Electronic Supporting Information

Design of Mechanically Flexible Photoresponsive Cyanostilbene Molecular Crystals

Thiyagaraj Parthasarathy,^a Biswajit Bhattacharya,^b Franziska Emmerling, ^b Soumyajit Ghosh*^a

^aDepartment of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.

^bBAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.

* Email: <u>soumyajitghosh89@gmail.com</u>

Table of Contents	Page No
Synthesis Scheme	\$3
Recrystallization Table	\$3
NMR Spectroscopy	\$5
Differential Scanning Calorimetry (DSC) Analysis	S5
Face Indexing Image	S6
Crystal Packing Image	S6
Energy Framework Calculations	S7-S8
Photosalient Bending Images of BN Crystal	S8
PXRD Analysis	S9
Crystallographic Information Table	S9

Synthesis Scheme.

Scheme S1. Synthesis route of compound BN

The compound **BN** was synthesized following the reported procedure.¹ In a 100 ml roundbottom flask, 4-bromophenylacetonitrile (1 equivalent) was mixed with 15 ml ethanol and 3bromo-4-methoxybenzaldehyde (1 equivalent). A catalytic amount of NaOH (10 mol %) was added, and the mixture was stirred and refluxed for 6 hours. The product, a white precipitate, was then filtered and dried, achieving an 87% yield.

Recrystallization Table.

Table S1: Results from the recrystallization of Compound **BN** from one solvent or mixture of solvents.

S.No.	Solvents	Compound BN
1.	Ethyl Acetate + n-Hexane (1:1)	Powder
2.	Dichloromethane + Methanol	Powder

	(1:1)	
3.	Ethyl Acetate + Methanol (1:1)	Powder
4.	Ethyl Acetate + n-Hexane (1:1)	Powder
5.	Acetonitrile	Powder
6.	Methanol	Fine Needles
7.	Methanol + Chloroform (1:1)	Fine Needles
8.	Chloroform	Powder

Nuclear Magnetic Resonance (NMR) Analysis.

¹H NMR spectra of crystal **BN** were taken in CDCl₃ solvent. ¹H NMR spectra were collected under standard conditions. Chemical shifts (δ) were reported in parts per million (ppm) and referenced to the residual solvent peak at 7.26 ppm for the CDCl₃ solvent peak.

Crystal BN: ¹H NMR (500 MHz, CDCl₃, TMS) δ 7.99 (dd, *J* = 14.9, 5.2 Hz, 2H, Ar-H), 7.59 (d, *J* = 8.7 Hz, 2H, Ar-H), 7.53 (d, *J* = 8.7 Hz, 2H, Ar-H), 7.40 (s, 1H, –CH=CCN), 7.01 (d, *J* = 8.6 Hz, 1H, Ar-H), 3.97 (s, 3H, methoxy-H).

Figure S1. ¹H NMR spectrum of crystal BN (solvent: CDCl₃, peak at 7.26 ppm)

Differential Scanning Calorimetry (DSC) Analysis.

Figure S2. Comparative Differential Scanning Calorimetry (DSC) profile of crystal BN

before and after irradiation.

Face Indexing Image.

Figure S3. Face indexing image of crystal BN.

Crystal Packing Image.

Figure S4. BN crystal packing viewed along *a*-axis.

Energy Framework Calculations.

The energy framework calculations^{2,3} relating to intermolecular interactions of crystal **BN** were performed using the software suite Crystal-Explorer based on B3LYP/6-31G(d,p) molecular wavefunctions calculated using the CIF files. For calculations, the hydrogen atoms were normalized to standard neutron diffraction values. The energy frameworks constructed were based on the crystal symmetry and total interaction energy components which included electrostatic, polarization, dispersion, and exchange repulsion components scaled by 1.057, 0.740, 0.871, and 0.618, respectively. The interaction energies below 5 kJ.mol⁻¹ are omitted for qclarity and the cylinder thickness is proportional to the intermolecular interaction energies along the parallel vector passing through the cylinder.

Figure S5. Visualization of energy frameworks showing total interaction energy (top, blue), dispersion (middle, green), and electrostatic (below, red) components crystal **BN**, in the (a) (100), (b) (010) and (c) (001) faces, respectively. The energy threshold is 5 kJ.mol⁻¹.

Table S2. (a) Molecular structure pairs and (b) the interaction energies (kJ.mol⁻¹) obtained from energy frameworks calculation for crystal **BN**. Scale factors are in the lower table.

Photomechanical Bending Images of BN Crystal.

Figure S6. Photomechanical bending images of a set of different dimension crystals of BN.

Red arrows denote the direction of the LED source.

Figure S7. Comparative PXRD profile of crystal **BN** depicting simulated pattern, pristine sample, photoirradiated sample and photoirradiated sample followed by heating.

Crystallographic Information Table.

Compound	Crystal BN
Formula	$C_{16}H_{11}Br_2NO$
Molecular weight	393.08
T/K	150
Crystal system	monoclinic
Space group	C2
a/Å	30.2798(12)
b/Å	6.8134(3)
c/Å	14.1349(6)
α/°	90
β/°	93.921(2)

 Table S3: Crystallographic Information Table.

$\gamma/^{\circ}$	90
Volume/Å ³	2909.3(2)
Ζ	8
ρ, Mg.cm ⁻³	1.795
μ/mm^{-1}	5.566
Reflections collected	28451
Independent Reflections	6463
Rint	0.0584
GOF	1.107
Final R[I>2σ]	0.0485
wR ₂	0.1320
CCDC Number	2339475

References.

- 1. K. Rorig, J. Am. Chem. Soc., 1953, 75, 5381-5383.
- M. J. Turner, S. P. Thomas, M. W. Shi, D. Jayatilaka and M. A. Spackman, *Chem. Commun.*, 2015, **51**, 3735-3738.
- P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka and M. A. Spackman, J. Appl. Crystallogr., 2021, 54, 1006-1011.