	O23 ⁴	132.97(9)
07	Dy4	O12 ⁵	119.69(7)
07	Dy4	O18	159.00(7)
O12 ⁵	Dy4	O18	81.00(8)
07	Dy4	O4 ⁵	94.80(9)
O12 ⁵	Dy4	O4 ⁵	94.07(9)
O18	Dy4	O4 ⁵	79.10(8)
07	Dy4	015	76.29(8)
O12 ⁵	Dy4	015	77.80(9)
O18	Dy4	015	114.44(8)
O4 ⁵	Dy4	O15	162.36(9)
07	Dy4	O19 ²	93.55(7)
O12 ⁵	Dy4	O19 ²	128.39(7)
O18	Dy4	O19 ²	73.83(7)
O4 ⁵	Dy4	O19 ²	123.25(7)
015	Dy4	O19 ²	73.10(8)
07	Dy4	O20 ²	76.33(7)
O12 ⁵	Dy4	O20 ²	162.11(8)
O18	Dy4	O20 ²	82.68(7)
O4 ⁵	Dy4	O20 ²	75.61(8)
015	Dy4	O20 ²	115.96(8)
O19 ²	Dy4	O20 ²	52.41(6)
07	Dy4	O3 ⁵	71.67(7)
O12 ⁵	Dy4	O3 ⁵	69.44(7)
O18	Dy4	O3 ⁵	116.72(7)
O4 ⁵	Dy4	O3 ⁵	50.37(7)
015	Dy4	O3 ⁵	112.01(8)
O19 ²	Dy4	O3 ⁵	161.83(7)
O20 ²	Dy4	O3 ⁵	112.16(7)
Dy1	025	Dy2	122.04(9)
L	1	1	1

¹+X,3/2-Y,1/2+Z; ²+X,1/2-Y,1/2+Z; ³+X,1/2-Y,-1/2+Z; ⁴+X,3/2-Y,-1/2+Z; ⁵+X,+Y,-1+Z; ⁶+X,+Y,1+Z

Table S4 Bond Angles for 2 .			
Atom	Atom	Atom	

Atom	Atom	Atom	Angle/°
O2	Dy1	O61	82.5(2)
02	Dy1	O4 ²	81.47(18)
O61	Dy1	O4 ²	136.30(17)
02	Dy1	09	117.89(18)
O61	Dy1	09	77.29(18)
O4 ²	Dy1	09	74.96(18)
02	Dy1	O12 ³	162.43(16)
O61	Dy1	O12 ³	97.16(17)
O4 ²	Dy1	O12 ³	109.64(15)
09	Dy1	O12 ³	78.87(15)
02	Dy1	O84	80.10(18)
O61	Dy1	O84	74.22(19)
O4 ²	Dy1	O84	141.1(2)
09	Dy1	O84	143.76(18)
O12 ³	Dy1	O84	82.90(16)
02	Dy1	013	90.8(3)
O61	Dy1	013	147.6(2)
O4 ²	Dy1	013	72.9(2)
09	Dy1	O13	132.5(2)
O12 ³	Dy1	013	80.1(2)
O84	Dy1	013	73.4(2)
05	Dy2	O10	155.22(18)
05	Dy2	O3 ²	82.13(19)
O10	Dy2	O3 ²	78.93(19)
05	Dy2	01	86.2(2)
O10	Dy2	01	105.91(18)
O3 ²	Dy2	01	80.0(2)
05	Dy2	O7 ⁵	92.00(19)
O10	Dy2	O7 ⁵	89.08(17)
O3 ²	Dy2	O7 ⁵	132.3(2)
01	Dy2	O7 ⁵	147.10(19)
05	Dy2	O11 ⁴	125.97(17)
O10	Dy2	O11 ⁴	78.50(16)
O3 ²	Dy2	O11 ⁴	140.63(17)
01	Dy2	O11 ⁴	75.75(19)
O7 ⁵	Dy2	O11 ⁴	78.94(19)
05	Dy2	O14	76.3(3)

O10	Dy2	014	81.5(3)
O3 ²	Dy2	O14	66.6(3)
01	Dy2	O14	143.9(3)
O7 ⁵	Dy2	O14	66.1(3)
O11 ⁴	Dy2	O14	139.7(3)
05	Dy2	O12 ⁴	74.94(16)
O10	Dy2	O124	128.93(15)
O3 ²	Dy2	O124	145.35(18)
01	Dy2	O12 ⁴	72.96(15)
O7 ⁵	Dy2	O12 ⁴	74.86(16)
O114	Dy2	O124	51.17(13)
O14	Dy2	O12 ⁴	129.9(3)

¹3/2-X,-1/2+Y,3/2-Z; ²-1/2+X,1/2-Y,-1/2+Z; ³1-X,-Y,1-Z; ⁴1/2+X,1/2-Y,1/2+Z; ⁵1-X,1-Y,1-Z; ⁶3/2-X,1/2+Y,3/2-Z

Table S5 Dy^{III} ion geometry analysis by SHAPE 2.1 software.

Configuration	ABOXIY 1		
Configuration	Dy1	Dy3	
Heptagon (D _{7h})	29.645	34.850	
Hexagonal pyramid (C_{6v})	19.365	19.358	
Pentagonal bipyramid (D _{5h})	5.861	7.086	
Capped octahedron (C_{3v})	2.294	0.532	
Capped trigonal prism (C_{2v})	0.548	1.021	
Johnson pentagonal bipyramid J13 (D _{5h})	8.999	10.302	
Johnson elongated triangular pyramid J7 J26 (C_{3v})	18.042	18.781	
Configuration	ABOXIY 1		
Configuration	Dy2	Dy4	
Octagon (D_{8h})	29.397	33.269	
Heptagonal pyramid (C_{7v})	23.761	24.062	
Hexagonal bipyramid (D _{6h})	15.522	7.138	
Cube $(O_{\rm h})$	9.681	3.444	
Square antiprism (D_{4d})	2.400	6.490	
Triangular dodecahedron (D_{2d})	1.424	5.414	
Johnson gyrobifastigium J26 (D_{2d})	13.475	11.242	
Johnson elongated triangular bipyramid J14 (D_{3h})	25.803	21.051	
Biaugmented trigonal prism J50 (C_{2v})	1.320	7.182	
Biaugmented trigonal prism (C_{2v})	1.784	6.776	
Snub diphenoid J84 (D _{2d})	2.609	9.814	

Triakis tetrahedron (T_d)	9.733	3.857
Elongated trigonal bipyramid (D_{3h})	22.491	19.808
Configuration	A	BOXIY 2
		Dy1
Heptagon (D_{7h})		33.499
Hexagonal pyramid (C_{6v})		21.280
Pentagonal bipyramid (D _{5h})		3.342
Capped octahedron (C_{3v})		2.039
Capped trigonal prism (C_{2v})		1.002
Johnson pentagonal bipyramid J13 (D _{5h})		6.686
Johnson elongated triangular pyramid J7 J26 (C_{3v})		20.871
	ABOXIY	
Configuration	2	
		Dy2
Octagon (D_{8h})		29.047
Heptagonal pyramid (C_{7v})		23.859
Hexagonal bipyramid (D_{6h})		13.113
Cube $(O_{\rm h})$		10.968
Square antiprism (D_{4d})		3.248
Triangular dodecahedron (D_{2d})		2.243
Johnson gyrobifastigium J26 (D_{2d})		10.315
Johnson elongated triangular bipyramid J14 (D_{3h})		26.437
Biaugmented trigonal prism J50 (C_{2v})		2.133
Biaugmented trigonal prism (C_{2v})		2.310
Snub diphenoid J84 (D _{2d})		2.403
Triakis tetrahedron (T_d)		11.350
Elongated trigonal bipyramid (D_{3h})		23.695

S H A P E v (c) 2013 Elec	/2.1 etronic Structu Conta	Continuous Shape Measures calculation re Group, Universitat de Barcelona act: llunell@ub.edu
1-Dy1 structur	es	
HP-7	1 D7h	Heptagon
HPY-7	2 C6v	Hexagonal pyramid
PBPY-7	3 D5h	Pentagonal bipyramid
COC-7	4 C3v	Capped octahedron
CTPR-7	5 C2v	Capped trigonal prism
JPBPY-7	6 D5h	Johnson pentagonal bipyramid J13

JETPY-7	7 C3v	Johnson elor	ngated triang	ular pyramid J7	
Structure [M] CTPR-7	L7] JPBPY-7	HP-7 JETPY-7	HPY-7	PBPY-7	COC-7
ABOXIY 0.548,	, 8.999,	29.645, 18.042	19.365,	5.861,	2.294,
S H A P E	v2.1	Continuous S	Shape Measu	res calculation	
(c) 2013 El	ectronic Structu Cont	re Group, Uni act: llunell@	versitat de B Jub.edu	arcelona	
1-Dy2 structu	ıres				
OP-8	1 D8h	Octagon			
HPY-8	2 C7v	Heptagonal	pyramid		
HBPY-8	3 D6h	Hexagonal	bipyramid		
CU-8	4 Oh	Cube			
SAPR-8	5 D4d	Square antip	orism		
TDD-8	6 D2d	Triangular c	lodecahedror	1	
JGBF-8	7 D2d	Johnson gyr	obifastigium	J26	
JETBPY-8	8 D3h	Johnson elo	ngated triang	gular bipyramid J14	
JBTPR-8	9 C2v	Biaugmente	d trigonal pri	sm J50	
BTPR-8	10 C2v	Biaugmente	d trigonal pri	sm	
JSD-8	11 D2d	Snub diphen	oid J84		
TT-8	12 Td	Triakis tetrah	nedron		
ETBPY-8	13 D3h	Elongated t	rigonal bipyr	amid	
Structure [M]	L8]	OP-8	HPY-8	HBPY-8	CU-8
SAPR-8	TDD-8	JG	BF-8	JETBPY-8	JBTPR-8
BTPR-8	JSD-8	TT-8	ETBPY	7-8	
ABOXIY	,	29.397,	23.761,	15.522,	9.681,
2.400,	1.424,	13.475,	25.803,	1.320,	1.784,
2.609,	9.733,	22.491			
SHAPE	v2.1	Continuous S	Shape Measu	res calculation	
(c) 2013 El	ectronic Structu Cont	ure Group, Uni	versitat de B	arcelona	
1-Dy3 structu	ires	TT /			
HP-/	1 D/h	Heptagon	• 1		
	2 COV	Hexagonal p	binumani 1		
rBrY-/	3 D3n	Correct	upyramia		
CUU-/	4 C3V	Capped octa	inearon		
UTEK-/	5 C2V	Lapped trige	ulai prism	mamid I12	
JETDV 7	0 D3n 7 C2	Johnson pen	agonal bipy	Iaiiiiu J15	
JEIPY-/	/ C3V	Johnson eloi	igated triang	ular pyramia J /	

Structure [MI	_7]	HP-7	HPY-7	PBPY-7	COC-7
CTPR-7	JPBPY-7	JETPY-7	10.0.0	- 00 6	
ABOXIY	,	34.850,	19.358,	7.086,	0.532,
1.021,	10.302,	18.781			
S H A P E	v2.1	Continuous	Shape Measu	res calculation	
(c) 2013 Ele	ectronic Struct	ure Group, Un	iversitat de B	arcelona	
	Con	tact: llunell@	yub.edu		
1-Dy4 structu	res				
OP-8	1 D8h	Octagon			
HPY-8	2 C7v	Heptagonal	pyramid		
HBPY-8	3 D6h	Hexagonal	bipyramid		
CU-8	4 Oh	Cube			
SAPR-8	5 D4d	Square anti	prism		
TDD-8	6 D2d	Triangular	dodecahedroi	1	
JGBF-8	7 D2d	Johnson gyı	obifastigium	J26	
JETBPY-8	8 D3h	Johnson elo	ongated triang	gular bipyramid J14	
JBTPR-8	9 C2v	Biaugmente	d trigonal pri	sm J50	
BTPR-8	10 C2v	Biaugmente	ed trigonal pri	ism	
JSD-8	11 D2d	Snub dipher	oid J84		
TT-8	12 Td	Triakis tetra	hedron		
ETBPY-8	13 D3h	Elongated	trigonal bipyı	ramid	
Structure [MI	_8]	OP-8	HPY-8	HBPY-8	CU-8
SAPR-8	TDD-	8 JC	GBF-8	JETBPY-8	JBTPR-8
BTPR-8	JSD-8	TT-8	ETBPY	Y-8	
ABOXIY	,	33.269,	24.062,	7.138,	3.444,
6.490,	5.414,	11.242,	21.051,	7.182,	6.776,
9.814,	3.857,	19.808			
 S H A P E	v2.1	Continuous	Shape Measu	res calculation	
(c) 2013 Ele	ectronic Struct	ure Group. Un	iversitat de B	arcelona	
	Cor	tact: llunell@	Dub.edu		
2-Dv1 structu	res				
HP-7	1 D7h	Heptagon			
HPY-7	2 C6v	Hexagonal	pyramid		
PBPY-7	3 D5h	Pentagonal	bipyramid		
COC-7	4 C3v	Capped oct	ahedron		
CTPR-7	5 C2v	Capped trig	onal prism		
JPBPY-7	6 D5h	Johnson per	ntagonal bipy	ramid J13	
JETPY-7	7 C3v	Johnson elo	ngated triang	ular pyramid J7	
Structure [MI	_7]	HP-7	HPY-7	PBPY-7	COC-7
CTPR-7	JPBPY-7	JETPY-7			

ABOXIY	,	33.499,	21.280,	3.342,	2.039,
1.002,	6.686,	20.871			
SHAPE	v2.1	Continuous	Shape Measu	res calculation	
(c) 2013 E	lectronic Struct Con	ure Group, Un tact: llunell(iversitat de B Øub.edu	arcelona	
2-Dy2 struct	tures				
OP-8	1 D8h	Octagon			
HPY-8	2 C7v	Heptagonal	pyramid		
HBPY-8	3 D6h	Hexagonal	bipyramid		
CU-8	4 Oh	Cube			
SAPR-8	5 D4d	Square anti	prism		
TDD-8	6 D2d	Triangular	dodecahedroi	1	
JGBF-8	7 D2d	Johnson gy	robifastigium	J26	
JETBPY-8	8 D3h	Johnson ele	ongated triang	gular bipyramid J14	
JBTPR-8	9 C2v	Biaugmente	ed trigonal pri	sm J50	
BTPR-8	10 C2v	Biaugmente	ed trigonal pri	sm	
JSD-8	11 D2d	Snub dipher	noid J84		
TT-8	12 Td	Triakis tetra	hedron		
ETBPY-8	13 D3h	Elongated	trigonal bipyı	amid	
Structure [M	1L8]	OP-8	HPY-8	HBPY-8	CU-8
SAPR-8	TDD-8	3 JC	GBF-8	JETBPY-8	JBTPR-8
BTPR-8	JSD-8	TT-8	ETBPY	7-8	
ABOXIY	,	29.047,	23.859,	13.113,	10.968,
3.248,	2.243,	10.315,	26.437,	2.133,	2.310,
2.403.	11.350.	23.695			

Figure S1. The connection modes between metal ions in compound 1. Hydrogen, H; blue, N; yellow, Dy; red, O; Black, C.

Figure S2. The coordination modes of ligand and water molecule in compound **1**. Hydrogen, H; yellow, Dy; red, O; Black, C.

Figure S3. The connection modes between metal ions in compound **2**. Blue, N; yellow, Dy; red, O; Black, C.

Figure S4. The connection modes between metal ions in compound **2**. Yellow, Dy; red, O; Black, C.

Figure S5. Local coordination geometries of the Dy^{3+} ions for **1**. Yellow, Dy; red, O.

Figure S6. Local coordination geometries of the Dy^{3+} ions for **2.** Yellow, Dy; red, O.

Figure S7. PXRD curves of 1 (a) and 2 (b).

Figure S8. Temperature dependence of $\chi_M T$ measured at 1 KOe for 1, respectively.

Figure S9. (a) The SV spectrum of Fe^{3+} for compound 1; (b) Stern-Volmer fitting curve for compound 1.

Figure S10. (a) The SV spectrum of Fe^{III} for compound **2** (a); (b) Stern-Volmer fitting curve for compound **2**.

Figure S11. The PXRD patterns for compounds 1 (a) and 2 (b) after fluorescent detection.

Figure S12. The FT-IR patterns for compounds 1 (a) and 2 (b) after fluorescent detection.

Computational details

Multiconfigurational *ab initio* calculations, including spin-orbit coupling (SOC), were performed on selected systems. This type of calculation includes two steps:^[1] 1) a set of spin eigenstates, are obtained by the state-averaged (SA) CASSCF method;^[2] 2) the Kramers doublets (KDs) are obtained by state interaction which is the diagonalization of the SOC matrix in the space spanned by the spin eigenstates from the first step. In the CASSCF step, the active space consisted of 9 electrons in 7 orbitals and all the spin eigenstates of 21 sextets were included. The scalar relativistic effect is accounted via DKH2 Hamiltonian. The second step was performed via the RASSI-SO module^[3] with the SOC integrals from the AMFI method.^[4] The ANO-RCC type basis set,^[5,6] including VTZP for Dy, VDZ for C and H as well as VDZP for other atoms, was used. All the calculations were carried out with the MOLCAS@UU, a freely academic version of MOLCAS 8.0 code.^[7] The SINGLE ANISO module^[8,9] was used to obtain the g-tensors.

Table S6 Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors of the lowest eight KDs of individual Dy^{III} fragments of compounds 1 and 2 using CASSCF/RASSI-SO with MOLCAS 8.2.

Compound 1								
Str1_modelA	KD_0	KD_1	KD ₂	KD ₃	KD_4	KD_5	KD_6	KD_7
g _X	1.017E-01	8.020E+00	1.782E+00	3.384E-01	1.662E+00	5.322E-01	1.037E-01	1.621E-02

		1					1	
g _Y	2.097E-01	2.605E+00	2.820E+00	2.719E+00	2.325E+00	7.919E-01	2.244E-01	1.133E-01
gz	1.955E+01	1.080E+01	1.090E+01	1.345E+01	1.386E+01	1.759E+01	1.941E+01	1.961E+01
E (cm ⁻¹)	0.000E+00	1.660E+02	2.090E+02	2.476E+02	2.856E+02	3.443E+02	4.344E+02	4.971E+02
Str1_modelB	KD0	KD1	KD2	KD3	KD4	KD5	KD6	KD7
gx	1.607E-02	4.817E-01	8.596E-01	5.715E+00	2.253E+00	1.705E+00	1.744E-01	3.909E-02
g _Y	2.456E-02	1.235E+00	1.668E+00	9.418E-01	3.739E+00	2.367E+00	2.256E-01	8.968E-02
gz	1.964E+01	1.829E+01	1.402E+01	1.016E+01	1.045E+01	1.241E+01	1.747E+01	1.932E+01
E (cm ⁻¹)	0.000E+00	7.620E+01	1.100E+02	1.456E+02	1.695E+02	2.227E+02	3.639E+02	4.719E+02
Str1_modelC	KD0	KD1	KD2	KD3	KD4	KD5	KD6	KD7
gx	2.510E-01	5.230E-01	1.340E+00	6.998E+00	4.116E-01	5.117E-01	5.197E-02	1.969E-01
g _Y	7.958E-01	1.316E+00	2.931E+00	2.498E+00	4.122E+00	3.810E+00	1.116E+00	7.561E-01
gz	1.810E+01	1.549E+01	1.280E+01	8.273E+00	1.046E+01	1.467E+01	1.818E+01	1.872E+01
E (cm ⁻¹)	0.000E+00	3.876E+01	9.869E+01	1.751E+02	2.423E+02	2.973E+02	3.478E+02	3.730E+02
Str1_modelD	KD0	KD1	KD2	KD3	KD4	KD5	KD6	KD7
gx	5.741E-01	6.027E-01	1.500E+00	4.020E+00	9.448E-02	2.338E+00	2.244E+00	4.424E-01
g _Y	1.526E+00	1.866E+00	3.662E+00	5.848E+00	5.499E-01	3.626E+00	3.692E+00	1.210E+00
gz	1.800E+01	1.344E+01	1.145E+01	1.107E+01	1.386E+01	1.173E+01	1.193E+01	1.658E+01
E (cm ⁻¹)	0.000E+00	4.675E+01	8.242E+01	1.523E+02	2.379E+02	3.179E+02	3.761E+02	4.414E+02
Str2_modelA	KD0	KD1	KD2	KD3	KD4	KD5	KD6	KD7
gx	2.642E-01	1.717E-01	1.852E+00	2.417E+00	2.613E+00	1.745E-01	4.092E-02	3.550E-02
g _Y	4.375E-01	3.367E-01	2.425E+00	5.443E+00	3.909E+00	3.353E-01	2.018E-01	9.605E-02
gz	1.884E+01	1.899E+01	1.378E+01	1.073E+01	1.263E+01	1.913E+01	1.734E+01	1.890E+01
E (cm ⁻¹)	0.000E+00	4.284E+01	9.527E+01	1.674E+02	2.052E+02	2.987E+02	3.618E+02	4.189E+02
Str2_modelB	KD0	KD1	KD2	KD3	KD4	KD5	KD6	KD7
gx	7.053E-03	6.621E-02	2.889E+00	7.547E+00	1.751E+00	2.605E+00	8.743E-02	1.684E-01
gy	1.847E-01	2.624E-01	3.384E+00	2.579E+00	4.071E+00	4.490E+00	6.160E-01	7.059E-01
gz	1.907E+01	1.894E+01	1.368E+01	8.176E+00	9.834E+00	1.347E+01	1.622E+01	1.823E+01
E (cm ⁻¹)	0.000E+00	2.147E+01	9.395E+01	1.369E+02	2.032E+02	2.483E+02	3.150E+02	3.566E+02

Table 5/ Standard deviation (0) caculation for the detecation of the following i	Table S7 Standard deviation	(σ)	caculation for the detecation	1 of Fe ³⁺ for	compound 1
--	-----------------------------	-----	-------------------------------	---------------------------	------------

Test	fluorescence intensity (a.u.)
1	141141
2	141253
3	141094
average	141163
standard deviation	81.68

Table S8 Standard deviation (σ) caculation for the detecation of Fe³⁺ for compound **2**.

Test	fluorescence intensity (a.u.)
1	67059

2	67141
3	67097
average	67099
standard deviation	41.03

Table S9 Comparison of inductive capability of Fe^{3+} for compounds 1, 2 and other luminescence MOFs

Materials	$K_{SV}(M^{-1})$	Detection	Solvent	Reference
		limition (ppb)		
Compound 1	3.18×10 ³	4.51×10 ⁶	water	This work
Compound 2	1.44×10^{3}	6.90×10 ⁶	water	This work
$[Zn_2(4,4' -nba)_2(1,4-bib)_2]_n$	2.54×10^{4}	1.29×10^{6}	water	[10]
$[Zn(L)_{0.5}(MIP)]_n$	6.50×10^{3}	2.20×10 ⁵	water	[11]
${[Zn_2(L)(TBIP)_{1.5}(OH)] \cdot H_2O}_n$	1.13×10 ⁴	1.30×10^{5}	water	[12]
${[Zn_3(bpg)_{1.5}(azdc)_3] \cdot (DMF)_{5.9} \cdot (H_2O)}$	4.70×10 ⁴	1.00×10^{6}	water	[13]
$)_{1.05}$ ⁿ				
${[Zn_3(mtrb)_3(btc)_2]\cdot 3H_2O}_n$	3.19×10^{4}	2.00×10^{5}	water	[14]
$[Zn(L)_{0.5}(MIP)]_n$	2.25×10^{4}	5.40×10 ⁵	water	[14]
$Zn(L)(DBT)_n$	1.29×10^{4}	6.50×10 ⁵	water	[14]
$[Eu(L)(H_2O)_3]_n$	9.60×10 ⁵	4.50×10^{3}	DMF	[15]
$TbDTTA[Tb(L)(H_2O)_3]_n$	8.39×10^{4}	1.79×10^{6}	water	[15]
$[Cd_{1.5}(L)_2(bpy)(NO_3)] \cdot 2DMF \cdot 2H_2O$	6.02×10^{4}	1.02×10^{5}	DMF	[15]
$[Eu_{0.5}Tb_{0.5}(L)(H_2O)_3]_n$	4.20×10^{5}	6.40×10^4	DMF	[15]
$[Zn(FDC)_2(H_2O)_2]_n$	3.93×10^{4}	9.00×10 ⁵	water	[16]
${[Cd(L)-(BPDC)]\cdot 2H_2O}_n$	1.68×10^{4}	1.76×10^{6}	water	[17]
$[Zn(L)_2]_n$	3.63×10^{4}	2.21×10^{6}	water	[18]
${[Cd(L) (SDBA)](H_2O)].0.5H_2O}_n$	3.59×10^{4}	7.14×10^{6}	water	[18]
EuDTTA	3.63×10^{4}	4.14×10^{6}	water	[19]
${[Zn_4(\mu_3-$	3.93×10^{4}	9.00×10 ⁵	water	[20]
$OH_2(BTC)_2(BBI4PY)_2].10H_2O_n$				
$[Zn_2(L)_2(TPA)]$ ·2H ₂ O	6.40×10^{3}	3.84×10^{6}	water	[21]
Eu _{0.24} Tb _{0.76} BIM-COOH-PLA	1.27×10^{4}	4.47×10^{6}	water	[22]
${[Eu_2(ppda)_2(npdc)(H_2O)]H_2O}_n$	1.64×10^{5}	1.66×10^{7}	water	[23]
PAF-5CF	1.18×10^{3}	3.80×10^{7}	ethanol	[24]
${[Zn_2(\mu_4-L)(\mu_3-bta)(3H_2O)]} H_2O_n$	1.06×10^{4}	1.10×10^{8}	water	[25]
534-MOF-Tb	5.51×10 ³	1.30×10^{8}	water	[26]
$[Zn(modbc)_2](Zn-CP)$	7.20×10^{3}	5.70×10 ⁸	water	[27]

References

[1] J. Luzón and R. Sessoli, Lanthanides in molecular magnetism: so fascinating, so challenging. *Dalton Trans.* 2012, **41**, 13556-13567.

[2] B. O. Roos, P. R. Taylor and P. E. M. Siegbahn, A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach, *Chem. Phys.*, 1980, **48**, 157-173.

[3] P. Malmqvist, B. O. Roos and B. Schimmelpfennig, The restricted active space (RAS) state interaction approach with spin-orbit coupling, *Chem. Phys. Lett.*, 2002, 357, 230-240.

[4] B. A. Hess, C. M. Marian, U. Wahlgren and O. Gropen, A mean-field spin-orbit method applicable to correlated wavefunctions, *Chem. Phys. Lett.*, 1996, **251**, 365-371.

[5] B. O. Roos, R. Lindh, P. Malmqvist, V. Veryazov and P. Widmark, Main group atoms and dimers studied with a new relativistic ANO basis set, *J. Phys. Chem. A.*, 2004, **108**, 2851–2858.

[6] B. O. Roos, R. Lindh, P. Malmqvist, V. Veryazov, P. Widmark and A. C. Borin, New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF₃, *J. Phys. Chem. A.*, 2008, **112**, 11431–11435.

[7] F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey, L. De. Vico, I. F. Galván, N. Ferré, L. M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. E. Hoyer, G. Li. Manni, H. Lischka, D. X. Ma, P. Malmqvist, T. Müller, A. Nenov, M. Olivucci, T. B. Pedersen, D. L. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, M. J. Segarra, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V. P. Vysotskiy, O. Weingart, F. Zapata and R. Lindh, Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table, *J. Comput. Chem.*, 2016, 37, 506–541.

[8] L. F. Chibotaru and L. Ungur, Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation, *J. Chem. Phys.*, 2012, **137**, 064112.

[9] L. F. Chibotaru, *Ab initio* methodology for pseudospin Hamiltonians of anisotropic magnetic complexes, *Adv. Chem. Phys.*, 2013, **153**, 397–519.

[10] R. Goswami, S.C. Mandal, B. Pathak and S. Neogi, Guest-induced ultrasensitive detection of multiple toxic organics and Fe³⁺ ions in a strategically designed and

regenerative smart fluorescent metal-organic framework, ACS Appl. Mater. Interfaces., 2019, **11**,9042-9053.

[11] Y. Q. Zhang, V. A. Blatov, T. R. Zheng, C. H. Yang, L. L. Qian, K. Li, B. L. Li and B. Wu, A luminescent zinc (II) coordination polymer with unusual (3, 4, 4)-coordinated self-catenated 3D network for selective detection of nitroaromatics and ferric and chromate ions: a versatile luminescent sensor, *Dalton Trans.*, 2018, **47**, 6189-6198.

[12] M. Singh, S. Senthilkumar, S. Rajput and S. Neogi, Pore-functionalized and hydrolytically robust Cd (II)-metal–organic framework for highly selective, multicyclic CO₂ adsorption and fast-responsive luminescent monitoring of Fe (III) and Cr (VI) ions with notable sensitivity and reusability, *Inorg. Chem.*, 2020, **59**, 3012-3025.

[13] Z. H. Wang, X. Z. Wang, X.Y. Lai, Q. Hou, J. X. Ma, J. H. Li, K.Yue and Q. F. Yang, Three new coordination polymers based on a fluorene derivative ligand for the highly luminescent sensitive detection of Fe³⁺, *J. Mol. Struct.*, 2020, **1202**, 127341-127350.

[14] H. Zhu, L. S. Fu, D. Liu, Y. H. Li and G. Y. Dong, Three water-stable luminescent Zn (II) coordination polymers for highly sensitive and selective sensing of acetylacetone and Fe³⁺ ions, *J. Solid State Chem.*, 2020, **286**, 121265-121274.

[15] X. F. Cheng, J. S. Hu, J. X. Li, M and D. Zhang, Tunable emission and selective luminescence sensing for nitro-pollutants and metal ions based on bifunctional lanthanide metal-organic frameworks, *J. Lumin.*, 2020, **221**, 117100-117110.

[16] S. Khan, P. Das and S. K. Mandal, Design and construction of a luminescent and highly stable 3D metal–organic framework with a $[Zn_4(\mu_3-OH)_2]^{6+}$ core, *Inorg. Chem.*, 2020, **59**, 4588-4600.

[17] T. Y. Xu, J. M. Li, Y. H. Han, A. R. Wang, K. H. He and Z. F. Shi, A new 3D four-fold interpenetrated dia-like luminescent Zn (II)-based metal–organic framework: The sensitive detection of Fe³⁺, $Cr_2O_7^{2-}$, and CrO_4^{2-} in water, and nitrobenzene in ethanol, *New J. Chem.*, 2020, **44**, 4011-4022.

[18] S. G. Chen, Z. Z. Shi, L. Qin, H. L. Jia, H and G. Zheng, Two new luminescent

Cd (II)-MOFs as bi-functional chemosensors for detection of cations Fe³⁺, anions CrO_4^{2-} and $Cr_2O_7^{2-}$ in aqueous solution, *Cryst. Growth Des.*, 2017, **17**, 67-72.

[19] Y. Zhang, L. Wu and M. Feng, Assembly of two-dimension LMOF materials with excellent detection of Fe^{3+} ion in water based on overlap mechanism, *J. Solid State Chem.*, 2020, **294**, 121868-121874.

[20] S. Khan, P. Das and S. K. Mandal, Design and construction of a luminescent and highly stable 3D metal–organic framework with a $[Zn_4(\mu_3-OH)_2]^{6+}$ core, *Inorg. Chem.*, 2020, **59**, 4588-4600.

[21] X. Y. Guo, Z. P. Dong, F. Zhao, Z. L. Liu and Y. Q. Wang, Zinc (II)-organic framework as a multi-responsive photoluminescence sensor for efficient and recyclable detection of pesticide 2, 6-dichloro-4-nitroaniline, Fe (III) and Cr (VI), *New J. Chem.*, 2019, **43**, 2353-2361.

[22] P. Jia, Z. H. Wang, Y. F. Zhang, D. Zhang, W. C. Gao, Y. Su, Y. B. Li and C. L. Yang, Selective sensing of Fe³⁺ ions in aqueous solution by a biodegradable platform based lanthanide metal organic framework, *Spectrochim. Acta A.*, 2020, **230**, 118084-118092.

[23] C. L. Li, F. Zhang, X. Li, G.W. Zhang and Y. Y. Yang, A luminescent Ln-MOF thin film for highly selective detection of nitroimidazoles in aqueous solutions based on inner filter effect, *J. Lumin.*, 2019, 205, 23-29.

[24] T. T. Ma, X. Zhao, Y. Matsuo, J. Song, R. Zhao, M. Faheem, M. Chen, Y. F. Zhang, Y. Y. Tian and G. S. Zhu, Fluorescein-based fluorescent porous aromatic framework for Fe³⁺ detection with high sensitivity, *J. Mater. Chem. C.*, 2019, 7, 2327-2332.

[25] Y. X. Yang, S. Y. Xia, H. X. Zhang, H. H. Niu, W. J. Dong and X. X. Wu, J. Solid State Chem., 2020, 284, 121180.

[26 M. Chen, W. M. Xu, J.Y. Tian, H. Cui, J. X. Zhang, C. S. Liu and M. Du, A terbium (III) lanthanide–organic framework as a platform for a recyclable multi-responsive luminescent sensor, *J. Mater. Chem. C.*, 2017, **5**, 2015-2021.

[27] Y. D. Wu, D.Y. Liu, M. H. Lin and J. Qian, Zinc (ii)-based coordination polymer encapsulated Tb^{3+} as a multi-responsive luminescent sensor for Ru^{3+} , Fe^{3+} , CrO_4^{2-} ,

Cr₂O₇²⁻ and MnO⁴⁻, *RSC Adv.*, 2020, **10**, 6022-6029.