Achieving saturated non-iridescent structural colors via island-like polypyrrole coating on SiO₂ microspheres and enhancing their stability through melt-curing strategy

Shanxiang Sheng, ^a Meng Wu, ^a Chao Zhi, ^a Yongzhen Wang, ^{a, b} Jiaguang Meng, ^{a, b} and Yaming Liu^{* a, b}

- ^a School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China. E-mail: <u>liuym2020@xpu.edu.cn</u>
- ^b Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, China.

Figure S1. SiO₂ size distribution and TEM images (inset). (a) 210 nm (b) 234 nm (c) 256 nm (d) 272 nm (e) 289 nm (f) 306 nm. Scale bar: 500nm.

Figure S3. Dispersion liquids and powders of SiO₂ and SiO₂@PPy.

Figure S4. The structural colors formed by SiO_2 microspheres with different size.

Figure S5. The process of SiO₂@PPy microspheres forming structural color under heating conditions.

Figure S6. SEM-EDS image of SiO₂@PPy.

Figure S7. The TEM image (a) and size distribution (b) of P(MMA-BA) nanospheres.

Figure S8. (a) Structure color images with different P (MMA-BA) contents, and corresponding reflection spectrum (b).

Figure S9. Reflection spectra of SiO₂@PPy and SiO₂@PPy-P(MMA-BA).