Synthesis, Chloride-Ion Diffusion Mechanisms, and Anisotropic Sintering of 2D Layered Erbium Oxychloride Nanoplatelets

Jingxiang Cheng,^{a b} Malsha Udayakantha,^{a b} Saul Perez-Beltran,^{a b} Luis Carrillo,^{a b} Wasif Zaheer, ^{a b} Lucia Zuin,^c and Sarbajit Banerjee^{a b*}

^a Department of Chemistry, Texas A&M University, College Station, TX 77843-3012, United States; Email: banerjee@chem.tamu.edu

^b Department of Material Science and Engineering, Texas A&M University, College Station, TX 77843-3012, United States

^c Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada

Supplementary Information

*Corresponding Authors. E-mail Adress: <u>Banerjee@chem.tamu.edu</u> (Prof. Sarbajit Banerjee)

 2θ (°, $\lambda = 1.5406$ Å) Figure S1: Powder XRD pattern of ErOCI prepared using TOPO as the coordinating ligand indexed to a R₃m unit cell (PDF#49-1800, black ticks).

Figure S2: Simulated X-ray diffraction patterns of supercells of SmSI and YOF variants illustrating the impact of directional sintering on relative intensities of reflections.

Figure S3: (A) FTIR spectra of hexadecylamine (black) and HDA-capped ErOCl (red) indicating the presence of of hexadecylamine as a capping ligand. (B) FTIR spectrum of tetradecylamine (black) and TDA-capped ErOCl (red) indicating the role of tetradecylamine as a capping ligand. Note: v = stretching vibrational modes; $\delta =$ bending vibrational modes; $\omega =$ wagging and scissoring modes.