SUPPORTING INFORMATION

Evaluation of halogen bonding proclivity of oxazole derivatives carrying multiple acceptor sites in cocrystals with perfluorinated iodobenzenes

Ruđer Sušanj, Nikola Bedeković, Sara Cerovski, Nea Baus Topić, Vinko Nemec* and Dominik Cinčić*

Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia

E-mail: vnemec@chem.pmf.hr, dominik@chem.pmf.hr Fax: +385 1 4606 341 Tel: +385 1 4606 362, +385 1 4606 379

Table of Contents

Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

- Figure S9. Partial molecular structure of (**tolox**)(**14tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius. 23
- Figure S10. Partial molecular structure of (**tolox**)(135tfib) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius. 23
- Figure S11. Molecular structure of **nox** showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius. 24
- Figure S12. Molecular structure of (**nox**)(**14tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius. 24
- Figure S13. Molecular structure of (**nox**)(**135tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius. 24
- Figure S14. Molecular structure of (**phox**)(**14tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius 25
- Figure S15. Molecular structure of (**phox**)(**135tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius 25
- Figure S16. Molecular structure of (**phox**)(12tfib)₂ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius 26
- Figure S17. Molecular structure of (**phox**)(**13tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius 26
- Figure S18. Molecular structure of **box** showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius 27
- Figure S19. Molecular structure of (**box**)(**14tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius 27
- Figure S20. Molecular structure of (**box**)(**12tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius 27
- Figure S21. Molecular structure of $(box)_{3}$ (135tfib) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius 28
- Table S2. Melting / decomposition temperatures of prepared cocrystals or crystal phases obtained by cocrystallized reactants in determined stoichiometry 29
- Figure S22. DSC curve of (**tfox**)₂(14tfib) 30

Figure S23. DSC curve of (**tfox**)(**135tfib**) 30 Figure S24. DSC curve of or crystal phase obtained by cocrystallized **fox** and **14tfib** in their 31

- respective stoichiometry
- Figure S25. DSC curve of or crystal phase obtained by cocrystallized **fox** and **135tfib** in their respective stoichiometry 31

EXPERIMENTAL DETAILS

SYNTHESES OF ACCEPTORS

Acceptors have been synthesized by general procedure described in main text.

Exact equimolar amounts of aldehydes used are as follows:

COCRYSTALLIZATION

Cocrystal of (**tfox**)₂(**14tfib**)

14tfib (40.1 mg, 0.100 mmol) was dissolved in a solvent mixture of 2.0 mL diethyl-ether and 2.0 mL of hexane followed by addition of 100 μ L aliquot of **tfox** (sln, $c \approx 1$ mol dm⁻³). The solution was left to crystallize at room temperature.

Cocrystal of (**tfox**)(**135tfib**)

135tfib (50.1 mg, 0.100 mmol) was dissolved in a 2.0 mL of ethyl-acetate*,* followed by addition of 100 μ L aliquot of **tfox** (sln, $c \approx 1$ mol dm⁻³). The solution was left to crystallize at room temperature.

Cocrystal of (**fox**)(**14tfib**)

14tfib (20.1 mg, 0.050 mmol) was dissolved in a solution mixture of 2.0 mL methyl-*tert-*butyl ether and 1.00 mL of methanol*,* followed by addition of 50 µL aliquot of **fox** (sln, *c* ≈ 1 mol dm⁻³). The solution was left to crystallize in partially closed vial at room temperature.

Cocrystal of (**fox**)(**135tfib**)

135tfib (51.0 mg, 0.100 mmol) was dissolved in a 2.0 mL of dichloromethane followed by addition of 100 µL aliquot of **fox** (sln, *c* ≈ 1 mol dm–3). The solution was left to crystallize at room temperature.

Cocrystal of (**pox**)(**14tfib**)

14tfib (40.1 mg, 0.100 mmol) was dissolved in 2.0 mL of chloroform*,* followed by addition of 100 μ L aliquot of **pox** (sln, $c \approx 1$ mol dm⁻³). The solution was left to crystallize at room temperature.

Cocrystal of (**pox**)(**135tfib**)

135tfib (51.0 mg, 0.100 mmol) was dissolved in in 2.0 mL of chloroform*,* followed by addition of 100 μ L aliquot of **pox** (sln, $c \approx 1$ mol dm⁻³). The solution was left to crystallize at room temperature.

Cocrystal of (**pox**)(**12tfib**)²

12tfib (40.1 mg, 0.100 mmol) was dissolved in a solvent mixture of 1.0 mL methanol and 1.0 mL acetonitrile, followed by addition of 100 μ L aliquot of **pox** (sln, $c \approx 1$ mol dm⁻³). The solution was left to crystallize at room temperature.

Cocrystal of (**pox**)(**13tfib**)

13tfib (15 µL, 0.100 mmol) was dissolved in 2.00 mL of methyl-tert-butyl ether*,* followed by addition of 100 µL aliquot of **pox** (sln, *c* ≈ 1 mol dm–3). The solution was left to crystallize at room temperature.

Cocrystal of (**tolox**)(**14tfib**)

14tfib (40.1 mg, 0.100 mmol) was dissolved in a solvent mixture of 1.0 mL methanol and 1.0 mL acetonitrile followed by addition of 300 μ L aliquot of **tolox** (sln, *c* ≈ 0.5 mol dm⁻³). The solution was left to crystallize at room temperature.

Cocrystal of (**tolox**)(**135tfib**)

135tfib (25.5 mg, 0.050 mmol) was dissolved in a solvent mixture of 1.0 mL methanol and 1.0 mL acetonitrile followed by addition of 300 μ L aliquot of **tolox** (sln, *c* ≈ 0.5 mol dm⁻³). The solution was left to crystallize at room temperature.

Cocrystal of (**phox**)(**14tfib**)

14tfib (40.1 mg, 0.100 mmol) was dissolved in a solvent mixture of 1.0 mL ethanol and 1.0 mL methyl *tert*-butyl ether followed by addition of 100 µL aliquot of **phox** (sln, *c* ≈ 1.0 mol dm–3). The solution was left to crystallize at room temperature.

Cocrystal of (**phox**)(**135tfib**)

135tfib (51.0 mg, 0.100 mmol) was dissolved in a solvent mixture of 1.0 mL chloroform and 1.00 mL hexane followed by addition of 100 μ L aliquot of **phox** (sln, $c \approx 1.0$ mol dm⁻³). The solution was left to crystallize at room temperature.

Cocrystal of (**phox**)(**12tfib**)²

12tfib (40.1 mg, 0.100 mmol) was dissolved in a solvent mixture of 2.00 mL methanol followed by addition of 100 µL aliquot of **phox** (sln, *c* ≈ 1 mol dm–3). The solution was left to crystallize at 4 °C.

Cocrystal of (**phox**)(**13tfib**)

13tfib (15 µL, 0.100 mmol) was dissolved in 1 mL diethyl ether and 1 mL of hexane*,* followed by addition of 100 µL aliquot of **phox** (sln, *c* ≈ 1 mol dm–3). The solution was left to crystallize at 4 °C.

Cocrystal of (**nox**)(**14tfib**)

A mixture containing **nox** (19.0 mg, 0.100 mol) and **14tfib** (40.1 mg, 0.100 mol) was dissolved in 4.00 mL of ethanol. The solution was left to crystallize at room temperature.

Cocrystal of (**nox**)(**135tfib**)

A mixture containing **nox** (19.0 mg, 0.100 mol) and **14tfib** (40.1 mg, 0.100 mol) was dissolved in a solvent mixture of 2.0 mL chloroform and 2.0 mL of hexane. The solution was left to crystallize at room temperature.

Cocrystal of (**box**)(**14tfib**)

14tfib (40.1 mg, 0.100 mmol) was dissolved in 2.0 mL of methanol followed by addition of 100 μL of melted **box**. The solution was left to crystallize at 4 °C.

Cocrystal of (**box**)₃(135tfib)

135tfib (51.0 mg, 0.100 mmol) was dissolved in 2.0 mL methanol followed by addition of 100 μL of melted **box**. The solution was left to crystallize at 4 °C.

Cocrystal of (**box**)(**12tfib**)

12tfib (40.1 mg, 0.100 mmol) was dissolved in 2.0 mL of methanol followed by addition of 100 μL of melted **box**. The solution was left to crystallize at 4 °C.

THERMAL ANALYSIS

DSC measurements were performed on a Mettler-Toledo DSC823e instrument. The samples were placed in sealed aluminium pans (40 μ L) with a pinhole made in the top cover, and heated in flowing nitrogen (150 mL min⁻¹) from -10 °C to 300 °C for (fox)(14tfib), $(f\alpha x)(135tfib)$, $(b\alpha x)(14tfib)$, $(b\alpha x)\frac{135tfib}$, $(p\alpha x)(12tfib)$ ₂ and $(p\alpha x)(13tfib)$; from 25 °C to -15 °C and then to 100 °C at two steps for **box** and from 25 °C to 300 °C for the rest of the samples, all at a rate of 10 $^{\circ}$ C min⁻¹. Data collection and analysis were performed using the program package STAR^e Software 17.00.¹

POWDER X-RAY DIFFRACTION EXPERIMENTS

PXRD experiments were performed on a Malvern PANalytical *Aeris* X-ray diffractometer with CuK $_{\alpha1}$ (1.54056 Å) radiation at 15 mA and 40 kV. The scattered intensities were measured with a line (1D) detector. The angular range was from 5 to 40° (2 θ) with an interpolated step size of 0.00543322°. Data analysis was performed using the program *Data Viewer*. 3

SINGLE-CRYSTAL X-RAY DIFFRACTION EXPERIMENTS

The crystal and molecular structures of the prepared cocrystals were determined by single crystal X-ray diffraction. Details of data collection and crystal structure refinement are listed in Table S1, S2, S3 and S4. Diffraction measurements were made on and Rigaku Synergy XtaLAB X-ray diffractometer with graphite-monochromated MoK_a (λ = 0.71073Å) radiation. The data sets were collected using the ω scan mode over the 2 θ range up to 64°. The CrysAlisPro program package was employed for data collection, cell refinement, and data reduction.⁴ The structures were solved by direct methods and refined using the SHELXS, SHELXT, and SHELXL programs, respectively.^{5,6} The structural refinement was performed on F^2

using all data. Hydrogen atoms were placed in calculated positions and treated as riding on their parent atoms All calculations were performed using the WINGX⁷ or Olex2⁸ crystallographic suite of programs. The molecular structures of compounds and their molecular packing projections were prepared by Mercury.⁹

References

- 1. STARe Evaluation Software Version 17.00. Mettler–Toledo GmbH, 2022.
- 2. Data Viewer Version 1.9a, PANalytical B.V. Almelo, The Netherlands, 2018.
- 3. Omnic Specta Software 9.9.549, Thermo Fisher Scientific, 2018.
- 4. Rigaku Oxford Diffraction, Gemini CCD system, CrysAlis Pro software, Version 171.41.93a, 2020.
- 5. (a) G. M. Sheldrick, *Acta Cryst. A*, 2008, **64**, 112–122; (b) G. M. Sheldrick, *Acta Cryst. C*, 2015, **71**, 3–8.
- 6. G. M. Sheldrick, *Acta Cryst. A*, 2015, **71**, 3–8.
- 7. L. J. Farrugia, *J. Appl. Cryst.*, 2012, **45**, 849–854.
- 8. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339–341.
- 9. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor,
- J. v. d. Streek and P. A. Wood, *J. Appl. Crystallogr.* **2008**, 41, 466.

Table S1. Crystal data and refinement details for the prepared compounds.

Figure S1. Partial molecular structure of (tfox)₂(14tfib) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S2. Partial molecular structure of (**tfox**)(**135tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S3. Partial molecular structure of (**fox**)(**14tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S4. Partial molecular structure of (**fox**)(**135tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S5. Partial molecular structure of (**pox**)(**14tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S6. Partial molecular structure of (**pox**)(**135tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S7. Partial molecular structure of (**pox**)(**13tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S8. Partial molecular structure of (pox)(12tfib)₂ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S9. Partial molecular structure of (**tolox**)(**14tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S10. Partial molecular structure of (**tolox**)(**135tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S11. Molecular structure of **nox** showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S12. Molecular structure of (**nox**)(**14tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S13. Molecular structure of (**nox**)(**135tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S14. Molecular structure of (**phox**)(**14tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S15. Molecular structure of (**phox**)(**135tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S16. Molecular structure of (phox)(12tfib)₂ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S17. Molecular structure of (**phox**)(**13tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S18. Molecular structure of **box** showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S19. Molecular structure of (**box**)(**14tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S20. Molecular structure of (**box**)(**12tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure S21. Molecular structure of (box)₃(135tfib) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Table S2. Melting / decomposition temperatures of prepared cocrystals or crystal phases obtained by cocrystallized reactants in determined stoichiometry.

DSC Curves with Indicated Onset Temperatures

Figure S22. DSC curve of (tfox)₂(14tfib)

Figure S24. DSC curve of or crystal phase obtained by cocrystallized **fox** and **14tfib** in their respective stoichiometry.

Figure S25. DSC curve of or crystal phase obtained by cocrystallized **fox** and **135tfib** in their respective stoichiometry

Figure S26. DSC curve of or crystal phases obtained by cocrystallized **pox** and **14tfib** in their respective stoichiometry.

Figure S27. DSC curve of or crystal phases obtained by cocrystallized **fox** and **135tfib** in their respective stoichiometry

e S28. DSC curve of or crystal phases obtained by cocrystallized **pox** and **12tfib** in their respective stoichiometry.

Figure S29. DSC curve of or crystal phases obtained by cocrystallized **pox** and **13tfib** in their respective stoichiometry

Figure S30. DSC curve of or crystal phases obtained by cocrystallized **tolox** and **14tfib** in their respective stoichiometry.

Figure S31. DSC curve of or crystal phases obtained by cocrystallized **nox** and **14tfib** in their respective stoichiometry.

Figure S32. DSC curve of or crystal phases obtained by cocrystallized **nox** and **135tfib** in their respective stoichiometry.

Figure S33. DSC curve of (**phox**)(**14tfib**).

Figure S34. DSC curve of (**phox**)(**135tfib**).

Figure S35. DSC curve of or crystal phases obtained by cocrystallized **phox** and **12tfib** in their respective stoichiometry.

Figure S36. DSC curve of or crystal phases obtained by cocrystallized **phox** and **13tfib** in their respective stoichiometry

Figure S37. DSC curve of or crystal phases obtained by cocrystallized **box** and **14tfib** in their respective stoichiometry

Figure S38. DSC curve of or crystal phases obtained by cocrystallized **box** and **135tfib** in their respective stoichiometry

Figure S39. DSC curve of or crystal phases obtained by cocrystallized **box** and **12tfib** in their respective stoichiometry

PXRD patterns

Figure S40. Calculated PXRD pattern from (tfox)₂(14tfib) single crystal data (blue) and diffractogram of the product obtained by crystallization (red)

Figure S41. Calculated PXRD pattern from (**tfox**)(**135tfib**) single crystal data (blue) and diffractogram of the product obtained by crystallization (red)

Figure S42. Calculated PXRD pattern from (**fox**)(**14tfib**) single crystal data (blue) and diffractogram of the product obtained by crystallization (red)

Figure S43. Calculated PXRD pattern from (**fox**)(**135tfib**) single crystal data (blue) and diffractogram of the product obtained by crystallization (red)

Figure S44. Calculated PXRD pattern from (**pox**)(**14tfib**) single crystal data (blue) and diffractogram of the product obtained by crystallization (red)

Figure S45. Calculated PXRD pattern from (**pox**)(**135tfib**) single crystal data (blue) and diffractogram of the product obtained by crystallization (red)

Figure S46. Calculated PXRD pattern from (pox)(12tfib)₂ single crystal data (blue) and diffractogram of the product obtained by crystallization (red)

Figure S47. Calculated PXRD pattern from (**tolox**)(**14tfib**) single crystal data (blue) and diffractogram of the product obtained by crystallization (red)

Figure S48. Calculated PXRD pattern from (**nox**)(**14tfib**) single crystal data (blue) and diffractogram of the product obtained by crystallization (red)

Figure S49. Calculated PXRD pattern from (**nox**)(**135tfib**) single crystal data (blue) and diffractogram of the product obtained by crystallization (red)

Figure S50. Calculated PXRD pattern from (**phox**)(**14tfib**) single crystal data (blue) and diffractogram of the product obtained by crystallization (red)

Figure S51. Calculated PXRD pattern from (**phox**)(**135tfib**) single crystal data (blue) and diffractogram of the product obtained by crystallization (red)

Figure S52. Calculated PXRD pattern from (box)(12tfib)₂ single crystal data (blue) and diffractogram of the product obtained by crystallization (red)

Table S3. Halogen bond energies between **14tfib** (model XB donor) and different acceptor sites on oxazoles used in study. Energies are BSSE corrected.

Figure S53. Optimized halogen-bonded trimer (14tfib)(fox)₂ including I⋅⋅⋅N_{oxazole} and I⋅⋅⋅O_{oxazole} halogen bonds.

Figure S54. Optimized halogen-bonded trimer (14tfib)(fox)₂ including I⋅⋅⋅N_{oxazole} and I⋅⋅⋅O_{furyl} halogen bonds.

Figure S55. Optimized halogen-bonded trimer (14tfib)(pox)₂ including I \cdots N_{oxazole} and I \cdots O_{oxazole} halogen bonds.

Figure S56. Optimized halogen-bonded trimer (14tfib)(pox)₂ including I⋅⋅⋅N_{oxazole} and I⋅⋅⋅N_{pyridyl} halogen bonds.

Figure S57. Optimized halogen-bonded trimer (14tfib)(tfox)₂ including I \cdots N_{oxazole} and I \cdots O_{oxazole} halogen bonds.

Figure S58. Optimized halogen-bonded trimer (14tfib)(box)₂ including I \cdots N_{oxazole} and I \cdots O_{oxazole} halogen bonds.

Figure S59. Optimized halogen-bonded trimer (14tfib)(box)₂ including I \cdots N_{oxazole} and I \cdots π halogen bonds.

Figure S60. Optimized halogen-bonded trimer (14tfib)(nox)₂ including I \cdots N_{oxazole} and I \cdots O_{oxazole} halogen bonds.

Figure S61. Optimized halogen-bonded trimer (14tfib)(nox)₂ including I⋅⋅⋅N_{oxazole} and I⋅⋅⋅O_{nitro} halogen bonds.

Figure S62. Optimized halogen-bonded trimer (14tfib)(tox) including I \cdots N_{oxazole} halogen bond.

Figure S63. Optimized halogen-bonded trimer (14tfib)(phox)₂ including I…N_{oxazole} and I∙∙∙Ooxazole halogen bonds.