Supporting Information

Chemical catalytic degradation of the organic pollutant by using the Ag-Cu₂O core-shell decorated on rGO

Lei Chen¹, Shuang Guo², Eungyeong Park³, Hongkai Zhao^{1,2,*}, Young Mee Jung^{2,3,*}

¹ School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China.

² Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea.

³ Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea.

Correspondence: <u>hkzhao003@126.com</u> (H. Zhao); <u>ymjung@kangwon.ac.kr</u> (Y.M. Jung)

Experimental section

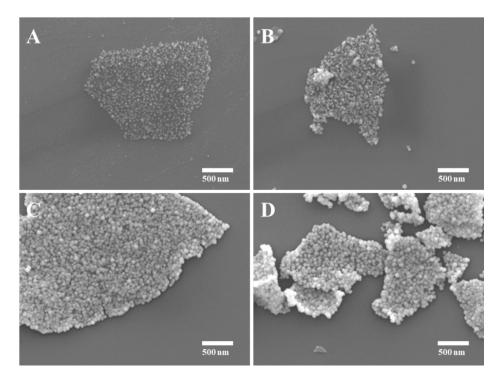
Materials

Silver nitrate $(AgNO_3),$ trisodium citrate dihydrate $(Na_{3}C_{6}H_{5}O_{7}\cdot 2H_{2}O),$ polyvinylpyrrolidone (PVP, K30), trihydrate copper (II) nitrate (Cu(NO₃)₂·3H₂O), hydrazine hydrate (N₂H₄·H₂O, 85%), 4-nitrophenol (4-NP), trinitrophenol (TNP) sodium borohydride $(NaBH_4),$ and trichlorogold hydrochloride hydrate (HAuCl₄·4H₂O) were purchased from Sinopharm Chemical Reagent Co., Ltd. All chemicals were used without further purification. Deionized water (18 M Ω ·cm) was used throughout the experiments.

Fabrication of the Ag-rGO composite

First, 2 mg of graphene oxide (GO) was dispersed in 200 mL of deionized water and sonicated for 1 hour to obtain a uniformly dispersed GO aqueous solution in a three-necked flask. Then, 36 mg of AgNO₃ was added to the three-necked flask and magnetically stirred at 90-92 °C until slight boiling occurred. Finally, 4 mL of 1% Na₃C₆H₅O₇·2H₂O solution was added to the three-necked flask, and the temperature was adjusted to 85 °C. The development of a dark green color in the solution indicated that the Ag-rGO composite had been obtained.

Fabrication of ACR nanocomposites


The ACR nanocomposites were obtained by reducing $Cu(NO_3)_2 \cdot 3H_2O$ with a reducing agent in a 35% N₂H₄·H₂O solution using PVP as a polymerization agent. One gram of PVP was added to 50 mL of 0.05 M $Cu(NO_3)_2 \cdot 3H_2O$ with vigorous stirring. After PVP was completely dissolved (approximately 10 min), V mL of Ag-rGO composite was added (V=0, 5, 10, and 15 mL). Then, 70 μ L of N₂H₄·H₂O was added to the mixed solution for 90 s under magnetic stirring (350 rpm). The obtained ACR nanocomposites with different Cu₂O shells are shown in Fig. 1.

Catalytic performance evaluation

We added 100 µL of 0.005 M 4-NP solution to 2 mL of deionized water and placed it in a quartz dish. Then, we added a freshly prepared 0.2 M NaBH₄ solution. The solution changed from colorless to light yellow. Afterward, different volumes of Ag-rGO composite solution were used to fabricate the ACR nanocomposites. Finally, the UV–Vis absorption spectra were measured in the range of 200-500 nm every 2 min. The catalytic performance of the core-shell structure was evaluated from the reduction rate of 4-NP. The optimized ACR nanocomposites were used as catalysts for the degradation of MO and TNP.

Characterization

Field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images were obtained using a JEOL JSM-6500F (JEOL Ltd., Tokyo, Japan) and a JEOL 2100 (JEOL Ltd., Tokyo, Japan) at an acceleration voltage of 200 kV. The UV–Vis absorption spectra and catalytic properties were monitored using a SHIMADZU 3600 spectrometer (Shimadzu Corporation, Tokyo, Japan).

Fig. S1. SEM images of Ag-rGO (A) and ACRN with different thicknesses of the Cu₂O shell (B-D).

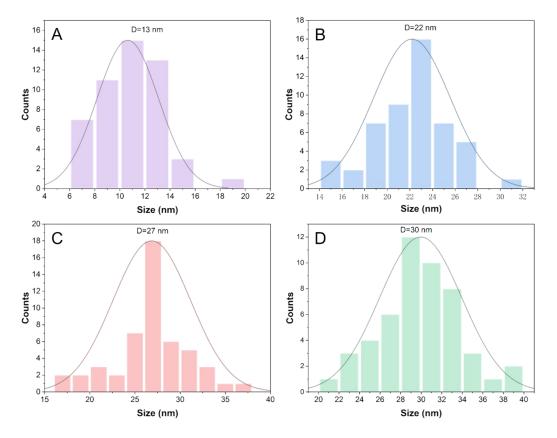


Fig. S2. The column charts of the average diameter of the Ag nanoparticles (A) and Ag@Cu₂O which decorated on the rGO (B-D).